
MPLAB®-CXX
REFERENCE GUIDE

LIBRARIES AND PRECOMPILED
OBJECT FILES
Information contained in this publication regarding device applications and the like is intended by way of suggestion
only. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with
respect to the accuracy or use of such information. Use of Microchip’s products as critical components in life support
systems is not authorized except with express written approval by Microchip.

 2000 Microchip Technology Incorporated. All rights reserved.

The Microchip logo, name, PIC, PICSTART, PRO MATE, PICmicro, and MPLAB are registered rademarks of Microchip
Technology Incorporated in the U.S.A. and other countries. All product/company trademarks mentioned herein are the
property of their respective companies.
 2000 Microchip Technology Inc. DS51224B

MPLAB®-CXX Reference Guide
DS51224B  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Table of Contents
General Information
Introduction ... 1

Highlights .. 1

About This Guide .. 1

Warranty Registration ... 3

Recommended Reading ... 3

Troubleshooting .. 4

The Microchip Internet Web Site .. 4

Development Systems Customer Notification Service 5

Customer Support ... 7
 2000 Microchip Technology Inc. DS51224B-page iii

MPLAB®-CXX Reference Guide
Part 1 – MPLAB-C17 Libraries

Chapter 1. Library/Precompiled Object Overview
1.1 Introduction ..11

1.2 Highlights ...11

1.3 MPLAB-C17 Libraries ..11

1.4 MPLAB-CXX Precompiled Object Files13

Chapter 2. Hardware Peripheral Library
2.1 Introduction ..15

2.2 Highlights ...15

2.3 A/D Converter Functions ..16

2.4 Input Capture Functions ...20

2.5 I²C® Functions ...24

2.6 Interrupt Functions ...36

2.7 Port B Functions ..38

2.8 Microwire® Functions ...42

2.9 Pulse Width Modulation Functions ...47

2.10 Reset Functions ..50

2.11 SPI™ Functions ..55

2.12 Timer Functions ..62

2.13 USART Functions ...67

Chapter 3. Software Peripheral Library
3.1 Introduction ..75

3.2 Highlights ...75

3.3 External LCD Functions ...76

3.4 Software I²C Functions ..84

3.5 Software SPI Functions ...92

3.6 Software UART Functions ...95
DS51224B-page iv  2000 Microchip Technology Inc.

Chapter 4. General Software Library
4.1 Introduction .. 99

4.2 Highlights ... 99

4.3 Character Classification Functions .. 100

4.4 Number and Text Conversion Functions 103

4.5 Delay Functions ... 109

4.6 Memory and String Manipulation Functions 111

Chapter 5. Math Library
5.1 Introduction .. 117

5.2 Highlights ... 117

5.3 32-Bit Integer and 32-Bit Floating Point Math Libraries 117

5.4 Decimal/Floating Point and Floating Point/Decimal
Conversions ... 120
 2000 Microchip Technology Inc. DS51224B-page v

MPLAB®-CXX Reference Guide
Part 2 – MPLAB-C18 Libraries

Chapter 6. Library Overview
6.1 Introduction ..127

6.2 Highlights ...127

6.3 MPLAB-C18 Libraries Overview ..127

6.4 Standard C Libraries ...128

6.5 Processor-Specific Libraries ...129

6.6 Interrupt Handling ..129

Chapter 7. Hardware Peripheral Library
7.1 Introduction ..131

7.2 Highlights ...131

7.3 A/D Converter Functions ..132

7.4 Input Capture Functions ...137

7.5 I²C® Functions ...140

7.6 I/O Port Functions ..151

7.7 Microwire® Functions ...154

7.8 Pulse Width Modulation Functions ...159

7.9 Reset Functions ..161

7.10 SPI™ Functions ..166

7.11 Timer Functions ..173

7.12 USART Functions ...178

Chapter 8. Software Peripheral Library
8.1 Introduction ..185

8.2 Highlights ...185

8.3 External LCD Functions ...186

8.4 Software I²C Functions ..194

8.5 Software SPI Functions ...201

8.6 Software UART Functions ...204
DS51224B-page vi  2000 Microchip Technology Inc.

Chapter 9. General Software Library
9.1 Introduction .. 209

9.2 Highlights ... 209

9.3 Character Classification Functions .. 210

9.4 Number and Text Conversion Functions 215

9.5 Delay Functions ... 220

9.6 Memory and String Manipulation Functions 222

Chapter 10. Math Library
10.1 Introduction .. 235

10.2 Highlights ... 235

10.3 32-Bit Integer and 32-Bit Floating Point Math Libraries 235

10.4 Decimal/Floating Point and Floating Point/Decimal
Conversions.. 237

Glossary ..241
Introduction ... 241

Highlights .. 241

Terms ... 241

Index ..257

Worldwide Sales and Service..264
 2000 Microchip Technology Inc. DS51224B-page vii

MPLAB®-CXX Reference Guide
DS51224B-page viii  2000 Microchip Technology Inc.

®

G
en

In
fo

rm
MPLAB -CXX REFERENCE GUIDE

General Information
eral
atio

n
Introduction
This first chapter contains general information that will be useful to know
before using MPLAB-C17 or MPLAB-C18 libraries and/or precompiled object
files.

Highlights
The information you will garner from this chapter:

• About this Guide

• Recommended Reading

• Warranty Registration

• Troubleshooting

• The Microchip Internet Website

• Development Systems Customer Notification Service

• Customer Support

About This Guide

Document Layout
This document describes MPLAB-CXX (MPLAB-C17/C18) libraries and
precompiled object files used when writing C code for PICmicro
microcontroller applications. For a detailed discussion about MPLAB-CXX
compiler operation and functions, refer to the MPLAB-CXX User’s Guide
(DS51217).

The Reference Guide layout is as follows:

Part 1 – MPLAB-C17 Libraries

• Chapter 1: Library/Precompiled Object Overview – describes the
libraries and precompiled object files available.

• Chapter 2: Hardware Peripheral Library – describes each hardware
peripheral library function.

• Chapter 3: Software Peripheral Library – describes each software
peripheral library function.

• Chapter 4: General Software Library – describes each general soft-
ware library function.

• Chapter 5: Math Library – discusses the math library functions.
 2000 Microchip Technology Inc. DS51224B-page 1

MPLAB®-CXX Reference Guide
Part 2 – MPLAB-C18 Libraries

• Chapter 6: Library/Precompiled Object Overview – describes the
libraries and precompiled object files available.

• Chapter 7: Hardware Peripheral Library – describes each hardware
peripheral library function.

• Chapter 8: Software Peripheral Library – describes each software
peripheral library function.

• Chapter 9: General Software Library – describes each general soft-
ware library function.

• Chapter 10: Math Library – discusses the math library functions.

Appendicies

• Appendix A: Code Portability – discusses how to port MPLAB-C17
code to MPLAB-C18.

• Glossary – A glossary of terms used in this guide.

• Index – Cross-reference listing of terms, features and sections of this
document.

• Worldwide Sales and Service – gives the address, telephone and fax
number for Microchip Technology Inc. sales and service locations
throughout the world.

Conventions Used in this Guide
This manual uses the following documentation conventions:

Updates
All documentation becomes dated, and this reference guide is no exception.
Since MPLAB, MPLAB-C17, MPLAB-C18 and other Microchip tools are
constantly evolving to meet customer needs, some library and/or precompiled
object file descriptions may differ from those in this document. Please refer to
our web site to obtain the latest documentation available.

Documentation Conventions

Description Represents Examples

Italic characters Referenced books. MPLAB User’s
Guide

Courier Font User entered code or sample
code

#define ENIGMA

0xnnn 0xnnn represents a hexadeci-
mal number where n is a hexa-
decimal digit

0xFFFF, 0x007A
DS51224B-page 2  2000 Microchip Technology Inc.

 General Information

G
en

eral
In

fo
rm

atio
n

Warranty Registration
Please complete the enclosed Warranty Registration Card and mail it
promptly. Sending in your Warranty Registration Card entitles you to receive
new product updates. Interim software releases are available at the Microchip
web site.

Recommended Reading
This reference guide describes MPLAB-C17 and MPLAB-C18 libraries and
precompiled object files. For more information on the operation and functions
of the compilers, the operation of MPLAB and the use of other tools, the
following is recommended reading.

MPLAB-CXX User’s Guide (DS51217)

Comprehensive guide that describes the installation, operation and features
of Microchip’s MPLAB-C17 and MPLAB-C18 compilers.

README.C17, README.C18

For the latest information on using MPLAB-C17 or MPLAB-C18, read the
README.C17 or README.C18 file (ASCII text) included with the software.
These README files contain update information that may not be included in
this document.

README.XXX

For the latest information on other Microchip tools (MPLAB, MPLINK, etc.),
read the associated README files (ASCII text file) included with the MPLAB
software.

MPLAB User’s Guide (DS51025)

Comprehensive guide that describes installation and features of Microchip’s
MPLAB Integrated Development Environment, as well as the editor and
simulator functions in the MPLAB environment.

MPASM User’s Guide with MPLINK and MPLIB (DS33014)

This user’s guide describes how to use the Microchip PICmicro assembler
(MPASM), the linker (MPLINK) and the librarian (MPLIB).

Technical Library CD-ROM (DS00161)

This CD-ROM contains comprehensive application notes, data sheets, and
technical briefs for all Microchip products. To obtain this CD-ROM, contact the
nearest Microchip Sales and Service location (see back page).

Microchip Website

Our website (http://www.microchip.com) contains a wealth of documentation.
Individual data sheets, application notes, tutorials and user’s guides are all
available for easy download. All documentation is in Adobe Acrobat (pdf)
format.
 2000 Microchip Technology Inc. DS51224B-page 3

MPLAB®-CXX Reference Guide
Microsoft Windows Manuals

This manual assumes that users are familiar with the Microsoft Windows
operating system. Many excellent references exist for this software program,
and should be consulted for general operation of Windows.

Troubleshooting
See the README files for information on common problems not addressed in
the MPLAB-CXX User’s Guide.

The Microchip Internet Web Site
Microchip provides on-line support on the Microchip World Wide Web (WWW)
site.

The web site is used by Microchip as a means to make files and information
easily available to customers. To view the site, the user must have access to
the Internet and a web browser, such as Netscape® Communicator or
Microsoft® Internet Explorer®. Files are also available for FTP download from
our FTP site.

Connecting to the Microchip Internet Website

The Microchip website is available by using your favorite Internet browser to
attach to:

http://www.microchip.com

The file transfer site is available by using an FTP program/client to connect to:

ftp://ftp.microchip.com

The website and file transfer site provide a variety of services. Users may
download files for the latest Development Tools, Data Sheets, Application
Notes, User’s Guides, Articles, and Sample Programs. A variety of Microchip
specific business information is also available, including listings of Microchip
sales offices, distributors and factory representatives. Other data available for
consideration is:

• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to Microchip Products
• Conferences for products, Development Systems, technical information

and more
• Listing of seminars and events
DS51224B-page 4  2000 Microchip Technology Inc.

 General Information

G
en

eral
In

fo
rm

atio
n

Development Systems Customer Notification Service
Microchip provides a customer notification service to help our customers keep
current on Microchip products with the least amount of effort. Once you
subscribe to one of our list servers, you will receive email notification
whenever we change, update, revise or have errata related to that product
family or development tool. See the Microchip WWW page for other Microchip
list servers.

The Development Systems list names are:

• Compilers

• Emulators

• Programmers

• MPLAB

• Otools (Other Tools)

Once you have determined the names of the lists that you are interested in,
you can subscribe by sending a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe <listname> yourname

Here is an example:

subscribe mplab John Doe

To UNSUBSCRIBE from these lists, send a message to:

listserv@mail.microchip.com

with the following as the body:

unsubscribe <listname> yourname

Here is an example:

unsubscribe mplab John Doe

The following sections provide descriptions of the available Development
Systems lists.

