THE HD44780 LCD CONTROLLER APPLICATION NOTES

Name: Duane Bala
Date: 19" July 2001

INTRODUCTION

Many LCDs use controllers that either conform to or are compatible with the Hitachi HD44780
de-facto standard.

If you look at the back of an LCD which conformsto this standard, you will see that one of the
chips would have HD44780 written acrossit. There are many (small) variations of the standard so you may
see, for example, HD44780A00. If one of the chips does not have HD44780 written acrossit, hope is not
lost as many manufacturers make controller chips that are HD44780 compatible. Such chips may not have
HD44780 written across them.

LCDs may vary in the number of characters per line and in the number of lines even though they
conform to the HD44780 standard. The most common L CDs have either 16 or 20 characters per line, while
having 1, 2, or 4 linesin all.

THE HD44780 STANDARD

The HD44780 controller has 3 input control lines and either 4 or 8 datalines. The data lines may
be either input or output lines. Together, the control and data lines form the instructions that tell the LCD
module what to do.

The lnstruction Register and the Data Register

The LCD module has two 8-bit registers, the Instruction Register (IR) and the Data Register (DR).
The IR is used to store instructions while the DR temporarily stores data read from or to be written to the
DDRAM. The DDRAM isthe memory that stores all of the characters being displayed by the LCD.
Therefore, to write characters on the display, we write to the DR. On the other hand, when we are
specifying the parameters of the LCD module (such as 4-bit interface, 1-line display, display on, etc.) or
instructing the LCD controller to perform some function (such as clear display, cursor home, etc.) we write
tothelR.

The following diagram shows the logical configuration of the LCD module.

EN RW
e S
I |
| |
|
8 | Date :
'] Register |
i :
| .
| . [Display
Data 8 I Logic : _
Bus : |
I [
8 I | Ingruction :
: Register I
I |
|
RS : LCD Controller |

Figurel ThelLogical Configuration of the LCD Controller
1

The Control Lines

The 3 control lines are the Register Select Line (RS), the Read/Write Line (RW) and the Enable
Line (EN).

TheRSLine
Thislineisused to select either the Instruction Register (IR) or the Data Register (DR). RSis set
(RS=1) to select the Data Register, while cleared (RS=0) to select the Instruction Register.

TheRW Line

It indicatesto the LCD module whether you are writing to or reading from, the register selected by
RS (which would be either the IR or the DR). RW is set (RW=1) to indicate that you are reading the
register, while cleared (RW=0) to indicate that you are writing to the register.

TheEN Line
The EN lineisused like a clock input to the controller. Raising EN and then lowering it signals
the controller to perform the operation contained in the IR.

The Data Lines

The datalines are referred to as DBO, DB1, DB2...DB7. These lines make up the Data Bus with
DBO being the Least Significant Bit and DB7 being the Most Significant Bit. As mentioned before, the user
can choose between a 4-bit interface and an 8-bit interface. In the case of the 8-bit interface, DBO...DB7
are used, while only DB4...DB7 are used with the 4-bit interface (DB4 being the Least Significant Bit).

The Read and Write Operations

The following tables show the basic read and write operations. When an 8-bit interfaceis used the
operations are asin these tables. That is, only one datatransfer is required (for either operation). With a4-
bit interface two data transfers are required (for either operation). Figures 3 and 5 show the write and read
operations when a 4-bit interface is used.

The Write Operation: 8-bit interface
Assume | ENisinitialy low (EN=0)
Set RS and RW to their desired states (i.e. either 0 or 1)
Wait a minimum of 60ns
Raise EN (EN=1)
Set the Data Busto the desired value
Wait a minimum of 195ns
Clear EN (EN=0)
Notes Keep RS and RW at their current states for a minimum of 20ns
Keep the current value at the Data Bus for a minimum of 10ns

Tablel TheWriteOperation (8-Bit Interface)

G WIN|F-

(o]

The Read Operation: 8-bit interface
Assume EN isinitially low (EN=0)
1 Set RS and RW to their desired states (i.e. either 0 or 1)
2 Wait a minimum of 60ns
3 Raise EN (EN=1)
4 Wait a minimum of 360ns
5 Read the value across the Data Bus
6 Clear EN (EN=0)
Notes Keep RS and RW at their current states for a minimum of 20ns
The value across the Data Bus will be held (by the LCD modul€) for a minimum of 5ns
Table2 TheRead Operation (8-Bit Interface)
Basic Rules:

There are some basic rules that must be followed regardless of the operation (i.e. for both read and
write operations).

Basic Timing Requirements

EN must be kept high a minimum of 450ns

The time between 0-1 transitions of EN must be a minimum of 1000ns

The length of the 0-1 transition of EN must be a maximum of 20ns

The length of the 1-0 transition of EN must be a maximum of 20ns. The transition occurs when EN is
cleared after being high. For example, step 6 in both the read and write operations.

Table3 TheBasic Timing Requirementsfor Read and
Write Operations

It isimportant to note that the LCD can operate at both 2.7 to 4.5 Voltsand at 4.5 to 5.5 Volts.
However, the timing requirements for both ranges are different. Therefore, to be compatible with both
ranges the smaller of the maximum timing requirements (between the two ranges) were taken. Also, the
larger of the minimum timing requirements (between the two ranges) were taken. The given delays meet
the requirements of both ranges.

Y ou may want to check the manual for the actual timing requirementsif the given delays (in
particular the maximum delays) cannot be met.

