
34

MPLAB® C1X
Quick Reference Card

MPLAB C17 Quick Reference

MPLAB C17 Command Switches

Command Description

/?, /h Display help screen

/D<macro>[=<text>] Define a macro

/FO=<name> Set object file name

/FE=<name> Set error file name

/I<path> Add include path

/NW<n> Suppress message n

/O Enable all optimizations

/Ob[+|-] Branch optimization

/Oc[+|-] Context optimization

/Ol[+|-] Default static locals

/Or[+|-] Register optimizer

/Ou[+|-] Unreachable code removal

/Op Far ram pointers are to GPRs

/P=<processor> Set processor

/Q Quiet mode

/W{1|2|3} Set warning level

/M{s|m|c|l} Select memory model

MPLAB C17 Libraries and Precompiled Object Files

File Use

cmath17.lib Math routines

p17c???.o SFR definitions

c0*17.o Startup code

idata17.o Initialized data support

int???*.o Interrupt support

pmc???*.lib Standard C and peripheral library routines

??? = processor type (e.g., 756 for PIC17C756)
* = memory model (i.e., s, c, m, l)

MPLAB C17 Types

Type Bit Width Range

void N/A none

char 8 -128 to 127

unsigned char 8 0 to 255

int 16 -32,768 to 32,767

unsigned int 16 0 to 65,535

short 16 -32,768 to 32,767

unsigned short 16 0 to 65,535

RAM ROM

s small near near

m medium near far

c compact far near

l large far far

MPLAB C17 Interrupts
To create an interrupt service routine in your MPLAB C17 code, you may wish to
use the following steps:

• Define interrupt routine in your source code using a #pragma interrupt
statement.

• Specify which interrupt routine will be called for each type of interrupt used. Do
this with the Install_ macros, replacing “isr” with the name of the ISR function:

- Install_INT(isr);
- Install_TMR0(isr);
- Install_T0CKI(isr);
- Install_PIV(isr);

• Include interrupt support routines (e.g., int756l.o) when invoking MPLINK™
object linker.

MPLAB C17 Inline Assembly
MPLAB C17 has an internal assembler with a syntax similar to the MPASM™
assembler, except that comments must be in the C (/* */) or C++ (//) style. The
block of assembly code must begin with _asm and end with _endasm. For
example:

_asm
movlw 7 // Load 7 into WREG
movwf PORTB // and send it to PORTB
_endasm

Creating an MPLAB C17 Project in
MPLAB IDE
The following are the basic steps required to create a MPLAB C17 based project
in the MPLAB IDE. For a more detailed description, please see the MPLAB C1X
User’s Guide (DS51217).

1. Specify the include, library, and linker script paths. The library path should
be c:\mcc\lib, where c:\mcc is the installation directory for MPLAB C17.

2. Select the development mode (processor and debugging environment).
3. Select MPLINK object linker as the build tool for the target node.
4. Add C files using the Add Node… button, specifying the build tool for each

as MPLAB C17.
5. Add a linker script file.
6. Add any needed libraries or precompiled object files.

long 32 -2,147,483,648 to 2,147,483,647

unsigned long 32 0 to 4,294,967,295

float 32 1.7549435E-38 to 6.80564693E+38

double 32 1.7549435E-38 to 6.80564693E+38

Common MPLAB C17 Type Modifiers

Modifier Use

auto Variable exists only in block in which it was defined

const Variable will not be modified

far Variable is paged/banked regardless of memory model
selected

extern Variable is allocated in another module

near Variable is not paged/banked regardless of memory
model selected

static Variable is retained unchanged between executions of
the defining block

MPLAB C17 Types (Continued)

Type Bit Width Range

Microchip Technology Inc.
2355 West Chandler Blvd.

Chandler, AZ 85224
Tel: 480.792.7200 Fax: 480.792.9210

Web Site Address: www.microchip.com

The Microchip name, logo, PIC, PICmicro, and MPLAB are registered trademarks
of Microchip Technology Incorporated in the U.S.A. and other countries. MPASM,
MPLINK and MPLIB are trademarks of Microchip Technology in the U.S.A. and
other countries.
 2001 Microchip Technology Incorporated. All rights reserved.