Compilers
The latest information on Microchip C compilers, Linkers and Assemblers.
These include MPLAB-C17, MPLAB-C18, MPLINK, MPASM as well as the
Librarian, MPLIB for MPLINK.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe compilers yourname
 2000 Microchip Technology Inc. DS51224B-page 5

MPLAB®-CXX Reference Guide
Emulators
The latest information on Microchip In-Circuit Emulators. These include
MPLAB-ICE and PICMASTER.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe emulators yourname

Programmers
The latest information on Microchip PICmicro device programmers. These
include PRO MATE II and PICSTART Plus.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe programmers yourname

MPLAB
The latest information on Microchip MPLAB, the Windows Integrated
Development Environment for development systems tools. This list is focused
on MPLAB, MPLAB-SIM, MPLAB’s Project Manager and general editing and
debugging features. For specific information on MPLAB compilers, linkers
and assemblers, subscribe to the COMPILERS list. For specific information
on MPLAB emulators, subscribe to the EMULATORS list. For specific
information on MPLAB device programmers, please subscribe to the
PROGRAMMERS list.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe mplab yourname

Otools
The latest information on other development system tools provided by
Microchip. For specific information on MPLAB and its integrated tools refer to
the other mail lists.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe otools yourname
DS51224B-page 6  2000 Microchip Technology Inc.

 General Information

G
en

eral
In

fo
rm

atio
n

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Corporate Applications Engineer (CAE)

• Hot line

Customers should call their distributor, representative, or field application
engineer (FAE) for support. Local sales offices are also available to help
customers. See the back cover for a listing of sales offices and locations.

Corporate applications engineers (CAEs) may be contacted at
(480) 786-7627.

In addition, there is a Systems Information and Upgrade Line. This line
provides system users a listing of the latest versions of all of Microchip's
development systems software products. Plus, this line provides information
on how customers can receive any currently available upgrade kits.

The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-786-7302 for the rest of the world.
 2000 Microchip Technology Inc. DS51224B-page 7

MPLAB®-CXX Reference Guide
NOTES:
DS51224B-page 8  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Part 1 – MPLAB-C17 Libraries
M
P

L
A

B
-C

17
L

ib
raries

Part
1

Chapter 1. Library/Precompiled Object Overview11

Chapter 2. Hardware Peripheral Library...15

Chapter 3. Software Peripheral Library ..75

Chapter 4. General Software Library ..99

Chapter 5. Math Library ...117
 2000 Microchip Technology Inc. DS51224B-page 9

MPLAB®-CXX Reference Guide
DS51224B-page 10  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 1. Library/Precompiled Object Overview
M
P

L
A

B
-C

17
L

ib
raries

Part
1

1.1 Introduction
This chapter gives an overview of the MPLAB-C17 libraries and precompiled
object files that can be included in an application.

1.2 Highlights
This chapter is organized as follows:

• MPLAB-C17 Libraries

- Hardware, Software, and Standard Libraries
- Math Library

• MPLAB-C17 Precompiled Object Files

- Start Up Code
- Initialization Code
- Interrupt Handler Code
- Special Function Register Definitions

1.3 MPLAB-C17 Libraries
A library is a collection of functions grouped for reference and ease of linking.
See the MPASM User’s Guide with MPLINK and MPLIB for more information
about making and using libraries.

When building an application, usually one file from Section 1.3.1 will be
needed to successfully link. Be sure to chose the library that corresponds to
your selected device and memory model. For more information on memory
models, see the MPLAB-CXX User’s Guide.

For functions contained in MPLAB-C17 libraries, all parameters sent to these
functions are classified as static and therefore are passed in global RAM. The
first variable is always passed in the PROD register if declared as static, i.e., 8
bits in PRODL and 16 bits in PRODH:PRODL.

The MPLAB-C17 libraries are included in the c:\mcc\lib directory, where
c:\mcc is the compiler install directory. These can be linked directly into an
application with MPLINK.

These files were precompiled in the c:\mcc\src directory at Microchip. If
you chose not to install the compiler and related files in the c:\mcc directory
(ex: c:\cxx\src, d:\mcc\src, etc.), a warning message will be generated
by MPLINK stating that source code from the libraries will not show in the
.lst file and can not be stepped through when using MPLAB. This results
from MPLINK looking for the library source files in the absolute path of
c:\mcc\src.
 2000 Microchip Technology Inc. DS51224B-page 11

MPLAB®-CXX Reference Guide
To include the library code in the .lst file and to be able to single step
through library functions, use the batch file (.bat) in the src directory to
rebuild the files. Then copy the newly compiled files into the lib directory.

1.3.1 Hardware, Software, and Standard Libraries

These are the main MPLAB-C17 library files that contain the functions
described in the following three chapters.

• Hardware functions are described in Chapter 2.

• Software functions are described in Chapter 3.

• General functions are described in Chapter 4.

When you wish to use any of the functions described in these chapters,
include the appropriate above library as part of your project.

The source code for these libraries may be found in c:\mcc\src\pmc,
where c:\mcc is the compiler install directory.

1.3.2 Math Library

This library file contains the available math functions described in detail in
Chapter 5. When you wish to use any of the functions described in this
chapter, include the math library as part of your project.

The source code for this library can be found in c:\mcc\src\math, where
c:\mcc is the compiler install directory.

PICmicro
Memory Model

Small Medium Compact Large

17C42A pmc42as.lib pmc42am.lib pmc42ac.lib pmc42al.lib

17C43 pmc43s.lib pmc43m.lib pmc43c.lib pmc43l.lib

17C44 pmc44s.lib pmc44m.lib pmc44c.lib pmc44l.lib

17C752 pmc752s.lib pmc752m.lib pmc752c.lib pmc752l.lib

17C756A pmc756as.lib pmc756am.lib pmc756ac.lib pmc756al.lib

17C756 pmc756s.lib pmc756m.lib pmc756c.lib pmc756l.lib

17C762 pmc762s.lib pmc762m.lib pmc762c.lib pmc762l.lib

17C766 pmc766s.lib pmc766m.lib pmc766c.lib pmc766l.lib

PICmicro All Memory Models

17CXXX cmath17.lib
DS51224B-page 12  2000 Microchip Technology Inc.

Library/Precompiled Object Overview

M
P

L
A

B
-C

17
L

ib
raries

Part
1

1.4 MPLAB-CXX Precompiled Object Files
Precompiled object files are useful inclusions when building applications.
These files have already been compiled and tested, so may be used as “plug-
ins” to serve a specific function in your code development.

When building an application, usually one file from each of the following
subsections will be needed to successfully link. Be sure to chose the file that
corresponds to your selected device and memory model. For more
information on memory models, see the MPLAB-CXX User’s Guide.

These files are included in the c:\mcc\lib directory, where c:\mcc is the
compiler install directory. They can be linked directly into an application with
MPLINK.

1.4.1 Start Up Code

These files contain the start up code for the compiler. This code initializes the
C software stack, calls the routines in idata17.o to initialize data (c0l17.o
only), and jumps to the start of the application function, main().

If the application uses more than one page (8k) of program memory, then
c0l17.o should be used.

The source code may be found in c:\mcc\src\startup, where c:\mcc is
the compiler install directory.

1.4.2 Initialization Code

This assembly code copies initialized data from ROM to RAM upon system
start up. This code is required if variables are set to a value when they are
first defined.

Here is an example of data that will need to be initialized on system startup:

int my_data = 0x1234;
unsigned char my_char = "a";

To avoid the overhead of this initialization code, set variable values at run
time:

 int my_data;
 unsigned char my_char;
void main (void)
 :
 my_data = 0x1234;

PICmicro
Memory Model

Small CompactMedium/Large

17CXXX c0s17.o c0l17.o

PICmicro All Memory Models

17CXXX idata17.o
 2000 Microchip Technology Inc. DS51224B-page 13

MPLAB®-CXX Reference Guide
 my_char = "a";
 :

The source code may be found in c:\mcc\src\startup, where c:\mcc is
the compiler install directory.

1.4.3 Interrupt Handler Code

These precompiled object files contain useful interrupt code. These may be
customized for specific applications.

The source code for these precompiled objects can be found in
c:\mcc\src\startup, where c:\mcc is the compiler install directory.

1.4.4 Special Function Register Definitions

These files contain the PICmicro special function register definitions for each
processor supported.

The source code can be found in c:\mcc\src\proc, where c:\mcc is the
compiler install directory.

PICmicro
Memory Model

Small Compact/Medium/Large

17C42A int42as.o int42al.o

17C43 int43s.o int43l.o

17C44 int44s.o int44l.o

17C752 int752s.o int752l.o

17C756a int756as.o int756al.o

17C756 int756s.o int756l.o

17C762 int762s.o int762l.o

17C766 int766s.o int766l.o

PICmicro All Memory Models

17C42A p17c42a.o

17C43 p17c43.o

17C44 p17c44.o

17C752 p17c752.o

17C756A p17c756a.o

17C756 p17c756.o

17C762 p17c762.o

17C766 p17c766.o
DS51224B-page 14  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 2. Hardware Peripheral Library
M
P

L
A

B
-C

17
L

ib
raries

Part
1

2.1 Introduction
This chapter documents hardware peripheral library functions. The source
code for all of these functions is included with MPLAB-C17 in the
c:\mcc\src\pmc directory, where c:\mcc is the compiler install directory.

See the MPASM User’s Guide with MPLINK and MPLIB for more information
about building libraries.

2.2 Highlights
This chapter is organized as follows:

• A/D Converter Functions

• Input Capture Functions

• I2C Functions

• Interrupt Functions

• Port B Functions

• Microwire Functions

• Pulse Width Modulation (PWM) Functions

• Reset Functions

• SPI Functions

• Timer Functions

• USART Functions
 2000 Microchip Technology Inc. DS51224B-page 15

MPLAB®-CXX Reference Guide
2.3 A/D Converter Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.3.1 Individual Functions

BusyADC
Device: PIC17C756

Function: Returns the value of the GO bit in the ADCON0 register.

Include: adc16.h

Prototype: char BusyADC (void);

Arguments: None

Remarks: This function returns the value of the GO bit in the
ADCON0 register. If the value is equal to 1, then the A/D
is busy converting. If the value is equal to 0, then the A/
D is done converting.

Return Value: This function returns a char with value either 0 (done)
or 1 (busy).

File Name: adcbusy.c

Code Example: while (BusyACD());

CloseADC
Device: PIC17C756

Function: This function disables the A/D convertor.

Include: adc16.h

Prototype: void CloseADC (void);

Arguments: None

Remarks: This function first disables the A/D convertor by clearing
the ADON bit in the ADCON0 register. It then disables the
A/D interrupt by clearing the ADIE bit in the PIE2 regis-
ter.

Return Value: None

File Name: adcclose.c

Code Example: CloseADC();

ConvertADC
Device: PIC17C756
DS51224B-page 16  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Function: Starts an A/D conversion by setting the GO bit in the
ADCON0 register.

Include: adc16.h

Prototype: void ConvertADC (void);

Arguments: None

Remarks: This function sets the GO bit in the ADCON0 register.

Return Value: None

File Name: adcconv.c

Code Example: ConvertADC();

OpenADC
Device: PIC17C756

Function: Configures the A/D convertor.