The following diagram illustrates the Write Operation

RS

EN

BOto DB7

>{.:'
T
3 60ns 3 20ns
RW b =
3 450ns | 1. %20ns
£20 —
K y ns
Fj -IH A
— - 3
£20ns 195ns ® 10ns
VALID DATA <
il
3 1000ns

Figure 2Write Opgation 8-bit Interface

RS

RW

EN

DB4toDB7

3 60ns 3 20ns
. 3450ns 3 450ns 3 20ns
— —a —
I:J—' E
V] , ol
—n p— —n
£ 20ns o -
3 195ns 3 10ns 3 195ns 3 10ns
Upper Nibble < Lower Nibble
3 1000ns 3 1000ns

Figure3 Write Operation 4-bit Interface

The following diagram illustrates the Read Operation

A,

RS

3

3 60nsF

3 20ns i

RwW _'/.)

e

DBOto DB7

3 450ns 3 20ns
—= =— £ 20ns
EN ﬂ t -H‘ A
£ 20ns p— .
ns
3 360n
VALID DATA (
3 1000ns

Figure4 Read Operation 8-bit Interface

- i-/
RS ><_t 5
3 GOnSF E) ZOnSF
F *.
RW 7
3 450ns 3 450ns 3 20ns
— | [— £20Nns —] | —
g il F il | /_
EN ﬂ — ' j - '
£ 20nS 3 5ns 3 5ns
3 360ns 3 360ns
DB4 to DB7 U i i '
pper Nibble Lower Nibble L
3 1000ns 3 1000ns

Figure5 Read Operation 4-bit Interface

The Typical Sequence of Operation

Thetypical sequence of operation for the HD44780 controller is shown in the following diagram.

Instruction Operation
Function Set Initialisation
Check Busy Flag
Display On/Off Control
Check Busy Flag

Clear Display

Check Busy Flag

Entry Mode Set

Check Busy Flag Setup
Set Cursor Position
Check Busy Flag
Cursor/display Shift
Check Busy Flag Display Text
Writeto DDRAM

Check Busy Flag
Writeto DDRAM

Figure6 Typical Operation Sequence

The LCD module must first beinitialised, the specifics of which is dealt with in the next section.
Theinitialisation is actually a sequence of instructions that define the various parameters of the LCD
module.

After theinitialisation, you can then setup the display. This may involve setting the position of the
cursor on the display. Y ou may also set either the display or the cursor to shift, and the direction of the
shift. This document, however, does not deal with this option in much detail. Check the manual for much
information.

Y ou can now write text on the display. The text will be displayed at whatever position of the
screen the cursor is at.

Note that before every instruction the busy flag is checked. There are times during initialisation
that the busy flag cannot be checked. The following section gives more detail s with respect to this.

OPERATION
Initialising the LCD

Before the LCD can be used to display text, it must first be initialised. Initialisation basically
defines various parameters of the LCD module. For example, you must define whether the interface is 8-bit
or 4-bit, whether the display is on or off, whether the cursor is on or off and whether the display is 1 line or
2line. These arejust afew of the parameters that must be defined. The following instructions define all the
parameters that can be set.

Instruction RS RwW DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO Description
Clear display 0 0 0 0 0 0 0 0 0 1 Clears entire display and
setsDDRAM address0in
address counter.
Entry mode 0 0 0 0 0 0 0 1 I/D S Sets cursor move direction
set and specifies display shift.

These operations are
performed during data write

and read.
Display 0 0 0 0 0 0 1 D C B Setsentire display (D)
on/off control on/off, cursor on/off (C),
and blinking of cursor
position character (B).
Function set 0 0 0 0 1 DL N F * * Sets interface data length

(DL), number of display
lines (N), and character font

|.

Table4 Instructionsthat definethe LCDs parameters

1/D = 1: Increment
1/D = 0: Decrement

S = 1: Accompanies display shift

DL = 1: 8 hits, DL = 0: 4 bits

N=1:2lines, N=0: 1line

F=1:5"10dots, F=0: 5" 8 dots

[nitialisation by Reset
Aninternal reset circuit automatically initialises the LCD when the power isturned on. This
though, is provided that the power to LCD meets certain conditions.

The conditions for proper initialisation by internal reset circuit:
1. Thetimethe supply takesto rise from 0.2V oltsto 4.5V olts (for 5V olt operation) or to
2.7V olts (for 3Volt operation) must have a minimum of 0.1ms and a maximum of 10ms
2. Thetimethat the power supply is off (considered 0.2V olts) isaminimum of 1ms. Thisis
to compensate for momentary power oscillations when the supply is switched on.

Table 5 showsthe instructions that are executed during theinitialisation:

Instruction Parameter Settings
1. Display clear
2. Function set: DL = 1; 8-hit interface data

N = 0; 1-linedisplay

3. Display on/off control:

D = 0; Display off
C = 0; Cursor off
B = 0; Blinking off

4. Entry mode set:

I/D =1; Increment by 1
S=0; No shift

Table5

Instructions executed during Initialisation by

Reset

The busy flag is kept in the busy state (BF=1) until theinitialisation ends.

The parameters set by the (initial reset circuit) initialisation (Table 5) may not be the desired
parameters. Y ou can change any of these parameters using the instructions given in Table 4. However, if
you need to change the parameters defined by the function set instruction (DL, N, F), thisinstruction must
be executed before any other instruction. From this point, the function set instruction cannot be executed
unlessthe interface length is changed. The other parameters of the LCD can be changed at any time.

Initialisation by Instruction

If the proper power supply conditions for the internal reset circuit is not met, the LCD will not be
initialised. Initialisation by instruction becomes necessary. The following diagrams show the procedures for

4-bit and 8-bit interfaces.