Printed in the U.S.A. 7/01 DS51225C

12

��������

MPLAB C18 Quick Reference
MPLAB C18 Command Switches

Command Description

-?, -h Display help screen

-v Display compiler version number

-d<macro>[=<text>] Define a macro

-fo=<name> Set object file name

-fe=<name> Set error file name

-i<path> Add include path

-k Default char is unsigned

-ls Multi-bank stack

-nw<n> Suppress message n

-O Equivalent to: -Ob+, -Om+, -On2, -Os+, -Ot+, -Ou+, and
-Ow+

-Oa[+|-] Default data in access memory

-Ob[+|-] Branch optimization

-Oi[+|-] Promote to integers

-Ol[+|-] Default static locals

-Om[+|-] Duplicate string merging

-On{0|1|2} Set banking optimizer level

-Os[+|-] Code straightening

-Ot[+|-] Tail merging

-Ou[+|-] Unreachable code removal

-Ow[+|-] WREG content tracking

-p=<processor> Set processor

-q Quiet mode

-w{1|2|3} Set warning level

-m{s|l} Select memory model

MPLAB C18 Libraries and Precompiled Object Files

File Use

clib.lib Standard C routines, math routines, startup code

c018i.o Startup code with initialized data support

c018.o Startup code without initialized data support

p18????.lib Peripheral library routines and SFR definitions

???? = processor type (e.g., C452 for PIC18C452, F020 for PIC18F020.)

ROM

s small near

l large far

MPLAB C18 Interrupts
To create an interrupt service routine in your MPLAB C18 code, no additional
libraries need be included. Simply do the following:

• Create a code section at the interrupt vector that contains a goto isr state-
ment, either using inline assembly or a separate assembly file.

• Declare your interrupt routine in your source code using one of the following
statements:

High-priority interrupts – W, BSR, and STATUS are saved in shadow registers

#pragma interrupt <isr> [save=symbol-list]

Low-priority interrupts – W, BSR, and STATUS are saved on the software
stack

#pragma interruptlow <isr> [save=symbol-list]

The following registers are managed by the compiler and should not be saved
using save=symbol-list.

* The compiler will automatically save FSR0 if needed.

MPLAB C18 Types

Type Bit Width Range

void N/A none

char 8 -128 to 127

unsigned char 8 0 to 255

int 16 -32,768 to 32,767

unsigned int 16 0 to 65,535

short 16 -32,768 to 32,767

unsigned short 16 0 to 65,535

short long 24 -8,388,608 to 8,388,607

unsigned short long 24 0 to 16,777,215

long 32 -2,147,483,648 to 2,147,483,647

unsigned long 32 0 to 4,294,967,295

float 32 1.7549435E-38 to 6.80564693E+38

double 32 1.7549435E-38 to 6.80564693E+38

Common MPLAB C18 Type Modifiers

Modifier Use

const Variable will not be modified

far Variable is paged/banked regardless of memory model
selected

extern Variable is allocated in another module

near Variable is not paged/banked regardless of memory
model selected

ram Locate object in data memory

rom Locate object in program memory

static Variable is retained unchanged between executions of
the defining block.

volatile Variable may change from other sources (e.g., input port)

FSR0* PCL

FSR1 STATUS

FSR2 WREG

BSR

If your ISR calls non-ISR functions, the temporary data section must be saved.
this is done using the section qualifier on the save= keyword.

#pragma interruptlow <isr> [save=section(“.tmpdata”)]

MPLAB C18 Inline Assembly
MPLAB C18 has an internal assembler with a syntax similar to the MPASM
assembler, except that comments must be in the C (/* */) or C++ (//) style. The
block of assembly code must begin with _asm and end with _endasm. For
example:

_asm
movlw 7 // Load 7 into WREG
movwf PORTB // and send it to PORTB
_endasm

Creating an MPLAB C18 Project in
MPLAB IDE
The following are the basic steps required to create an MPLAB C18 based project
in the MPLAB IDE. For a more detailed description, please see the MPLAB C1X
User’s Guide (DS51217).

1. Specify the include, library, and linker script paths. The library path should
be c:\mcc\lib, where c:\mcc is the installation directory for MPLAB C18.

2. Select the development mode (processor and debugging environment)
3. Select MPLINK object linker as the build tool for the target node.
4. Add C files using the Add Node… button, specifying the build tool for each

as MPLAB C18.
5. Add a linker script file.
6. Add any needed libraries or precompiled object files.

C Language Quick Reference
Operator Precedence
The following chart shows the order in which C language operators are
processed. Those with higher precedence will always be processed before those
with lower precedence. Operators at the same level are evaluated from left to
right.

Keywords
The ANSI C standard defines 32 keywords for use in the C language. The
following table shows the ANSI C and the MPLAB C1X keywords, where MPLAB
C1X keywords are shown in bold.

Highest Precedence

{} [] -> .

! = ++ -- - (type cast) * & sizeof

* / %

+ -

<< >>

< <= > >=

== !=

&

^

|

&&

||

?

= += -= *= /=

,

Lowest Precedence

_asm extern short

_endasm far signed

auto float* sizeof

break for static

case goto struct

char if switch

const int typedef

continue long union

default near unsigned

do ram void

double register** volatile

else return while

enum rom

** has no effect in MPLAB C1X.