Include: adc16.h

Prototype: void OpenADC (static unsigned char
config, static unsigned char channel);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in adc16.h):

A/D Interrupts
ADC_INT_ON Interrupts ON
ADC_INT_OFF Interrupts OFF

A/D clock source
ADC_FOSC_8 Fosc/8
ADC_FOSC_32 Fosc/32
ADC_FOSC_64 Fosc/64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification
ADC_RIGHT_JUST
ADC_LEFT_JUST

A/D voltage reference source
ADC_VREF_EXT Vref from I/O pins
ADC_VREF_INT Vref from AVdd pin

ConvertADC (Continued)
 2000 Microchip Technology Inc. DS51224B-page 17

MPLAB®-CXX Reference Guide
A/D analog/digital I/O configuration
ADC_ALL_ANALOG All channels analog
ADC_ALL_DIGITAL All channels digital
ADC_11ANA_1DIG 11 analog, 1 digital
ADC_10ANA_2DIG 10 analog, 2 digital
ADC_9ANA_3DIG 9 analog, 3 digital
ADC_8ANA_4DIG 8 analog, 4 digital
ADC_6ANA_6DIG 6 analog, 6 digital
ADC_4ANA_8DIG 4 analog, 8 digital

channel
The value of channel can be one of the following values
(defined in adc16.h):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11

Remarks: This function resets the A/D related Special Function
Registers to the POR state and then configures the
clock, interrupts, justification, voltage reference source,
number of analog/ digital I/Os, and current channel.

Return Value: None

File Name: adcopen.c

Code Example: OpenADC(ADC_INT_OFF&ADC_FOSC_32&
 ADC_RIGHT_JUST&ADC_VREF_INT&
 ADC_ALL_ANALOG,ADC_CH0);

ReadADC
Device: PIC17C756

Function: Reads the result of an A/D conversion.

Include: adc16.h

Prototype: int ReadADC (void);

Arguments: None

Remarks: This function reads the 16-bit result of an A/D conver-
sion.

OpenADC (Continued)
DS51224B-page 18  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

2.3.2 Example of Use
#include <p17c756.h>
#include <adc16.h>
#include <stdlib.h>
#include <delays.h>

Return Value: This function returns the 16-bit signed result of the A/D
conversion. If the ADFM bit in ADCON1 is set, then the
result is always right justified leaving the MSbs cleared.
If the ADFM bit is cleared, then the result is left justified
where the LSbs are cleared.

File Name: adcread.c

Code Example: int result;
result = ReadADC();

SetChanADC
Device: PIC17C756

Function: Selects a specific A/D channel.

Include: adc16.h

Prototype: void SetChanADC (static unsigned char
channel);

Arguments: channel
The value of channel can be one of the following values
(defined in adc16.h):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11

Remarks: This function first clears the channel select bits in the
ADCON0 register, which selects channel 0. It then ORs
the value channel with ADCON0 register.

Return Value: None

File Name: adcset.c

Code Example: SetChanADC(ADC_CH0);

ReadADC (Continued)
 2000 Microchip Technology Inc. DS51224B-page 19

MPLAB®-CXX Reference Guide
#include <usart16.h>
 void main(void)
 {
 int result;
 char str[7];
 // configure A/D convertor
 OpenADC(ADC_INT_OFF&ADC_FOSC_32&
 ADC_RIGHT_JUST&ADC_VREF_INT&
 ADC_ALL_ANALOG,ADC_CH0);
 // configure USART
 OpenUSART1(USART_TX_INT_OFF&
 USART_RX_INT_OFF&
 USART_ASYNCH_MODE&
 USART_EIGHT_BIT&USART_CONT_RX, 25);
 Delay10TCYx(5); // Delay for 50TCY
 ConvertADC(); // Start Conversion
 result = ReadADC(); // read result
 itoa(result,str); // convert to string
 putsUSART1(str); // Write string to USART
 CloseADC(); // Close Modules
 CloseUSART1();
 return;

 }

2.4 Input Capture Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.4.1 Individual Functions

CloseCapture1
CloseCapture2
CloseCapture3
CloseCapture4
Device: CloseCapture1 - PIC17C4X, PIC17C756

CloseCapture2 - PIC17C4X, PIC17C756
CloseCapture3 - PIC17C756
CloseCapture4 - PIC17C756

Function: This function disables the specified input capture.

Include: captur16.h

Prototype: void CloseCapture1 (void);
void CloseCapture2 (void);
void CloseCapture3 (void);
void CloseCapture4 (void);
DS51224B-page 20  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Arguments: None

Remarks: This function simply disables the interrupt of the speci-
fied input capture.

Return Value: None

File Name: cp1close.c
cp2close.c
cp3close.c
cp4close.c

Code Example: CloseCapture1();

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4
Device: OpenCapture1 - PIC17C4X, PIC17C756

OpenCapture2 - PIC17C4X, PIC17C756
OpenCapture3 - PIC17C756
OpenCapture4 - PIC17C756

Function: This function configures the specified input capture.

Include: captur16.h

Prototype: void OpenCapture1 (static unsigned char
config);
void OpenCapture2 (static unsigned char
config);
void OpenCapture3 (static unsigned char
config);
void OpenCapture4 (static unsigned char
config);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in captur16.h):
All OpenCapture functions

CAPTURE_INT_ON Interrupts ON
CAPTURE_INT_OFF Interrupts OFF

CloseCapture1
CloseCapture2
CloseCapture3
CloseCapture4 (Continued)
 2000 Microchip Technology Inc. DS51224B-page 21

MPLAB®-CXX Reference Guide
OpenCapture1
C1_EVERY_FALL_EDGE
C1_EVERY_RISE_EDGE
C1_EVERY_4_RISE_EDGE
C1_EVERY_16_RISE_EDGE
CAPTURE1_PERIOD
CAPTURE1_CAPTURE

OpenCapture2
C2_EVERY_FALL_EDGE
C2_EVERY_RISE_EDGE
C2_EVERY_4_RISE_EDGE
C2_EVERY_16_RISE_EDGE

OpenCapture3
C3_EVERY_FALL_EDGE
C3_EVERY_RISE_EDGE
C3_EVERY_4_RISE_EDGE
C3_EVERY_16_RISE_EDGE

OpenCapture4
C4_EVERY_FALL_EDGE
C4_EVERY_RISE_EDGE
C4_EVERY_4_RISE_EDGE
C4_EVERY_16_RISE_EDGE

Remarks: This function first resets the capture module to the POR
state and then configures the specified input capture for
edge detection, i.e., every falling edge, every rising
edge, every fourth rising edge, or every sixteenth rising
edge.
Capture1 has the ability to become a period register for
Timer3.

The capture functions use a structure to indicate over-
flow status of each of the capture modules. This struc-
ture is called CapStatus and has the following bit fields:
struct capstatus
{
 unsigned Cap1OVF:1;
 unsigned Cap2OVF:1;
 unsigned Cap3OVF:1;
 unsigned Cap4OVF:1;
 unsigned :4;
}
CapStatus;

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4 (Continued)
DS51224B-page 22  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

In addition to opening the capture, Timer3 must also be
opened with an OpenTimer3 (...) statement before any
of the captures will operate.

Return Value: None

File Name: cp1open.c
cp2open.c
cp3open.c
cpopen4.c

Code Example: OpenCapture1(C1_EVERY_4_RISE_EDGE&CAPTURE
1_CAPTURE);

ReadCapture1
ReadCapture2
ReadCapture3
ReadCapture4
Device: ReadCapture1 - PIC17C4X, PIC17C756

ReadCapture2 - PIC17C4X, PIC17C756
ReadCapture3 - PIC17C756
ReadCapture4 - PIC17C756

Function: Reads the result of a capture event from the specified
input capture.

Include: captur16.h

Prototype: unsigned int ReadCapture1 (void);
unsigned int ReadCapture2 (void);
unsigned int ReadCapture3 (void);
unsigned int ReadCapture4 (void);

Arguments: None

Remarks: This function reads the value of the respective input
capture SFRs.
Capture1: CA1L,CA1H
Capture2: CA2L,CA2H
Capture3: CA3L,CA3H
Capture4: CA4L,CA4H

Return Value: This function returns the result of the capture event. The
value is a 16-bit unsigned integer.

File Name: cap1read.c
cap2read.c
cap3read.c
cap4read.c

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4 (Continued)
 2000 Microchip Technology Inc. DS51224B-page 23

MPLAB®-CXX Reference Guide
2.4.2 Example of Use
#include <p17c756.h>
#include <captur16.h>
#include <timers16.h>
#include <usart16.h>
void main(void)
{
 unsigned int result;
 char str[7];
 // Configure Capture1
 OpenCapture1(C1_EVERY_4_RISE_EDGE&CAPTURE1_CAPTURE);
 // Configure Timer3
 OpenTimer3(TIMER_INT_OFF&T3_SOURCE_INT);
 // Configure USART
 OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(!PIR1bits.CA1IF); // Wait for event
 result = ReadCapture1(); // read result
 uitoa(result,str); // convert to string
 if(!CapStatus.Cap1OVF)
 {
 putsUSART1(str); // write string
 CloseCapture1(); // to USART
 }
 CloseTimer3();
 CloseUSART1();
 return;
}

2.5 I²C® Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

Code Example: unsigned int result;
result = ReadCapture1();

ReadCapture1
ReadCapture2
ReadCapture3
ReadCapture4 (Continued)
DS51224B-page 24  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

2.5.1 Individual Functions

AckI2C
Device: PIC17C756

Function: Generates I2C bus Acknowledge condition.

Include: i2c16.h

Prototype: void AckI2C (void);

Arguments: None

Remarks: This function generates an I2C bus Acknowledge condi-
tion.

Return Value: None

File Name: acki2c.c

Code Example: AckI2C();

CloseI2C
Device: PIC17C756

Function: Disables the SSP module.

Include: i2c16.h

Prototype: void CloseI2C (void);

Arguments: None

Remarks: Pin I/O returns under control of Port register settings.

Return Value: None

File Name: closei2c.c

Code Example: CloseI2C();

DataRdyI2C
Device: PIC17C756

Function: Provides status back to user if the SSPBUF register
contains data.

Include: i2c16.h

Prototype: unsigned char DataRdyI2C (void);

Arguments: None

Remarks: Determines if there is a byte to be read from the SSP-
BUF register.

Return Value: This function returns 1 if there is data in the SSPBUF
register else returns 0 which indicates no data in SSP-
BUF register.

File Name: dtrdyi2c.c

Code Example: if (!DataRdyI2C());
 2000 Microchip Technology Inc. DS51224B-page 25

MPLAB®-CXX Reference Guide
getcI2C
Function: This function operates identically to ReadI2C.

File Name: #define in i2c16.h

getsI2C
Device: PIC17C756

Function: This function is used to read a predetermined data
string length from the I2C bus.

Include: i2c16.h

Prototype: unsigned char getsI2C (static unsigned
char far *rdptr, static unsigned char
length);

Arguments: rdptr
Character type pointer to PICmicro RAM for storage of
data read from I2C device.
length
Number of bytes to read from I2C device.

Remarks: Master I2C mode: This routine reads a predefined data
string length from the I2C bus. Each byte is retrieved via
a call to the getcI2C function. The actual called function
body is termed ReadI2C. ReadI2C and getcI2C refer to
the same function via a #define statement in the
i2c16.h file.
Slave I2C mode: This routine reads a predefined data
string length from the I2C bus. Each byte is retrieved by
reading the SSPBUF register. There is a time-out period
which can be adjusted so as to prevent the slave from
waiting forever for data reception.

Return Value: Master I2C mode: This function returns 0 if all bytes
have been sent.
Slave I2C mode: This function returns -1 if the slave
device timed-out waiting for a data byte else it returns 0
if the master I2C device sent a Not Ack condition.

File Name: getsi2c.c

Code Example: unsigned char string[15];
unsigned char far *ptrstring;
ptrstring = string;
getsI2C(ptrstring, 15);
DS51224B-page 26  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

IdleI2C
Device: PIC17C756

Function: Generates wait condition until I2C bus is idle.

Include: i2c16.h

Prototype: void IdleI2C (void);

Arguments: None

Remarks: This function checks the R/W bit of the SSPSTAT regis-
ter and the SEN, RSEN, PEN, RCEN and ACKEN bits
of the SSPCON2 register. When the state of any of these
bits is a logic 1 the function loops on itself. When all of
these bits are clear the function terminates and returns
to the calling function. The IdleI2C function is
required since the hardware I2C peripheral does not
allow for spooling of bus sequences. The I2C peripheral
must be in an idle state before an I2C operation can be
initiated or a write collision will be generated.