Wiail far mare than 15 ms
afler e riges o 4.5 %

Wiaill for mone than 40 me
after Vi fises o 2.7 W

A2 RAVDET DEG DES DE4 DR30E2 DE1 DR
o 0 0 0 1 1 o+ v & ¥

Wail far mare than 4.1 ms

| BF cannol be checked befare this insirsstion

F=0;5" 8dot character font

Funclion sl {Irerface is 8 bits long.)

RS RAWDET DEE DES R4 DE3 DE2 DE1 DR
¢ 0 0 0 1 1 = & & &

Wail far mare than 100 ps

| BF cannol be checked befar his insirection

Funchion sl {Irerface is 8 bits long.)

A= RAWDET D85 DES DR DE3 DEe 06106
¢ 0 0 0 1 1 = ® & &

| BF cannol be checked befar his insirection

Funclion sl {Irerface is 8 bits long.)

BF can be checked aller the following irstructions

When BF is nol checked, the wailing lime belween
instnuclions is longer fhan the execulion irestuction

tme. (See Table 8.

Funclion s {Irerface is 8 bits long. Specily lbe

RS RAWDET DEG DB D4 DRI DEZ D61 DR nurnber of disphay lines and character fonl)
@ 0 o0 0 1 1 M F + & Thee rurnber of display lines and characters fort
T 0 0 0 O T 10 0 0 canniol be changed ater 1his poind.
¢ 0 0 0 0 0 a0 0 0 f Display of
O 0 0 00 o a0 1B Digplay cloor
l Enlry mocle sl
Initializalion snds
Figure7 Initialisation by Instruction fér an 8-bit Interface

Wail far e han 15 ms
aller e rises o4 5%

RS W DET DBE 085 D64
o0 o0 o0 11

|

Wiail for more than 4.1 ms

RS W DET DBE 085 DB
o0 o0 o0 11

|

Wail [or more 1han 100 ps

RS W DET DBE 085 DB
o000 1i

|

Wil for more han 40 ms
aller Vi rimas o 27 W

| BF garnol be checked before lhis nsiruction

Funclion sed {Inferfacs is @ bils ong.)

| BF carnol be checked before lhis nsiruction

Funclion sed {Inferfaos is @ bils kang.)

| BF carnol be checked before [nsiruction

Funclion sed {Inferfaos is 8 bils ang.)

RS R DT DREDE5 064 BF aan ber checked after the ollowing instructions
o o0 d a1 0 ‘When BF is nol checked, the wailing lime bebween
oog ¢ 0 1 @ iretruclions is hlql:'.l than lhe execulion instuclion
06 ONF * o+ I;rm.* (S T..!I;l: ﬁ.l r —

unclion ssl (Sl interfsoe o 1 lang.)
ooeoo0ooob Inleriaee i 8 bits in lenglh

o 0 1 a0 0 0
0O 0 0 0 O Funclion sel {Irerfscs i 4 bils lang. Specily 1be

i beer of displiay Bres and chamelers kool

0 0 0 0 0 1 T ruarm beer of display res and chamcler el
o ¢ ¢ 0 0 0 canriol be changed aller 1his point.

o 0 0 1 D s Displany o

* Displany chagr
Initializalion ends Entry modse el

Figure8 Initialisation by Instruction for a 4-bit Interface

1-Line, 2-Line and 4-Line Initialisation
It was mentioned before that initialisation defines the parameters of the LCD. One of these
parametersis the number of display lines. This parameter is set by the Function Set instruction.

I nstruction RS | RW DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
Function Set 0 0 0 0 0 1 N F * *

N sets the number of display lines. For 1 display line, let N=0 when executing the function set
instruction. For 2 or 4 display lines, set N to 1 when executing the function set instruction.

When using an LCD display that has 4 lines, for example a 20x4 display, when N=0, the display
would beinitialised as follows. Y ou basically get 1line of 40 characters.

1% part of line 1 (20 characters long)

o part of line 1 (20 characters long)

When N=1, the display would be initialised as follows. You basically get 2 lines of 40 characters
each.

1% part of line 1 (20 characters long)
1% part of line 2 (20 characterslong)
2" part of line 1 (20 characters long)
2" part of line 2 (20 characters long)

What happens is that when writing 21 characters, starting at the first part of line one, the 21%
character would end up on the second part of line one. If 41 characters were being written to the LCD,
starting at the first part of line one, the 41% character would end up on the first part of line two.

To get around this arrangement, check the section, Setting Cursor Position.

Checking the busy flag

Anintegral part of any write instruction (to either the IR or DR) is checking the busy flag (BF).
When the BF is 1 the LCD will not accept instructions. The next instruction must be written after ensuring

the BFisO.
When RSis 0 (to select the IR) and RW is 1 (to indicate a read operation), the busy flag is output

to DB7 (for both 4-bit and 8-bit interfaces). The following diagrams illustrate how the busy flag is checked
for both the 4-bit and the 8-bit interfaces.

o / \

el | —

N ‘ﬁ*""x:’f w‘ zum==vw‘ &L,?/?‘Z%(—}é’/
IrEtnuelion Busy flag Busy Mg Busy Mg IrEtruclion

Figure9 How to check the Busy Flag with an 8-bit Interface

Irterns

aperation

aBr¥

Busy flag Busy flag Instruction
write

Note: IRT, IR3 are the Tin and 3nd bits of the Instruction,
ACT I8 the 3nd bit of the address counter.

Figure10 How to check the Busy Flag with a 4-bit I nterface

Note that only when the busy flag is cleared (BF=0) would the LCD module accept a new
instruction.

Writing text tothe LCD

Writing text on the LCD is as easy as any write instruction. What you are in fact doing is writing
data (RW=0) to the DR (RS=1). Only one character can be written to the LCD at atime. Towritea
character to the LCD, the following instruction must be executed.

Instruction RS| Rw | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
Write character to the 1 0 Code for Character
LCD

The fact that the code for a character matchesits ASCII code simplifies the implementation of the
instruction. Thisis dealt with in the Implementation section of this document.

Setting cursor position

Setting the cursor position gives the user the ability to write a character anywhere on the LCD
screen. Any character that iswritten to the LCD, is actually stored in the display dataRAM (DDRAM).
Every possible character position hasa DDRAM address. Therefore to set the cursor position, we must
execute the Set DDRAM Address instruction. Thisiswrite instruction (RW=0) to the IR (RS=0).

Thefollowing table shows the Set DDRAM Address instruction.

Instruction RS| RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO

Set DDRAM Address 0 0 1 DDRAM Address

The DDRAM addresses, though, are not completely continuous as the following diagram shows.
Note that these addresses arein hex.

05 [06 |07 |08 |09 [OA| OB |OC|OD|OE |[OF |10 |11 |12 [13

14 |15 [16 | 17 9 |1A|1B|IC|ID|I1E|1IF |20 [21 |22 | 23 |24 |25 [26 | 27

04

40 | 41 142 | 43 [44 [45 | 46 | 47 |48 [49 | 4A | 4B | 4C [4D | 4E | 4F | 50 [51 [52 | 53
18
58

50 | 5A | 5B [5C | 5D | 5E | 5F | 60 | 61 | 62 | 63 [64 | 65 | 66 | 67

Figurell TheDDRAM Addressesfor a20x4 LCD

Although the above address map is 20 characters by 4 lines, smaller LCDs will have the same
starting addresses. For example, the following shows the DDRAM addresses for a 16x2 LCD.

00 (010203][04 05 06|07 08|09]OoAJoB|]OC] OD]JOE |OF
40 | 41 |42 |43 |44 |45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F

Figurel2 TheDDRAM Addressesfor a16x2 LCD

To set the cursor to address 40h, for example, the following instruction is executed. Note, 40h is
equivalent to 0b01000000.

Instruction RS| RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO

Set DDRAM Address 0 0 1 1 0 0 0 0 0 0

Other functions

Clear Screen

Thisisasimple write instruction (RW=0). It calls the LCD module to execute one of its functions
so we arewriting to the IR (RS=0); The function clearsthe screen, asits name implies, and returns the
cursor to home (address 0).

10

Cursor Home

Thisisaso asimple write instruction (RW=0). It returns the cursor to home (address 0) but does
not alter the contents of the DDRAM. This means that none of the text being displayed will be changed.

Summary of Instructions

Instruction RS RW DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO Description

Clear display 0 0 0 0 0 0 0 0 0 1 Clears entire display and sets
DDRAM address 0 in address
counter.

Return Home 0 0 0 0 0 0 0 0 1 * Sets DDRAM address0in
address counter. Also returns
display from being shifted to
origina position. DDRAM
contents remain unchanged.

Entry mode 0 0 0 0 0 0 0 1 I/D S Sets cursor move direction and

set specifies display shift. These
operations are performed
during datawrite and read.

Display on/off 0 0 0 0 0 0 1 D C B Sets entire display (D) on/off,

control cursor on/off (C), and blinking
of cursor position character
(B).

Cursor or 0 0 0 0 0 1 SC R/L * * Moves cursor and shifts

display shift display without changing
DDRAM contents.

Function set 0 0 0 0 1 DL N F * * Sets interface data length
(DL), number of display lines
(N), and character font (F).

Set CGRAM 0 0 0 1 CGRAM address Sets CGRAM address.

address CGRAM datais sent and
recelved after this setting.

Set DDRAM 0 0 1 DDRAM address Sets DDRAM address.

address DDRAM datais sent and
received after this setting.

Read busy flag 0O 1 BF CGRAM / DDRAM address Reads busy flag (BF)

& address indicating internal operationis
being performed and reads
address counter contents.

Write datato 1 0 Write data Writes datainto DDRAM or

CG or CGRAM.

CCRAM

Read data 1 1 Read data Reads datafrom DDRAM or

from CG or CGRAM.

DDRAM

Table6 Instructions

1/D = 1: Increment
1/D = 0: Decrement

S = 1: Accompanies display shift

S/C = 1. Digplay shift
S/C = 0: Cursor move

R/L = 1: Shift to the right
R/L = 0: Shift to theleft

DL = 1: 8 hits, DL = 0: 4 bits

N=1:2lines,N=0: 1line

F=1:5"10dots, F=0: 5" 8 dots

BF = 1: Internally operating
BF = 0: Instructions acceptable

DDRAM: Display data RAM

CGRAM: Character generator RAM

11

IMPLEMENTATION

This portion of the document deals with devel oping the code to use the LCD. The code is based on
the PIC C Cross-Compiler by Custom Computer Services Inc.

Designing the module

To design the LCD module let us start at the lowest level. Thisisthe level that actually interacts
withthe LCD. At thislevel, we either read a byte from the LCD or write abyte to the LCD. We must also
specify which register (the DR or the IR) we are reading from or writing to. At thislevel, we are also
concerned about the length of the interface (4-bit or 8-bit).

Moving to the middie level. At thislevel we want either to send acommand to the LCD, to writea
character to the screen, or to initialise the LCD. Also, it isrealised that checking the busy flag isthe only
instruction that requires reading a byte.

Now at the high level, we are concerned with writing a string of characters, or going to a certain
line of the display. We build upon the functions of the middle level, simplifying the way would use the
LCD.