Return Value: None

File Name: idlei2c.c

Code Example: IdleI2C();

NotAckI2C
Device: PIC17C756

Function: Generates I2C bus Not Acknowledge condition.

Include: i2c16.h

Prototype: void NotAckI2C (void);

Arguments: None

Remarks: This function generates an I2C bus Not Acknowledge
condition.

Return Value: None

File Name: noacki2c.c

Code Example: NotAckI2C();

OpenI2C
Device: PIC17C756

Function: Configures the SSP module.

Include: i2c16.h

Prototype: void OpenI2C (static unsigned char
sync_mode, static unsigned char slew);
 2000 Microchip Technology Inc. DS51224B-page 27

MPLAB®-CXX Reference Guide
Arguments: sync_mode
The value of function parameter sync_mode can be one
of the following values defined in i2c16.h:
SLAVE_7 I2C Slave mode, 7-bit address
SLAVE_10 I2C Slave mode, 10-bit address
MASTER I2C Master mode

slew
The value of function parameter slew can be one of the
following values defined in i2c16.h:
SLEW_OFF Slew rate disabled for 100kHz mode
SLEW_ON Slew rate enabled for 400kHz mode

Remarks: OpenI2C resets the SSP module to the POR state and
then configures the module for master/slave mode and
slew rate enable/disable.

Return Value: None

File Name: openi2c.c

Code Examples: OpenI2C(MASTER, SLEW_ON);

putcI2C
Function: This function operates identically to WriteI2C.

File Name: #define in i2c16.h

putsI2C
Device: PIC17C756

Function: This function is used to write out a data string to the I2C
bus.

Include: i2c16.h

Prototype: unsigned char putsI2C (static unsigned
char far *wrptr);

Arguments: wrptr
Character type pointer to data objects in PICmicro
RAM. The data objects are written to the I2C device.

OpenI2C (Continued)
DS51224B-page 28  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Remarks: Master I2C mode: This routine writes a data string to
the I2C bus until a null character is reached. Each byte
is written via a call to the putcI2C function. The actual
called function body is termed WriteI2C. WriteI2C and
putcI2C refer to the same function via a #define state-
ment in the i2c16.h file.
Slave I2C mode: This routine writes a string out to the
I2C bus until a null character is reached. Each byte is
placed directly in the SSPBUF register and the putcI2C
routine is not called.

Return Value: Master I2C Mode: This function returns -1 if the slave
I2C device responded with a Not Ack which terminated
the data transfer. The function returns 0 if the null char-
acter was reached in the data string.
Slave I2C mode: This function returns -1 if the master
I2C device responded with a Not Ack which terminated
the data transfer. The function returns 0 if the null char-
acter was reached in the data string

File Name: putsi2c.c

Code Example: unsigned char string[] = “data to send”;
unsigned char far *ptrstring;
ptrstring = string;
putsI2C(ptrstring);

ReadI2C
Device: PIC17C756

Function: This function is used to read a single byte (one charac-
ter) from the I2C bus.

Include: i2c16.h

Prototype: unsigned char ReadI2C (void);

Arguments: None

Remarks: This function reads in a single byte from the I2C bus.
This function performs the same function as getcI2C.

Return Value: The return value is the data byte read from the I2C bus.

File Name: readi2c.c

Code Example: unsigned char value;
value = ReadI2C();

RestartI2C
Device: PIC17C756

Function: Generates I2C bus restart condition.

putsI2C (Continued)
 2000 Microchip Technology Inc. DS51224B-page 29

MPLAB®-CXX Reference Guide
Include: i2c16.h

Prototype: void RestartI2C (void);

Arguments: None

Remarks: This function generates an I2C bus restart condition.

Return Value: None

File Name: rstrti2c.c

Code Example: RestartI2C();

StartI2C
Device: PIC17C756

Function: Generates I2C bus start condition.

Include: i2c16.h

Prototype: void StartI2C (void);

Arguments: None

Remarks: This function generates a I2C bus start condition.

Return Value: None

File Name: starti2c.c

Code Example: StartI2C();

StopI2C
Device: PIC17C756

Function: Generates I2C bus stop condition.

Include: i2c16.h

Prototype: void StopI2C (void);

Arguments: None

Remarks: This function generates an I2C bus stop condition.

Return Value: None

File Name: stopi2c.c

Code Example: StopI2C();

WriteI2C
Device: PIC17C756

Function: This function is used to write out a single data byte (one
character) to the I2C bus device.

Include: i2c16.h

RestartI2C (Continued)
DS51224B-page 30  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Prototype: unsigned char WriteI2C (static unsigned
char data_out);

Arguments: data_out
A single data byte to be written to the I2C bus device.

Remarks: This function writes out a single data byte to the I2C bus
device. This function performs the same function as
putcI2C.

Return Value: This function returns -1 if there was a write collision else
it returns a 0.

File Name: writei2c.c

Code Example: WriteI2C(‘a’);

Note: The routines to follow are specialized and specific to EE I2C mem-
ory devices such as, but not limited to, the Microchip 24LC01B.
Each of the routines depicted below utilize the previous basic ’C’
routines in a composite standalone function.

EEAckPolling
Device: PIC17C756

Function: This function is used to generate the acknowledge poll-
ing sequence for Microchip EE I2C memory devices.

Include: i2c16.h

Prototype: unsigned char EEAckPolling (static
unsigned char control);

Arguments: control
EEPROM control / bus device select address byte.

Remarks: This function is used to generate the acknowledge poll-
ing sequence for Microchip EE I2C memory devices.
This routine can be used for I2C EE memory device
which utilize acknowledge polling.

Return Value: The return value is -1 if there bus collision error else
return 0.

File Name: i2ceeap.c

Code Example: temp = EEAckPolling(0xA0);

EEByteWrite
Device: PIC17C756

WriteI2C (Continued)
 2000 Microchip Technology Inc. DS51224B-page 31

MPLAB®-CXX Reference Guide
Function: This function is used to write a single byte to the I2C
bus.

Include: i2c16.h

Prototype: unsigned char EEByteWrite (static
unsigned char control, static unsigned
char address, static unsigned char data);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
data
Data to write to EEPROM address specified in function
parameter address.

Remarks: This function writes a single data byte to the I2C bus.
This routine can be used for any Microchip I2C EE
memory device which requires only 1 byte of address
information.

Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns 0 if there
were no errors.

File Name: i2ceebw.c

Code Example: temp = EEByteWrite(0xA0, 0x30, 0xA5);

EECurrentAddRead
Device: PIC17C756

Function: This function is used to read a single byte from the I2C
bus.

Include: i2c16.h

Prototype: unsigned char EECurrentAddRead (static
unsigned char control);

Arguments: control
EEPROM control / bus device select address byte.

Remarks: This function reads in a single byte from the I2C bus.
The address location of the data to read is that of the
current pointer within the I2C EE device. The memory
device contains an address counter that maintains the
address of the last word accessed, incremented by one.

Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns the contents
of the SSPBUF register.

File Name: i2ceecar.c

Code Example: temp = EECurrentAddRead(0xA1);

EEByteWrite (Continued)
DS51224B-page 32  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

EEPageWrite
Device: PIC17C756

Function: This function is used to write a string of data to the I2C
EE device.

Include: i2c16.h

Prototype: unsigned char EEPageWrite (static
unsigned char control, static unsigned
char address, static unsigned char far
*wrptr);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
wrptr
Pointer to character type data objects in PICmicro RAM.
The data objects pointed to by wrptr will be written to
the I2C bus.

Remarks: This function writes a null terminated string of data
objects to the I2C EE memory device.

Return Value: The return value is -1 if there was a bus collision error,
 -2 if there was a not ack error else returns 0 if there
were no errors.

File Name: i2ceepw.c

Code Example: temp = EEPageWrite(0xA0, 0x70, wrptr);

EERandomRead
Device: PIC17C756

Function: This function is used to read a single byte from the I2C
bus.

Include: i2c16.h

Prototype: unsigned char EERandomRead (static
unsigned char control, static unsigned
char address);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.

Remarks: This function reads in a single byte from the I2C bus.
The routine can be used for Microchip I2C EE memory
devices which only require 1 byte of address informa-
tion.
 2000 Microchip Technology Inc. DS51224B-page 33

MPLAB®-CXX Reference Guide
Return Value: The return value is -1 if there was a bus collision error,
 -2 if there was a not ack error else returns the contents
of the SSPBUF register.

File Name: i2ceerr.c

Code Example: temp = EERandomRead(0xA0,0x30);

EESequentialRead
Device: PIC17C756

Function: This function is used to read in a string of data from the
I2C bus.

Include: i2c16.h

Prototype: unsigned char EESequentialRead (static
unsigned char control, static unsigned
char address, static unsigned char far
*rdptr, static unsigned char length);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
rdptr
Character type pointer to PICmicro RAM area for place-
ment of data read from EEPROM device.
length
Number of bytes to read from EEPROM device.

Remarks: This function reads in a predefined string length of data
from the I2C bus. The routine can be used for Microchip
I2C EE memory devices which only require 1 byte of
address information. The length of the data string to
read in is passed as a function parameter.

Return Value: The return value is -1 if there was a bus collision error,
 -2 if there was a not ack error else returns 0 if there
were no errors.

File Name: i2ceesr.c

Code Example: temp = EESequentialRead(0xA0, 0x70,
rdptr, 15);

EERandomRead (Continued)
DS51224B-page 34  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

2.5.2 Example of Use
The following are simple code examples illustrating the SSP module config-
ured for I2C master communication. The routines illustrate I2C communica-
tions with a Microchip 24LC01B I2C EE Memory Device. In all the examples
provided no error checking utilizing the function return value is implemented.

The basic I2C routines for the hardware I2C module of the PIC17C756 such
as StartI2C, StopI2C, AckI2C, NotAckI2C, RestartI2C, putcI2C, getcI2C,
putsI2C, getsI2C, etc., are utilized within the specialized EE I2C routines such
as EESequentialRead or EEPageWrite.

#include "p17cxx.h"
#include "i2c16.h"
// FUNCTION Prototype
void main(void);
// POINTERS and ARRAYS
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,0};
//24LC01B page write
// unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,
// 11,12,13,14,15,16,0};
//24LC04B page write
unsigned char far *wrptr = arraywr;
unsigned char arrayrd[80];
unsigned char far *rdptr = arrayrd;
unsigned char temp;

//***
#pragma code _main=0x100
void main(void)
{
 OpenI2C(MASTER, SLEW_ON); //initialize I2C module
 SSPADD = 9; //400Khz Baud clock(9) @16MHz
 //100khz Baud clock(39) @16MHz
 temp = 0;
 while(1)
 {
 temp = EEByteWrite(0xA0, 0x30, 0xA5);
 temp = EEAckPolling(0xA0);
 temp = EECurrentAddRead(0xA1);
 temp = EEPageWrite(0xA0, 0x70, wrptr);
 temp = EEAckPolling(0xA0);
 temp = EESequentialRead(0xA0, 0x70, rdptr, 15);
 temp = EERandomRead(0xA0,0x30);
 }
}

 2000 Microchip Technology Inc. DS51224B-page 35

MPLAB®-CXX Reference Guide
2.6 Interrupt Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.6.1 Individual Functions

CloseRA0INT
Device: PIC17C4X, PIC17C756

Function: Disables the RA0/INT pin interrupt.

Include: int16.h

Prototype: void CloseRA0INT (void);

Arguments: None

Remarks: This function disables the RA0/INT pin interrupt by
clearing the INTE bit in the INTSTA register.

Return Value: None

File Name: ra0close.c

Code Example: CloseRA0INT();

Disable
Device: PIC17C4X, PIC17C756

Function: Disables global interrupts.