The following diagram illustrates how you can structure the LCD Module.

LCD Module
High-level GoToLine WriteString
L ayer
PutCommand InitLCD WriteChar
Middle-level
L ayer
CheckBusyFlag
L ow-level
Layer WriteByte ReadByte

Figure13 TheLCD Module Structural Design

The advantage of such alayered approach isthat the interface to the LCD gets simpler aswe move
to higher levels. It is easy to add functions to the high-level layer as at this level we are not concerned with
the intricacies of the LCD. Also, changing between 4-bit and 8-bit interfaces require only changing the
low-level layer. If done properly, theinitialise function would not need changing.

General code

Before we can devel op the functions shown in the design, we must determine which ports we are
going to use to communicate with the LCD module. The code being developed will use Port D and last
three bits of Port C. Note that you do not have to use these ports. However, using different connections
would require the general code to be changed.

The following definitions make the code easier to read and use.

#defi ne IR 0
#defi ne DR 1
#defi ne READ 1
#def i ne VRI TE 0

If you are using fast I/0, you must remember to define which pins are input and which are output.
Thiswould constant for the last 3 pins of Port C as EN, RS and RW are always output pins (from the PICs
perspective). Port D however may be either input or output depending on whether the operation being
performed is aread or awrite.

The following sections show the general code needed for 8-bit and 4-bit modes. The addresses
defined by this code are specific to the PIC16F877/874.

General code for 8-bit mode
The following diagram shows how the pins are connected.

EN RC5
RS RC6
RW RC7
DBO : RDO
Leco O | T pic

Figure1l4 ThePin Connectionsfor the LCD 8-bit Interface

13

The following portion of code defines the variables that the low-level functions would interact with.

/* Defines the bits for Port C */

struct {
i nt unused: 5; //The first 5 bits are not used by the LCD
int en:1; //ENis the 6" bit of Port C RC5
int rs:1; //IRS is the 7" bit of Port C RC6
int rw1; //IRWis the 81" bit of Port C RC7
}LCDControl ;

#byte LCDData = 0x08 /I Defines the address of the variable LCDData
/las that of Port D

#byte LCDControl = 0xO07 //Defines the address of the structure
//LCDControl as that of Port C

#byte LCDDataDir =0x88 //Defines the address of the variable
/1 LCDDat abir as that of TrisD

#byte LCDConDir = 0x87 [/ Defines the address of the variable
/1 LCDConDir as that of TrisC

#defi ne LCD DATA IN LCDDat abi r | =0xFF
#defi ne LCD DATA_OUT LCDDat aDi r &=0x00
#def i ne LCD_CON_OUT LCDConDi r &=0x1F

To set the LCD control lines as output:
LCD_CON_QOUT;

To set the LCD datalines as output:
LCD_DATA_OUT;

To set the LCD datalines as input:
LCD DATA IN;

Writing a byte to the LCD module

To develop the code to write a byte to the LCD you may need to recap the write operation (Refer
to Table 1) one of these (write) operationsis required for an 8-bit interface, while a 4-bit interface requires
the operation to be done twice.

We must determine the time between the two write operations required when using a 4-hbit
interface. The specifications say that there must be a minimum of 1000ns between 0-1transitions of EN. It
istherefore necessary to find the fastest time the entire write operation can be completed. Thistimeis
determined to be 470ns as EN must be 1 for a minimum of 450ns, and RS and RW must be held constant
for aminimum of 20ns after EN is cleared. We must therefore wait a minimum of 530ns between write
operations. Note that this assumes that delays stated in the Control Lines section were used. As mentioned
in that section, the delays stated allow for compatibly between the 2.7-4.5V olt range and the 4.5-5.5V olt
range.

Writing a byte 8-bit mode

Now to develop the code for writing a byte, using an 8-bit interface. It is assumed that EN is
initially low (EN=0). To ensure that this assumption isvalid, we will ensure that EN is O after every
operation. (Thiswill also be applied to reading a byte)

In writing a byte, we must know to which register (DR or IR) we are writing, and also, the value
that we are writing to thisregister. These would be the parameters that the WriteByte function accepts. So
we have:

WiteByte(short int rs, int data_to_|cd)

14

This function has no values to return. Additionally, we already know that RW should be 0 because
this function only performs write operations.
The following code implements the write operation.

/************************The WlteByte functlon *******************/
/*
This function wites a byte to the LCD nodule with an 8-bit
i nterface
| nput Paraneters:
int rs This variable selects the register being witten to.
DR sel ects the data register
IR selects the instruction register
int data_to_Ilcd This variable stores the data that will be witten to
the selected register

*/
void WiteByte(short int rs, int data_to_|Icd)
{
LCD_DATA_QOUT; /1 LCD Data Bus is an out put
LCDControl .rw = WRITE; //The operation is a wite operation
LCDControl .rs = rs; /1 Selects the register (DR or IR
del ay_us(1); /[/Wait a m nimum of 60ns
LCDControl .en = 1; // Rai se EN
LCDData = data_to lcd; //Set the Data Bus to the desired val ue
delay_us(1); //Wait a mnimum of 195ns
LCDControl .en = O; /1 Clear EN
delay_us(1); /1 Keep RS and RWat their current states for a
/' m ni nrum of 20ns
/1 Al so, keep the current value at the Data Bus
[1for a m ni mum of 10ns
}

Reading a byte from the LCD module

Developing the code to read a byte from the LCD is very similar to what we previously did for the
write operation. Again, you may need to recap the read operation (Refer to Table 2). Only one of these
(read) operationsis required for an 8-bit interface, while a 4-bit interface requires the operation to be done
twice.

We must determine the time between the two read operations required when using a 4-bit
interface. The specifications say that there must be a minimum of 1000ns between 0-1transitions of EN. It
istherefore necessary to find the fastest time the entire read operation could be completed. Thistimeis
determined to be 470ns as EN must be 1 for a minimum of 450ns, and RS and RW must be held constant
for aminimum of 20ns after EN is cleared. We must therefore wait a minimum of 530ns between read
operations. Note that this assumes that delays stated in the Control Lines section were used. As mentioned
in that section, the delays stated allow for compatibly between the 2.7-4.5V olt range and the 4.5-5.5V olt
range.

Reading a byte 8-bit mode

Now to develop the code for reading a byte, using an 8-bit interface. In reading a byte, we must
know from which register (DR or IR) we are reading. The ReadByte function only needs to accept this one
parameter. So we have:

ReadByt e(short int rs)
Thisfunction returns only one value, the byte read. Additionally, we already know that RW

should be 1 because this function only performs read operations.
The following code implements the read operation.

15

/************************The ReadByte functlon *******************/
/*
This function reads a byte fromthe LCD nodule with an 8-bit

interface
| nput Paraneters:
int rs This variable selects the register being read from
DR sel ects the data register
IR selects the instruction register
Qut put Val ue: The function returns the value of the byte read
*/
i nt ReadByte(short int rs)
{
int data_from.|l cd; //This variable is used to store the byte
//read fromthe Data Bus
LCD DATA I N; //Port Dis an input port
LCDControl . rw = READ; /1 The operation is a read operation
LCDControl .rs = rs; /1 Selects the register (DR or IR
del ay_us(1); [/ Wait a mnimum of 60ns
LCDControl .en = 1; // Rai se EN
del ay_us(1); [/ Wait a m ni mum of 360ns
data_fromlcd = LCDData;//Read the val ue across the Data Bus
LCDControl .en = 0; /1 Clear EN
delay_us(1); /1 Keep RS and RWat their current states
//for a m ni mum of 20ns
return data_froml cd;
}
4-bit mode

General code for 4-bit mode

Note that when using a 4-bit interface, only 4 datalines are required. Therefore the entire Port D
would not be needed to connect to the LCD module. Only half of Port D would be required. The following
pin connection could be used.

EN RC5
RS RC6
RW RC7
DB4 : RD4
Lo O | T pic

Figure15 ThePin Connectionsfor the LCD 4-bit Interface

16

The following portion of code defines the variables that the low-level functions would interact with.

/* Defines the bits for Port C */

struct {
i nt unused: 5; //The first 5 bits are not used by the LCD
int en:1; //ENis the 6" bit of Port C RC5
int rs:1; //IRS is the 7" bit of Port C RC6
int rw1; //IRWis the 81" bit of Port C RC7
}LCDControl ;

/* Defines the bits for Port D */

struct {
i nt unused: 4; [/ The first 4 bits are not used by the LCD
i nt used: 4; //RD4 to RD7 used to communicate with the LCD
} LCDDat a;

#byte LCDData = 0x08 /1 Defines the address of the structure LCDData
/las that of Port D

#byte LCDControl = 0xO07 //Defines the address of the structure
/1LCDControl as that of Port C

#byte LCDDat aDir =0x88 //defines the address of the variable
[/ LCDDat abi r as that of TrisD

#byte LCDConDir = 0x87 //defines the address of the variable
[/ LCDConDir as that of TrisC

#defi ne LCD DATA IN LCDDat aDi r | =0xFO
#def i ne LCD_DATA_OUT LCDDat aDi r &0x0F
#defi ne LCD_CON_OUT LCDConDi r &0x1F

To set the LCD control lines as output:
LCD_CON_QOUT;

To set the LCD datalines as output:
LCD_DATA_QUT;

To set the LCD datalines asinput:
LCD_DATA I N;

Writing a byte 4-bit mode

Writing a byte using a 4-bit interface is now simple, having already developed the code to write a
byte using an 8-bit interface. With a 4-bit interface we simply perform the write operation twice with a
delay (of 550ns minimum) between the write operations. It is also necessary to break up the byte into its
(two) nibbles. Note that the upper nibble iswritten in the first write operation. The lower nibble iswritten
in the second operation.

The following code implements the write operation for a 4-bit interface.

17

/************************The WlteByte functlon *******************/

/* This function wites a byte to the LCD nodule with a 4-bit
interface

| nput Paraneters:

int rs This variable selects the register being witten to.

DR sel ects the data register
IR selects the instruction register
int data_to_|cd This variable stores the data that will be witten to
the sel ected register

*/
void WiteByte(short int rs, int data_to_|cd)
{
struct broken_up_data_t{ [/ This structure is used to break
/[/up the byte to be witten to the
//LCD npdule into its two nibbles
i nt | ower_ni bbl e: 4; /1 The first 4 bits are not used by
//the LCD
i nt upper_ni bbl e: 4; /1 The second 4 bits are used to
[/ communicate with the LCD
b
struct broken_up_data_t broken_up_dat a;
broken_up_data = (struct broken_up_data_t)data_to_I cd;
LCD_DATA_ QOUT; //LCD Data Bus is an out put
LCDControl .rw = WRITE; //The operation is a wite operation
LCDControl .rs = rs; /1 Selects the register (DR or IR
del ay_us(1); //Wait a m ni mum of 60ns
LCDControl .en = 1; // Raise EN start first wite operation
LCDDat a. used = broken_up_dat a. upper _ni bbl e; /1 Set the Data
//Bus to the upper nibble of the desired
/lval ue
del ay_us(1); /WAt a mnimum of 195ns
LCDControl .en = 0O; /I Clear EN finish first wite operation
delay_us(1); /1 Keep RS and RWat their current states for a
[/ m ni mum of 20ns
/1 Al so, keep the current value at the Data Bus
[1for a m nimum of 10ns
/1Wait 530ns before the next wite operation
LCDControl .en = 1; /! Rai se EN start second wite operation
LCDDat a. used = broken_up_dat a. | ower _ni bbl e; /] Set the Data
//Bus to the lower nibble of the desired
/I val ue
delay_us(1); //Wait a mnimum of 195ns
LCDControl .en = 0O; /1 Clear EN finish second wite operation
del ay_us(1); /1 Keep RS and RWat their current states for a
/' m ni rum of 20ns
/1 Al'so, keep the current value at the Data Bus
[/ for a mnimmof 10ns
}