Include: int16.h

Prototype: void Disable (void);

Arguments: None

Remarks: This function disables global interrupts by setting the
GLINTD bit of the CPUSTA register.

Return Value: None

File Name: disable.c

Code Example: Disable();

Enable
Device: PIC17C4X, PIC17C756

Function: Enables global interrupts.

Include: int16.h

Prototype: void Enable (void);

Arguments: None
DS51224B-page 36  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

2.6.2 Example of Use
 #include<p17C756.h>
 #include<int16.h>

void INT_ISR(void)
{
 PORTB++; // increment data register
}

void main(void)
{
 Install_INT(INT_ISR); // install INT pin interrupt
vector

 PORTB = 0x00; // clear PORTB data register
 DDRB = 0x00; // config PORTB as outputs

Remarks: This function enables global interrupts by clearing the
GLINTD bit of the CPUSTA register.

Return Value: None

File Name: enable.c

Code Example: Enable();

OpenRA0INT
Device: PIC17C4X, PIC17C756

Function: Configures the external interrupt pin RA0/INT.

Include: int16.h

Prototype: void OpenRA0INT (static unsigned char
config);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in int16.h):
INT_ON Interrupt ON
INT_OFF Interrupt OFF
INT_RISE_EDGE Interrupt on rising edge
INT_FALL_EDGE Interrupt on falling edge

Remarks: This function configures the RA0/INT pin for external
interrupt for interrupt on/off and edge select.

Return Value: None

File Name: ra0open.c

Code Example: OpenRA0INT(INT_ON);

Enable (Continued)
 2000 Microchip Technology Inc. DS51224B-page 37

MPLAB®-CXX Reference Guide
 // enable external interrupt and detect rising edge
 OpenRA0INT(INT_ON & INT_RISE_EDGE);

 Enable(); // enable global interrupts

 while(PORTB != 0xFF); // wait for interrupt and check
 // for max value of PORTB register
 Disable(); // disable global interrupts
 CloseRA0INT(); // turn off INT pin interrupt
}

2.7 Port B Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.7.1 Individual Functions

ClosePORTB
Device: PIC17C4X, PIC17C756

Function: Disables the interrupts and internal pull-up resistors for
PORTB.

Include: portb16.h

Prototype: void ClosePORTB (void);

Arguments: None

Remarks: This function disables the PORTB interrupt on change by
clearing the RBIE bit in the PIE register. It also disables
the internal pull-up resistors by setting the NOT_RBPU
bit in the PORTA register.

Return Value: None

File Name: pbclose.c

Code Example: ClosePORTB();

DisablePullups
Device: PIC17C4X, PIC17C756

Function: Disables the internal pull-up resistors on PORTB.

Include: portb16.h

Prototype: void DisablePullups (void);

Arguments: None
DS51224B-page 38  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Remarks: This function disables the internal pull-up resistors on
PORTB by setting the NOT_RBPU bit in the PORTA regis-
ter.

Return Value: None

File Name: pulldis.c

Code Example: DisablePullups();

EnablePullups
Device: PIC17C4X, PIC17C756

Function: Enables the internal pull-up resistors on PORTB.

Include: portb16.h

Prototype: void EnablePullups (void);

Arguments: None

Remarks: This function enables the internal pull-up resistors on
PORTB by clearing the NOT_RBPU bit in the PORTA reg-
ister.

Return Value: None

File Name: pullen.c

Code Example: EnablePullups();

OpenPORTB
Device: PIC17C4X, PIC17C756

Function: Configures the interrupts and internal pull-up resistors
on PORTB.

Include: portb16.h

Prototype: void OpenPORTB (static unsigned char
config);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in portb16.h):
PORTB_CHANGE_INT_ON Interrupt ON
PORTB_CHANGE_INT_OFF Interrupt OFF
PORTB_PULLUPS_ON pull-up resistors enabled
PORTB_PULLUPS_OFF pull-up resistors disabled

Remarks: This function configures the interrupts and internal pull-
up resistors on PORTB.

Return Value: None

File Name: pbopen.c

Code Example: OpenPORTB(PORTB_CHANGE_INT_ON);

DisablePullups (Continued)
 2000 Microchip Technology Inc. DS51224B-page 39

MPLAB®-CXX Reference Guide
2.7.2 Example of Use
 #include<p17C756.h>
 #include<int16.h>
 #include<portb16.h>

unsigned char Key;

void PIV_ISR(void)
{
 if(PIR1bits.RBIF) // ensure PORTB interrupt
 // got us here
 {
 Key = ~(PORTB & 0xF0); // keep track of scan row

 DDRB = 0x0F; // switch I/O drive to
 // scan column
 PORTB = 0x00;

 Key += ~(PORTB & 0x0F); // add in scan column
 PIR1bits.RBIF = 0; // reset interrupt flag
 }
}

void main(void)
{
 unsigned char PressedKey;

 Install_PIV(PIV_ISR); // install peripheral
 // interrupt vector

 DDRB = 0xF0; // set lower nibble to output
 // upper nibble to input to scan row
 Key = 0x00; // reset key scan register

 PORTB = PORTB; // read PORTB to clear mismatch
 PIR1bits.RBIF = 0; // clear RBIF to ensure no interrupt

 // enable PORTB interrupt on change
 OpenPORTB(PORTB_CHANGE_INT_ON);

 EnablePullups(); // enable internal pullups

 Enable(); // enable global interrupts

 while(1)
 {
 while(Key==0x00);
DS51224B-page 40  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

 switch(Key)
 {
 case 0x11: PressedKey = ’1’;
 break;
 case 0x12: PressedKey = ’2’;
 break;
 case 0x14: PressedKey = ’3’;
 break;
 case 0x18: PressedKey = ’4’;
 break;

 case 0x21: PressedKey = ’5’;
 break;
 case 0x22: PressedKey = ’6’;
 break;
 case 0x24: PressedKey = ’7’;
 break;
 case 0x28: PressedKey = ’8’;
 break;

 case 0x41: PressedKey = ’9’;
 break;
 case 0x42: PressedKey = ’0’;
 break;
 case 0x44: PressedKey = ’*’;
 break;
 case 0x48: PressedKey = ’#’;
 break;

 case 0x81: PressedKey = ’A’;
 break;
 case 0x82: PressedKey = ’B’;
 break;
 case 0x84: PressedKey = ’C’;
 break;
 case 0x88: PressedKey = ’D’;
 break;

 default: PressedKey = ’ ’;
 break;
 }

 Key = 0x00;
 }
}

 2000 Microchip Technology Inc. DS51224B-page 41

MPLAB®-CXX Reference Guide
2.8 Microwire® Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.8.1 Individual Functions

CloseMwire
Device: PIC17C756

Function: Disables the SSP module.

Include: mwire16.h

Prototype: void CloseMwire (void);

Arguments: None

Remarks: Pin I/O returns under control DDRx and PORTx register
settings.

Return Value: None

File Name: closmwir.c

Code Example: CloseMwire();

DataRdyMwire
Device: PIC17C756

Function: Provides status back to user if the Microwire device has
completed the internal write cycle.

Include: mwire16.h

Prototype: unsigned char DataRdyMwire (void);

Arguments: None

Remarks: Determines if Microwire device is ready.

Return Value: This function returns 1 if the Microwire device is ready
else returns 0 which indicates that the internal write
cycle is not complete or there could be a bus error.

File Name: drdymwir.c

Code Example: while (!DataRdyMwire());

getcMwire
Function: This function operates identically to ReadMwire.

File Name: #define in mwire16.h
DS51224B-page 42  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

getsMwire
Device: PIC17C756

Function: This routine reads a string from the Microwire device.

Include: mwire16.h

Prototype: void getsMwire (static unsigned char far
*rdptr, static unsigned char length);

Arguments: rdptr
Pointer to PICmicro RAM area for placement of writing
data read from Microwire device.
length
Number of bytes to read from Microwire device.

Remarks: This function is used to read a predetermined length of
data from a Microwire device. User must first issue start
bit, opcode and address before reading a data string.

Return Value: None

File Name: getsmwir.c

Code Example: unsigned char arrayrd[20];
unsigned char far *rdptr = arrayrd;
getsMwire(rdptr, 10);

OpenMwire
Device: PIC17C756

Function: Configures the SSP module.

Include: mwire16.h

Prototype: void OpenMwire (static unsigned char
sync_mode);

Arguments: sync_mode
The value of the function parameter sync_mode can be
one of the following values defined in mwire16.h:
FOSC_4 clock = Fosc/4
FOSC_16 clock = Fosc/16
FOSC_64 clock = Fosc/64
FOSC_TMR2 clock = TMR2 output/2

Remarks: OpenMwire resets the SSP module to the POR state
and then configures the module for Microwire communi-
cations.

Return Value: None

File Name: openmwir.c

Code Examples: OpenMwire(FOSC_16);
 2000 Microchip Technology Inc. DS51224B-page 43

MPLAB®-CXX Reference Guide
putcMwire
Function: This function operates identically to WriteMwire.

File Name: #define in mwire16.h

ReadMwire
Device: PIC17C756

Function: This function is used to read a single byte (one charac-
ter) from a Microwire device.

Include: mwire16.h

Prototype: unsigned char ReadMwire (static unsigned
char high_byte, static unsigned char
low_byte);

Arguments: high_byte
First byte of 16-bit instruction word.
low_byte
Second byte of 16-bit instruction word.

Remarks: This function reads in a single byte from a Microwire
device. The start bit, opcode and address compose the
high and low bytes passed into this function.
This function operates identically to getcMwire.

Return Value: The return value is the data byte read from the Microw-
ire device.

File Name: readmwir.c

Code Example: ReadMwire(0x03, 0x00);

WriteMwire
Device: PIC17C756

Function: This function is used to write out a single data byte (one
character).

Include: mwire16.h

Prototype: unsigned char WriteMwire (static unsigned
char data_out);

Arguments: data_out
Single byte of data to write to Microwire device.

Remarks: This function writes out single data byte to a Microwire
device utilizing the SSP module.
This function operates identically to putcMwire.

Return Value: This function returns -1 if there was a write collision,
else it returns a 0.

File Name: writmwir.c

Code Example: WriteMwire(0xFF);
DS51224B-page 44  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

2.8.2 Example of Use
The following are simple code examples illustrating the SSP module
communicating with a Microchip 93LC66 Microwire EE Memory Device. In all
the examples provided no error checking utilizing the value returned from a
function is implemented.