18

Reading a byte 4-bit mode

Reading a byte using a4-hit interface is now simple, having already developed the code to read a
byte using an 8-bit interface. With a 4-bit interface we simply perform the read operation twice with a delay
(of 550ns minimum) between the read operations. Each read operation reads only one nibble so it is
necessary to combine them to get a byte. Note that the upper nibbleisread in the first read operation. The
lower nibbleisread in the second operation.

The following code implements the write operation for a 4-bit interface.

/************************The ReadByte functlon *******************/

/* This function reads a byte fromthe LCD nodule with a 4-bit
i nterface
| nput Par aneters:
int rs This variable selects the register being read from

DR sel ects the data register
IR selects the instruction register

Qut put Val ue: The function returns the value of the byte read
*/
i nt ReadByte(short int rs)
{
struct { /1 This structure is used to forma byte
[/fromthe two nibbles read
i nt | ower_ni bbl e: 4; [/ The first 4 bits are not used by
//the LCD
i nt upper _ni bbl e: 4; // The second 4 bits are used to

// communi cate with the LCD
}data_froml cd;

LCD _DATA IN; [/ Port Dis an input port

LCDControl . rw = READ; /1 The operation is a read operation

LCDControl .rs = rs; /1 Selects the register (DR or IR

del ay_us(1); /[/Wait a m nimum of 60ns

LCDControl .en = 1, /' Raise EN start first read operation

del ay_us(1); /WAt a mni mum of 360ns

data_from.| cd. upper _ni bbl e = LCDDat a. used; /I Read the val ue
/lacross the Data Bus

LCDControl .en = 0O; /I Clear EN finish first read operation

del ay_us(1); /1 Keep RS and RWat their current states for a

/' m ni rum of 20ns
/1Wait 530ns before the next wite operation

LCDControl .en = 1; /1 Rai se EN start second read operation

del ay_us(1); [/ Wait a m ni mum of 360ns

data_from.|l cd. | ower _ni bbl e = LCDDat a. used; /'l Read the val ue
/lacross the Data Bus

LCDControl .en = 0; /1 Clear EN finish second read operation

delay_us(1); /1 Keep RS and RWat their current states

/1 for a mninmmof 20ns
return (int)data_from.lcd;

19

Checking the busy flag

This function reads the IR register, returning 1 if the LCD module isbusy or O if it is not. So we
have:

/************************The CheCkBuSyFl ag functlon ******************/

/* This function reads a byte fromthe instruction register and
tests the 8" bit, which is the busy Flag
Qut put Val ue: The function returns

1if the Busy Flag is set (LCD nodul e busy)
Oif the Busy Flag is clear (LCD nodule is not

busy)
*/
short int CheckBusyFl ag(void)
{
int data_fromlcd; /1 This variable is used to store the byte
//read fromthe LCD
data_fromlcd = ReadByte(IR); // Read the IR (rs=0)
return (bit_test(data fromlcd,7)); //Test the BF
/I Return 1 if set
/I Return O if clear
}

Note that the busy flag is checked to ensure that the LCD module is not busy before initiating a
new instruction. The reason for thisisthat when the LCD isbusy, it cannot accept anew instruction. The
code that follows ensures that the busy flag is cleared before every instruction. Any code to be added to the
middle layer hasto conform to thisrule. If thisruleis not kept, instructions can be lost and the LCD
module will not behave as expected. Thisrule has only to be kept at the middle layer, as high layer
functions would not interact with the CheckBusyFlag function.

Initialising the LCD

To develop the InitLCD function let us assume that the power supply does not produce the
conditions necessary for correct internal reset circuit initialisation. Even if the power supply does meet the
conditions, the function will still work. Y ou may want to recap the Initialisation by Instruction section of
this document.

As mentioned before, initialisation defines various parameters of the LCD module. We must now
decide on the setting of these parameters. The following parameters must be considered:

Par ameter Settings
Interface 4-bit 8-hit
Number of display lines 1-line 2-line or 4-line
Cursor shift direction Increment Decrement
Font size 5x8dots 5x10dots
Display On Off
Cursor On Off
Cursor blink On Off

20

To demonstrate the code for this function, the following settings will be chosen:

Parameter Setting
Interface 8-bit
Number of display lines | 2-lineor 4-line
Cursor shift direction Increment
Font size 5x8dots
Display On
Cursor Off
Cursor blink Off

The settings chosen determine the instructions that must be written to the LCD module. The

following codeinitialisesthe LCD (with the above settings).

/************************The InItLCD functl on *******************/

/*

This function initialises the LCD nodule (Initialisation by
i nstruction).