#include "p17c756.h"
#include "mwire16.h"

// 93LC66 x 8
// FUNCTION Prototype
void main(void);
void ew_enable(void);
void erase_all(void);
void busy_poll(void);
void write_all(unsigned char data);
void byte_read(unsigned char address);
void read_mult(unsigned char address, unsigned char
far *rdptr, unsigned char length);
void write_byte(unsigned char address, unsigned char
data);
unsigned char arrayrd[20];
unsigned char far *rdptr = arrayrd;
unsigned char var;

// DEFINE 93LC66 MACROS
#define READ 0x0C
#define WRITE 0x0A
#define ERASE 0x0E
#define EWEN 10x09
#define EWEN 20x80
#define ERAL 10x09
#define ERAL 20x00
#define WRAL 10x08
#define WRAL 20x80
#define EWDS 10x08
#define EWDS 20x00
#define W_CS PORTAbits.RA2
#pragma code _main=0x100
void main(void)
{
 W_CS = 0; //ensure CS is negated
 OpenMwire(FOSC_16); //enable SSP perpiheral
 ew_enable(); //send erase/write enable
 write_byte(0x13, 0x34); //write byte (address,data)
 busy_poll();
 Nop();
 byte_read(0x13); //read single byte (address)
 read_mult(0x10, rdptr, 10); //read multiple bytes
 2000 Microchip Technology Inc. DS51224B-page 45

MPLAB®-CXX Reference Guide
 erase_all(); //erase entire array
 CloseMwire(); //disable SSP peripheral
}

void busy_poll(void)
{
 W_CS = 1;
 do
 {
 var = DataRdyMwire(); //test for busy/ready
 }while(var != 0);
 W_CS = 0;
}
void write_byte(unsigned char address, unsigned char
data)
{
 W_CS = 1;
 putcMwire(WRITE); //write command
 putcMwire(address); //address
 putcMwire(data); //write single byte
 W_CS = 0;
}

void byte_read(unsigned char address)
{
 W_CS = 1;
 getcMwire(READ,address); //read one byte
 W_CS = 0;
}

void read_mult(unsigned char address, unsigned char
far *rdptr, unsigned char length)
{
 W_CS = 1;
 putcMwire(READ); //read command
 putcMwire(address); //address (A7 - A0)
 getsMwire(rdptr, length); //read multiple bytes
 W_CS = 0;
}

void ew_enable(void)
{
 W_CS = 1; //assert chip select
 putcMwire(EWEN1); //enable write command byte 1
 putcMwire(EWEN2); //enable write command byte 2
 W_CS = 0; //negate chip select
}

void erase_all(void)
DS51224B-page 46  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

{
 W_CS = 1;
 putcMwire(ERAL1); //erase all command byte 1
 putcMwire(ERAL2); //erase all command byte 2
 W_CS = 0;
}

2.9 Pulse Width Modulation Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.9.1 Individual Functions

ClosePWM1
ClosePWM2
ClosePWM3
Device: ClosePWM1 - PIC17C4X, PIC17C756

ClosePWM2 - PIC17C4X, PIC17C756
ClosePWM3 - PIC17C756

Function: This function disables the specified PWM channel.

Include: pwm16.h

Prototype: void ClosePWM1 (void);
void ClosePWM2 (void);
void ClosePWM3 (void);

Arguments: None

Remarks: This function simply disables the specified PWM chan-
nel by clearing the PWMxON bit in the respective TCON2
or TCON3 registers.

Return Value: None

File Name: pw1close.c
pw2close.c
pw3close.c

Code Example: ClosePWM2();

OpenPWM1
OpenPWM2
OpenPWM3
Device: OpenPWM1 - PIC17C4X, PIC17C756

OpenPWM2 - PIC17C4X, PIC17C756
OpenPWM3 - PIC17C756

Function: Configures the specified PWM channel.
 2000 Microchip Technology Inc. DS51224B-page 47

MPLAB®-CXX Reference Guide
Include: pwm16.h

Prototype: void OpenPWM1 (static char period);
void OpenPWM2 (static unsigned char
config, static char period);
void OpenPWM3 (static unsigned char
config, static char period);

Arguments: config
The value of config can be one of the following values
(defined in captur16.h):
OpenPWM2
OpenPWM3
T1_SOURCE Timer1 is clock source
T2_SOURCE Timer2 is clock source

period
The value of period can be any value from 0x00 to 0xff.
This value determines the PWM frequency by using the
following formula:
Period1 = [(PR1)+1] x 4 x Tosc
Period2 = [(PR1)+1] x 4 x Tosc

= [(PR2)+1] x 4 x Tosc
Period3 = [(PR1)+1] x 4 x Tosc

= [(PR2)+1] x 4 x Tosc

Remarks: This function configures the specified PWM channel for
period and for time base. PWM1 uses only Timer1.
PWM2 and PWM3 can use either Timer1 or Timer2.
Timer1 and Timer2 must be set up as individual 8-bit
timers for PWM mode to work correctly.

In addition to opening the PWM, Timer1 or Timer2 must
also be opened with an OpenTimer1(...) or
OpenTimer2(...) statement before any of the PWMs will
operate.

Return Value: None

File Name: pw1open.c
pw2open.c
pw3open.c

Code Example: OpenPWM2(T1_SOURCE,0xff);

OpenPWM1
OpenPWM2
OpenPWM3 (Continued)
DS51224B-page 48  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

2.9.2 Example of Use
#include <p17c756.h>
#include <pwm16.h>
#include <timers16.h>
void main(void)
{

SetDCPWM1
SetDCPWM2
SetDCPWM3
Device: SetDCPWM1 - PIC17C4X, PIC17C756

SetDCPWM2 - PIC17C4X, PIC17C756
SetDCPWM3 - PIC17C756

Function: Writes a new dutycycle value to the specified PWM
channel dutycycle registers.

Include: pwm16.h

Prototype: void SetDCPWM1 (static unsigned int
dutycycle);
void SetDCPWM2 (static unsigned int
dutycycle);
void SetDCPWM3 (static unsigned int
dutycycle);

Arguments: dutycycle
The value of dutycycle can be any 10-bit number. Only
the lower 10-bits of dutycycle are written into the duty-
cycle registers. The dutycycle, or more specifically the
high time of the PWM waveform, can be calculated from
the following formula:
PWM x Dutycycle = (DCx<9:0>) x Tosc
where DCx<9:0> is the 10-bit value from the
PWxDCH:PWxDCL registers.

Remarks: This function writes the new value for dutycycle to the
specified PWM channel dutycycle registers.
PWM1: PW1DCL,PW1DCH
PWM2: PW2DCL,PW2DCH
PWM3: PW3DCL,PW3DCH

The maximum resolution of the PWM waveform can be
calculated from the period using the following formula:
Resolution (bits) = log(Fosc/Fpwm) / log(2)

Return Value: None

File Name: pw1set.c
pw2set.c
pw3set.c

Code Example: SetDCPWM2(0);
 2000 Microchip Technology Inc. DS51224B-page 49

MPLAB®-CXX Reference Guide
 int i;
 //set duty cycle
 SetDCPWM2(0);
 //open PW2
 OpenPWM2(T1_SOURCE,0xff);
 //open timer
 OpenTimer1(TIMER_INT_OFF&T1_SOURCE_INT&T1_T2_8BIT);
 for(i=0;i<1024;i++)
 {
 while(!PIR1bits.TMR1IF);
 PIR1bits.TMR1IF = 0;
 SetDCPWM2(i); //slowly increment duty cycle
 }
 ClosePWM2(); //close modules
 CloseTimer1();
 return;

}

2.10 Reset Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.10.1 Individual Functions

isBOR
Device: PIC17C756

Function: Detects a reset condition due to the Brown-out Reset
circuit.

Include: reset16.h

Prototype: char isBOR (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset
due to the Brown-out Reset circuit. This condition is
indicated by the following status bits:
POR = 1
BOR = 0
TO = don’t care
PD = don’t care
Include the statement #define BOR_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2
of this manual for information on compilers. Refer to the
MPASM User’s Guide with MPLINK and MPLIB
(DS33014F) for information on linking.
DS51224B-page 50  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Return Value: This function returns 1 if the reset was due to the
Brown- out Reset circuit, otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isBOR());
 then ...

isMCLR
Device: PIC17C756

Function: Detects if a MCLR reset during normal operation
occurred.

Include: reset16.h

Prototype: char isMCLR (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset via
the MCLR pin while in normal operation. This situation
is indicated by the following status bits:
POR = 1
BOR = 1 if Brown-out is enabled
TO = 1 if WDT is enabled
PD = 1

Return Value: This function returns 1 if the reset was due to MCLR
during normal operation, otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isMCLR());
 then ...

isPOR
Device: PIC17C4X, PIC17C756

Function: Detects a Power-on Reset condition.

Include: reset16.h

Prototype: char isPOR (void);

Arguments: None

isBOR (Continued)
 2000 Microchip Technology Inc. DS51224B-page 51

MPLAB®-CXX Reference Guide

Remarks: This function detects if the microcontroller just left a
Power-on Reset. This condition is indicated by the fol-
lowing status bits:
PIC17C4X
TO = 1
PD = 1
This condition also for MCLR reset during normal
operation and CLRWDT instruction executed

PIC17C756
POR = 0
BOR = 0
TO = 1
PD = 1

Return Value: This function returns 1 if the device just left a Power-on
Reset, otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isPOR());
 then ...

isWDTTO
Device: PIC17C4X, PIC17C756

Function: Detects a reset condition due to the WDT during normal
operation.

Include: reset16.h

Prototype: char isWDTTO (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset
due to the WDT during normal operation. This condition
is indicated by the following status bits:
PIC17C4X
TO = 0
PD = 1

PIC17C756
POR = 1
BOR = 1
TO = 0
PD = 1

Include the statement #define WDT_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2
of this manual for information on compilers. Refer to the
MPASM User’s Guide with MPLINK and MPLIB
(DS33014F) for information on linking.

isPOR (Continued)
DS51224B-page 52  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Return Value: This function returns 1 if the reset was due to the WDT
during normal operation, otherwise 0 is returned.

File Name: reset16.c

Code Example: while(!isWDTTO());

isWDTWU
Device: PIC17C4X, PIC17C756

Function: Detects when the WDT wakes up the device from
SLEEP.

Include: reset16.h

Prototype: char isWDTWU (void);

Arguments: None

Remarks: This function detects if the microcontroller was brought
out of SLEEP by the WDT. This condition is indicated by
the following status bits:
PIC17C4X
TO = 0
PD = 0

PIC17C756
POR = 1
BOR = 1
TO = 0
PD = 0

Include the statement #define WDT_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2
of this manual for information on compilers. Refer to the
MPASM User’s Guide with MPLINK and MPLIB
(DS33014F) for information on linking.

Return Value: This function returns 1 if device was brought out of
SLEEP by the WDT, otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isWDTWU());
 then ...

isWU
Device: PIC17C4X, PIC17C756

Function: Detects if the microcontroller was just waken up from
SLEEP via the MCLR pin or interrupt.

Include: reset16.h

isWDTTO (Continued)
 2000 Microchip Technology Inc. DS51224B-page 53

MPLAB®-CXX Reference Guide
2.10.2 Example of Use
There are no interdependencies between reset functions. See individual
function code examples.

Prototype: char isWU (void);

Arguments: None

Remarks: This function detects if the microcontroller was brought
out of SLEEP by the MCLR pin or an interrupt. This con-
dition is indicated by the following status bits:
PIC17C4X
TO = 1
PD = 0

PIC17C756
POR = 1
BOR = 1
TO = 1
PD = 0

Return Value: This function returns 1 if the device was brought out of
SLEEP by the MCLR pin or an interrupt, otherwise 0 is
returned.

File Name: reset16.c

Code Example: if(isWU());
 then ...

StatusReset
Device: PIC17C756

Function: Sets the POR and BOR bits in the CPUSTA register.

Include: reset16.h

Prototype: void StatusReset (void);

Arguments: None

Remarks: This function sets the POR and BOR bits in the CPUSTA
register. These bits must be set in software after a
Power-on Reset has occurred.

Return Value: None

File Name: reset16.c

Code Example: if(StatusReset());
 then ...

isWU (Continued)
DS51224B-page 54  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

2.11 SPI™ Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.11.1 Individual Functions

CloseSPI
Device: PIC17C756

Function: Disables the SSP module.

Include: spi16.h

Prototype: void CloseSPI (void);

Arguments: None

Remarks: This function disables the SSP module. Pin I/O returns
under the control of the DDRx and PORTx Registers.

Return Value: None

File Name: closespi.c

Code Example: CloseSPI();

DataRdySPI
Device: PIC17C756

Function: Determines if the SSPBUF contains data.

Include: spi16.h

Prototype: unsigned char DataRdySPI (void);

Arguments: None

Remarks: This function determines if there is a byte to be read
from the SSPBUF register.

Return Value: This function returns 1 if there is data in the SSPBUF
register else returns a 0.

File Name: dtrdyspi.c

Code Example: while (!DataRdySPI());

getcSPI
Function: This function operates identically to ReadSPI.

File Name: #define in spi16.h
 2000 Microchip Technology Inc. DS51224B-page 55

MPLAB®-CXX Reference Guide
getsSPI
Device: PIC17C756

Function: Reads in data string from the SPI bus.

Include: spi16.h

Prototype: void getsSPI (static unsigned char far
*rdptr, static unsigned char length);

Arguments: rdptr
Character type pointer to PICmicro RAM area for place-
ment of data read from SPI device.
length
Number of bytes to read from SPI device.

Remarks: This function reads in a predetermined data string
length from the SPI bus. The length of the data string to
read in is passed as a function parameter. Each byte is
retrieved via a call to the getcSPI function. The actual
called function body is termed ReadSPI. ReadSPI and
getcSPI refer to the same function via a #define
statement in the spi16.h file.

Return Value: None

File Name: getsspi.c

Code Example: unsigned char far *wrptr;
getsSPI(wrptr, 10);

OpenSPI
Device: PIC17C756

Function: Initializes the SSP module.

Include: spi16.h

Prototype: void OpenSPI (static unsigned char
sync_mode, static unsigned char bus_mode,
static unsigned char smp_phase);

Arguments: The value of sync_mode, bus_mode and smp_phase
parameters can be one of the following values defined
in spi16.h:
sync_mode
FOSC_4SPI Master mode, clock = Fosc/4
FOSC_16SPI Master mode, clock = Fosc/16
FOSC_64SPI Master mode, clock = Fosc/64
FOSC_TMR2SPIMaster mode, clock = TMR2 output/2
SLV_SSONSPI Slave mode, /SS pin control enabled
SLV_SSOFFSPI Slave mode, /SS pin control disabled
DS51224B-page 56  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

bus_mode
MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

smp_phase
SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out

Remarks: This function setups the SSP module for use with a SPI
bus device.

Return Value: None

File Name: openspi.c

Code Example: OpenSPI(FOSC_16, MODE_00, SMPEND);

putcSPI
Function: This function operates identically to WriteSPI.

File Name: #define in spi16.h

putsSPI
Device: PIC17C756

Function: Writes data string out to the SPI bus.

Include: spi16.h

Prototype: void putsSPI (static unsigned char far
*wrptr);

Arguments: wrptr
Pointer to character type data objects in PICmicro RAM.
Those objects pointed to by wrptr will be written to the
SPI bus.

Remarks: This function writes out a data string to the SPI bus
device. The routine is terminated by reading a null char-
acter in the data string.

Return Value: None

File Name: putsspi.c

Code Example: unsigned char far *wrptr = “Hello!”;
putsSPI(wrptr);

OpenSPI (Continued)
 2000 Microchip Technology Inc. DS51224B-page 57

MPLAB®-CXX Reference Guide
2.11.2 Example of Use
The following are simple code examples illustrating the SSP module
communicating with a Microchip 24C080 SPI EE Memory Device. In all the
examples provided no error checking utilizing the value returned from a
function is implemented.

#include <p17c756.h>
#include <spi16.h>
// FUNCTION Prototype

ReadSPI
Device: PIC17C756

Function: Reads a single byte (one character) from the SSPBUF
register.

Include: spi16.h

Prototype: unsigned char ReadSPI (void);

Arguments: None

Remarks: This function initiates a SPI bus cycle for the acquisition
of a byte of data.
This function operates identically to getcSPI.

Return Value: This function returns a byte of data read during a SPI
read cycle.

File Name: readspi.c

Code Example: char x;
x = ReadSPI();

WriteSPI
Device: PIC17C756

Function: Writes a single byte of data (one character) out to the
SPI bus.

Include: spi16.h

Prototype: unsigned char WriteSPI (static unsigned
char data_out);

Arguments: data_out
Single byte to write to SPI device on bus.

Remarks: This function writes a single data byte out and then
checks for a write collision.
This function operates identically to putcSPI.

Return Value: This function returns -1 if a write collision occurred else
a 0 if no write collision.

File Name: writespi.c

Code Example: WriteSPI(‘a’);
DS51224B-page 58  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

void main(void);
void set_wren(void);
void busy_polling(void);
unsigned char status_read(void);
void status_write(unsigned char data);
void byte_write(unsigned char addhigh, unsigned char
 addlow, unsigned char data);
void page_write(unsigned char addhigh, unsigned char
 addlow, unsigned char far *wrptr);
void array_read(unsigned char addhigh, unsigned char
 addlow, unsigned char far *rdptr,
 unsigned char count);
unsigned char byte_read(unsigned char addhigh,
 unsigned char addlow);
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,11,
 12,13,14,15,16,0};
//24C040/080/160 page write size
unsigned char far *wrptr = arraywr;
unsigned char arrayrd[32];
unsigned char far *rdptr = arrayrd;
unsigned char var;
#define SPI_CS PORTAbits.RA2
//**
#pragma code _main=0x100
void main(void)
{
 SPI_CS = 1; // ensure SPI memory device
 // Chip Select is reset
 OpenSPI(FOSC_16, MODE_00, SMPEND);
 set_wren();
 status_write(0);

 busy_polling();
 set_wren();
 byte_write(0x00, 0x61, ’E’);

 busy_polling();
 var = byte_read(0x00, 0x61);

 set_wren();
 page_write(0x00, 0x30, wrptr);
 busy_polling();

 array_read(0x00, 0x30, rdptr, 16);
 var = status_read();

 CloseSPI();
 while(1);
}

 2000 Microchip Technology Inc. DS51224B-page 59

MPLAB®-CXX Reference Guide
void set_wren(void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WREN); //send write enable command
 SPI_CS = 1; //negate chip select
}

void page_write (unsigned char addhigh, unsigned char
 addlow, unsigned char far *wrptr)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 putsSPI(wrptr); //send data byte
 SPI_CS = 1; //negate chip select
}

void array_read (unsigned char addhigh, unsigned char
 addlow, unsigned char far *rdptr,
 unsigned char count)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 getsSPI(rdptr, count); //read multiple bytes
 SPI_CS = 1;
}

void byte_write (unsigned char addhigh, unsigned char
 addlow, unsigned char data)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = putcSPI(data); //send data byte
 SPI_CS = 1; //negate chip select
}

unsigned char byte_read (unsigned char addhigh,
 unsigned char addlow)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
DS51224B-page 60  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

 var = getcSPI(); //read single byte
 SPI_CS = 1;
 return (var);
}

unsigned char status_read (void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(RDSR); //send read status command
 var = getcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 return (var);
}

void status_write (unsigned char data)
{
 SPI_CS = 0;
 var = putcSPI(WRSR); //write status command
 var = putcSPI(data); //status byte to write
 SPI_CS = 1; //negate chip select
}

void busy_polling (void)
{
 do
 {
 SPI_CS = 0; //assert chip select
 var = putcSPI(RDSR); //send read status command
 var = fetcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 } while (var & 0x01); //stay in loop until notbusy
}

 2000 Microchip Technology Inc. DS51224B-page 61

MPLAB®-CXX Reference Guide
2.12 Timer Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.12.1 Individual Functions

CloseTimer0
CloseTimer1
CloseTimer2
CloseTimer3
Device: PIC17C4X, PIC17C756

Function: This function disables the specified timer.

Include: timers16.h

Prototype: void CloseTimer0 (void);
void CloseTimer1 (void);
void CloseTimer2 (void);
void CloseTimer3 (void);

Arguments: None

Remarks: This function simply disables the interrupt and the spec-
ified timer.

Return Value: None

File Name: t0close.c
t1close.c
t2close.c
t3close.c

Code Example: CloseTimer0();

OpenTimer0
OpenTimer1
OpenTimer2
OpenTimer3
Device: PIC17C4X, PIC17C756

Function: Configures the specified timer.

Include: timers16.h
DS51224B-page 62  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Prototype: void OpenTimer0 (static unsigned char
config);
void OpenTimer1 (static unsigned char
config);
void OpenTimer2 (static unsigned char
config);
void OpenTimer3 (static unsigned char
config);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in timers16.h):

All OpenTimer functions
TIMER_INT_ON Interrupts ON
TIMER_INT_OFFInterrupts OFF

OpenTimer0
T0_EDGE_FALL External clock on falling edge
T0_EDGE_RISE External clock on rising edge
T0_SOURCE_EXT External clock source (I/O pin)
T0_SOURCE_INT Internal clock source (Tosc)
T0_PS_1_1 Prescale -> 1:1
T0_PS_1_2 1:2
T0_PS_1_4 1:4
T0_PS_1_8 1:8
T0_PS_1_16 1:16
T0_PS_1_32 1:32
T0_PS_1_64 1:64
T0_PS_1_128 1:128
T0_PS_1_256 1:256

OpenTimer1
T1_SOURCE_EXT External clock source (I/O pin)
T1_SOURCE_INT Internal clock source (Tosc)
T1_T2_8BIT Timer1 and Timer2 individual

8-bit timers
T1_T2_16BIT Timer1 and Timer2 one 16-bit timer

OpenTimer2
T2_SOURCE_EXT External clock source (I/O pin)
T2_SOURCE_INT Internal clock source (Tosc)

OpenTimer3
T3_SOURCE_EXT External clock source (I/O pin)
T3_SOURCE_INT Internal clock source (Tosc)

OpenTimer0
OpenTimer1
OpenTimer2
OpenTimer3 (Continued)
 2000 Microchip Technology Inc. DS51224B-page 63

MPLAB®-CXX Reference Guide
Remarks: This function configures the specified timer for inter-
rupts, internal/external clock source, prescaler, etc.
 Timer0 -> 16-bit
 Timer1 -> 8-bit
 Timer2 -> 8-bit
 Timer3 -> 16-bit
Timer0 has a programmable prescaler from 1:1 to
1:256. Timer1 and Timer2 can be concatenated to be a
16-bit timer.

Return Value: None

File Name: t0open.c
t1open.c
t2open.c
t3open.c

Code Example: OpenTimer0(TIMER_INT_OFF&T0_SOURCE_NT&T0_
PS_1_32);

ReadTimer0
ReadTimer1
ReadTimer2
ReadTimer3
ReadTimer1_16
Device: PIC17C4X, PIC17C756

Function: Reads the contents of the specified timer register(s).

Include: timers16.h

Prototype: unsigned int ReadTimer0 (void);
unsigned char ReadTimer1 (void);
unsigned char ReadTimer2 (void);
unsigned int ReadTimer3 (void);
unsigned int ReadTimer1_16 (void);

Arguments: None

Remarks: This function reads the value of the respective timer
register(s).
Timer0: TMR0L,TMR0H
Timer1: TMR1
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer1_16:TMR2:TMR1

OpenTimer0
OpenTimer1
OpenTimer2
OpenTimer3 (Continued)
DS51224B-page 64  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Return Value: These functions returns the value of the timer regis-
ter(s) which may be 8-bits or 16-bits.
Timer0: int (16-bits)
Timer1: char (8-bits)
Timer2: char (8-bits)
Timer3: int (16-bits)
Timer1_16:int (16-bits)

File Name: t0read.c
t1read.c
t2read.c
t3read.c
t12read.c

Code Example: unsigned int result;
result = ReadTimer0();

WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3
WriteTimer1_16
Device: PIC17C4X, PIC17C756

Function: Reads the contents of the specified timer register(s).