Initialisation Paraneters:

*/
void |

Interface 8-bit
Nunber of display lines 2-line or 4-line
Cursor shift direction |Increnent

Font size 5x8dot s
Di spl ay On
Cur sor O f
Cursor blink Cursor blink
ni t LCD(voi d)
del ay_ns(15); [/ Delay a mnimum of 15ns
WiteByte(lR 0b00111000); // Define function set
/18-bit interface, 2-line or 4-line display, 5x8 font

del ay_ns(5); [/ Delay a mninmum of 4.1ns
WiteByte(l R 0b00111000); /I Redefine function set
del ay_us(100); /1 Delay a mnimum of 100us
WiteByte(l R 0b00111000); /I Redefine function set
whi | e(CheckBusyFl ag()); //VWait until BF =0
WiteByte(lR 0b00001100); /1 Define display on/off control

/1 display on, cursor off, cursor blink off
whi | e(CheckBusyFl ag()); //Wait until BF =0
WiteByte(lR, 0b00000001); /1 Clear Display
whi | e(CheckBusyFl ag()); /[IWait until BF =0
WiteByte(lR 0b00000110); /1 Entry nopde set

/lcursor direction increnent, do not shift display

Toinitialise the LCD with different parameter settings, you would need to change the bits of the

variousinstructions. Y ou may want to recap the Summary of Instructions section to review what
parameters the various bits affect.

21

Writing a character tothe LCD

This function would obviously accept the character that you want to write to the display. Using the
WriteByte function simplifies this function. Y ou simply need to remember that you are writing to the DR
(RS=1). Also, we must ensure that the LCD module is no longer busy before continuing.

/************************The W| techar functl on *******************/

/* This function displays a character on the LCD.

| nput Paraneters:

char character This variable stores the character to be displayed on
t he LCD.

*/

void WiteChar(char character)

{

whi | e(CheckBusyFlag()); //Wait until the LCD nodule is not busy
WiteByte(DR, character);//Wite character to DR

Sending a Command to the LCD

Thisfunction issimilar to WriteByte. The only difference is that PutCommand writes only to the
IR (RS=0). Additionally, this function waits for the busy flag to be cleared (the LCD moduleis not busy).

/************************The PUtCOfTITHnd functlon *******************/

/* This function wites a byte to the instruction register.
| nput Paraneters:
i nt conmand This variable stores the byte to be witten to the

i nstruction register.
*/
voi d Put Conmand(i nt command)

whi | e(CheckBusyFl ag()); //Wait until the LCD nodule is not busy
WiteByte(l R command); //Wite command to IR

GoingtoalLineontheLCD

In the Setting Cursor Position section, you learned about DDRAM addresses and setting the cursor
to an address. The GoToLine function allows the user to set the cursor to the first address of any of the 4
lines. The following table recaps these addresses.

Line | Address
1 00h
2 40h
3 14h
4 54h

Theinput to the function isthe line that you would like to go to. The follow code implements the
function.

/************************The ®TOL| ne fUI’]CtIOI’] *******************/
/* This function sets the cursor to the first position of a
specified |ine of the LCD
| nput Paraneters:
int line This variable selects the LCD |ine on which the
cursor is to be set.

*/
voi d GoToLine(int Iine)
{
i nt addr ess; //This variable is used to deterni ne the
// address at which the cursor is to be set
switch (line) /] Set address to the first DDRAM address of the
//specified |ine
{
case 1:
addr ess = 0x00;
br eak;
case 2:
addr ess = 0x40;
br eak;
case 3:
addr ess = 0x14;
br eak;
case 4.
addr ess = 0x54;
br eak;
defaul t: // An undefined |ine set the cursor home
addr ess = 0x00;
br eak;
}
bit_set(address, 7); /IBit 7 identifies the instruction as Set
/ | DDRAM addr ess
Put Command(addr ess) ; /1 Set the DDRAM address
}

Writing a string of characterstotheLCD

We have already devel oped afunction that writes a character to the LCD. Thisfunction builds
upon the WriteChar function, allowing the user to write a string of characters. It uses the PRINTF function
of the cross compiler, which requires the STRING.H file to be included. The following statement must
therefore be included at the beginning of the program.

#i ncl ude <string. h>

The following code implements the function.

#tdef i ne TOTAL_CHARACTERS_OF LCD 80
void WiteString(char LineO Characters[TOTAL_CHARACTERS OF LCD])
{

}

printf(WiteChar,"%", LineO Characters);

Y ou simply place whatever text you want to write to the LCD within the inverted commas.

23

	THE HD44780 LCD CONTROLLER APPLICATION NOTES
	INTRODUCTION
	THE HD44780 STANDARD
	The Instruction Register and the Data Register
	The Control Lines
	The RS Line
	The RW Line
	The EN Line

	The Data Lines
	The Read and Write Operations
	The Typical Sequence of Operation

	OPERATION
	Initialising the LCD
	Initialisation by Reset
	Initialisation by Instruction
	1-Line, 2-Line and 4-Line Initialisation

	Checking the busy flag
	Writing text to the LCD
	Setting cursor position
	Other functions
	Clear Screen
	Cursor Home

	Summary of Instructions

	IMPLEMENTATION
	Designing the module
	General code
	General code for 8-bit mode

	Writing a byte to the LCD module
	Writing a byte 8-bit mode

	Reading a byte from the LCD module
	Reading a byte 8-bit mode

	4-bit mode
	General code for 4-bit mode
	Writing a byte 4-bit mode
	Reading a byte 4-bit mode

	Checking the busy flag
	Initialising the LCD
	Writing a character to the LCD
	Sending a Command to the LCD
	Going to a Line on the LCD
	Writing a string of characters to the LCD