Include: timers16.h

Prototype: void WriteTimer0 (static unsigned int
timer);
void WriteTimer1 (static unsigned char
timer);
void WriteTimer2 (static unsigned char
timer);
void WriteTimer3 (static unsigned int
timer);
void WriteTimer1_16 (static unsigned int
timer);

ReadTimer0
ReadTimer1
ReadTimer2
ReadTimer3
ReadTimer1_16 (Continued)
 2000 Microchip Technology Inc. DS51224B-page 65

MPLAB®-CXX Reference Guide
2.12.2 Example of Use
#include <p17c756.h>
#include <timers16.h>
#include <usart16.h>
void main (void)
{
 int result;
 char str[7];
 // configure timer0
 OpenTimer0(TIMER_INT_OFF&T0_SOURCE_NT&T0_PS_1_32);
 // configure USART
 OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(1)
 {
 while(!PORTBbits.RB3); //wait for RB3 high

Arguments: timer
This function writes the value timer to the respective
timer register(s).
Timer0: TMR0L,TMR0H
Timer1: TMR1
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer1_16:TMR2:TMR1

Remarks: These functions write a value to the timer register(s)
which may be 8-bits or 16-bits.
Timer0: int (16-bits)
Timer1: char (8-bits)
Timer2: char (8-bits)
Timer3: int (16-bits)
Timer1_16:int (16-bits)

Return Value: None

File Name: t0write.c
t1write.c
t2write.c
t3write.c
t12write.c

Code Example: WriteTimer0(0);

WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3
WriteTimer1_16 (Continued)
DS51224B-page 66  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

 result = ReadTimer0(); //read timer
 if(result>0xc000)
 break;
 WriteTimer0(0); //write new value
 uitoa(result,str); //convert to string
 putsUSART1(str); //print string
 }
 CloseTimer0(); //close modules
 CloseUSART1();
 return;
}

2.13 USART Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

2.13.1 Individual Functions

BusyUSART1
BusyUSART2
Device: BusyUSART1: PIC17C4X, PIC17C756

BusyUSART2: PIC17C756

Function: Returns the status of the TRMT flag bit in the TXSTA?
register.

Include: usart16.h

Prototype: char BusyUSART1 (void);
char BusyUSART2 (void);

Arguments: None

Remarks: This function returns the status of the TRMT flag bit in
the TXSTA? register.

Return Value: If the USART transmitter is busy, a value of 1 is
returned. If the USART receiver is idle, then a value of 0
is returned.

File Name: u1busy.c
u2busy.c

Code Example: while (BusyUSART1());
 2000 Microchip Technology Inc. DS51224B-page 67

MPLAB®-CXX Reference Guide
CloseUSART1
CloseUSART2
Device: CloseUSART1: PIC17C4X, PIC17C756

CloseUSART2: PIC17C756

Function: Disables the specified USART.

Include: usart16.h

Prototype: void CloseUSART1 (void);
void CloseUSART2 (void);

Arguments: None

Remarks: This function disables the specified USARTs interrupts,
transmitter, and receiver.

Return Value: None

File Name: u1close.c
u2close.c

Code Example: CloseUSART1();

DataRdyUSART1
DataRdyUSART2
Device: DataRdyUSART1: PIC17C4X, PIC17C756

DataRdyUSART2: PIC17C756

Function: Returns the status of the RCIF flag bit in the PIR regis-
ter.

Include: usart16.h

Prototype: char DataRdyUSART1 (void);
char DataRdyUSART2 (void);

Arguments: None

Remarks: This function returns the status of the RCIF flag bit in
the PIR register.

Return Value: If data is available, a value of 1 is returned. If data is not
available, then a value of 0 is returned.

File Name: u1drdy.c
u2drdy.c

Code Example: while (!DataRdyUSART1());
DS51224B-page 68  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

getcUSART1
getcUSART2
Function: This function operates identically to ReadUSARTx.

File Name: #define in usart16.h

getsUSART1
getsUSART2
Device: getsUSART1 :PIC17C4X, PIC17C756

getsUSART2: PIC17C756

Function: Reads a string of characters until the specified number
of characters have been read.

Include: usart16.h

Prototype: void getsUSART1 (static char *buffer,
static unsigned char len);
void getsUSART2 (static char *buffer,
static unsigned char len);

Arguments: buffer
The value of buffer is a pointer to the string where
incoming characters are to be stored. The length of this
string should be at least len + 1.
len
The value of len is limited to the available amount of
RAM locations remaining in any one bank - 1. There
must be one extra location to store the null character.

Remarks: This function waits for and reads len number of charac-
ters out of the specified USART. There is no timeout
when waiting for characters to arrive. After len charac-
ters have been written to the string, a null character is
appended to the end of the string.

Return Value: None

File Name: u1gets.c
u2gets.c

Code Example: char x[10];
getsUSART2(x,5);
 2000 Microchip Technology Inc. DS51224B-page 69

MPLAB®-CXX Reference Guide
OpenUSART1
OpenUSART2
Device: OpenUSART1: PIC17C4X, PIC17C756

OpenUSART2: PIC17C756

Function: Configures the specified USART module.

Include: usart16.h

Prototype: void OpenUSART1 (static unsigned char
config, static char spbrg);
void OpenUSART2 (static unsigned char
config, static char spbrg);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in usart16.h):
USART_TX_INT_ON Transmit interrupt ON
USART_TX_INT_OFF Transmit interrupt OFF
USART_RX_INT_ON Receive interrupt ON
USART_RX_INT_OFF Receive interrupt OFF

USART_ASYNCH_MODE Asynchronous Mode
USART_SYNCH_MODE Synchronous Mode

USART_EIGHT_BIT 8-bit transmit/receive
USART_NINE_BIT 9-bit transmit/receive

USART_SYNC_SLAVE Synchronous slave mode
USART_SYNC_MASTER Synchronous master mode

USART_SINGLE_RX Single reception
USART_CONT_RX Continuous reception

spbrg
The value of spbrg determines the baud rate of the
USART. The formulas for baud rate are:
asynchronous mode: FOSC/(64 (spbrg + 1))
synchronous mode: FOSC/(4 (spbrg + 1))

Remarks: This function configures the USART module for inter-
rupts, baud rate, sync or async operation, 8- or 9-bit
mode, master or slave mode, and single or continuous
reception.

Return Value: None

File Name: u1open.c
u2open.c

Code Example: OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_
OFF&USART_ASYNCH_MODE&USART_EIGHT_BIT&USA
RT_CONT_RX, 25);
DS51224B-page 70  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

putcUSART1
putcUSART2
Function: This function operates identically to WriteUSARTx.

File Name: #define in usart16.h

putrsUSART1
putrsUSART2
Device: putrsUSART1: PIC17C4X, PIC17C756

putrsUSART2: PIC17C756

Function: Writes a string of characters in ROM to the USART
including the null character.

Include: usart16.h

Prototype: void putrsUSART1 (static const rom char
*data);
void putrsUSART2 (static const rom char
*data);

Arguments: data
The value of data is a pointer to a string in contiguous
RAM locations within the same bank.

Remarks: This function writes a string of data in program memory
to the USART, including the null character.

Return Value: None

File Name: u1putrs.c
u2putrs.c

Code Example: rom char mybuff [20];
putrsUSART1(mybuff);

putsUSART1
putsUSART2
Device: putsUSART1: PIC17C4X, PIC17C756

putsUSART2: PIC17C756

Function: Writes a string of characters to the USART including the
null character.

Include: usart16.h

Prototype: void putsUSART1 (static char *data);
void putsUSART2 (static char *data);

Arguments: data
The value of data is a pointer to a string in contiguous
RAM locations within the same bank.

Remarks: This function writes a string of data to the USART
including the null character.
 2000 Microchip Technology Inc. DS51224B-page 71

MPLAB®-CXX Reference Guide
Return Value: None

File Name: u1puts.c
u2puts.c

Code Example: char mybuff [20];
putsUSART1(mybuff);

ReadUSART1
ReadUSART2
Device: ReadUSART1: PIC17C4X, PIC17C756

ReadUSART2: PIC17C756

Function: Reads a byte (one character) out of the USART receive
buffer, including the 9th bit if enabled.

Include: usart16.h

Prototype: char ReadUSART1 (void);
char ReadUSART2 (void);

Arguments: None

Remarks: This function reads a byte out of the USART receive
buffer. The 9th bit is recorded as well as the status bits.
The status bits and the 9th data bits are saved in a
union named USART_Status with the following decla-
ration:
union USART
{
 unsigned char val;
 struct
 {
 unsigned RX1_NINE:1;
 unsigned TX1_NINE:1;
 unsigned FRAME_ERROR1:1;
 unsigned OVERRUN_ERROR1:1;
 unsigned RX2_NINE:1;
 unsigned TX2_NINE:1;
 unsigned FRAME_ERROR2:1;
 unsigned OVERRUN_ERROR2:1;
 };
};
The 9th bit is recorded only if 9-bit mode is enabled.
The status bits are always recorded.
This function operates identically to getcUSARTx.

Return Value: This function returns the next character in the USART
receive buffer.

putsUSART1
putsUSART2 (Continued)
DS51224B-page 72  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

File Name: u1read.c
u2read.c

Code Example: char x;
x = ReadUSART2();

WriteUSART1
WriteUSART2
Device: WriteUSART1: PIC17C4X, PIC17C756

WriteUSART2: PIC17C756

Function: Writes a byte (one character) to the USART transmit
buffer, including the 9th bit if enabled.

Include: usart16.h

Prototype: void WriteUSART1 (static char data);
void WriteUSART2 (static char data);

Arguments: data
The value of data can be any number from 0x00 to 0xff.

Remarks: This function writes a byte to the USART transmit buffer.
The 9th bit is written as well. The 9th data bits are saved
in a union named USART_Status with the following
declaration:
union USART
{
 unsigned char val;
 struct
 {
 unsigned RX1_NINE:1;
 unsigned TX1_NINE:1;
 unsigned FRAME_ERROR1:1;
 unsigned OVERRUN_ERROR1:1;
 unsigned RX2_NINE:1;
 unsigned TX2_NINE:1;
 unsigned FRAME_ERROR2:1;
 unsigned OVERRUN_ERROR2:1;
 };
};
The 9th bit is used only if 9-bit mode is enabled.
This function operates identically to putcUSARTx.

Return Value: None

File Name: u1write.c
u2write.c

Code Example: char x;
WriteUSART2(x);

ReadUSART1
ReadUSART2 (Continued)
 2000 Microchip Technology Inc. DS51224B-page 73

MPLAB®-CXX Reference Guide
2.13.2 Example of Use
#include <p17c756.h>
#include <usart16.h>
void main(void)
{
 // configure USART
 OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(1)
 {
 while(!PORTAbits.RA0)//wait for RA0 high
 WriteUSART1(PORTD);//write value of PORTD
 if(PORTD == 0x80)
 break;
 }
 CloseUSART1();
 return;
}

DS51224B-page 74  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 3. Software Peripheral Library
M
P

L
A

B
-C

17
L

ib
raries

Part
1

3.1 Introduction
This chapter documents software peripheral library functions. The source
code for all of these functions is included with MPLAB-C17 in the
c:\mcc\src\pmc directory, where c:\mcc is the compiler install directory.

See the MPASM User’s Guide with MPLINK and MPLIB for more information
about building libraries.

3.2 Highlights
This chapter is organized as follows:

• External LCD Functions

• Software I2C Functions

• Software SPI Functions

• Software UART Functions
 2000 Microchip Technology Inc. DS51224B-page 75

MPLAB®-CXX Reference Guide
3.3 External LCD Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

3.3.1 Individual Functions

BusyXLCD
Device: PIC17C4X, PIC17C756

Function: Returns the status of the busy flag of the Hitachi
HD44780 LCD controller.

Include: xlcd.h

Prototype: unsigned char BusyXLCD (void);

Arguments: None

Remarks: This function returns the status of the busy flag of the
Hitachi HD44780 LCD controller.

Return Value: This function returns 0 if the LCD controller is not busy;
otherwise 1 is returned.

File Name: xlcd.c

Code Example: while (BusyXLCD());

OpenXLCD
Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins and initializes the Hitachi
HD44780 LCD controller.

Include: xlcd.h

Prototype: void OpenXLCD (static unsigned char
lcdtype);

Arguments: lcdtype
The value of lcdtype can be one of the following values
(defined in xlcd.h):
Function Set defines
FOUR_BIT 4-bit data interface mode
EIGHT_BIT 8-bit data interface mode
LINE_5X7 5x7 characters, single line display
LINE_5X10 5x10 characters display
LINES_5X7 5x7 characters, multiple line display

Remarks: This function configures the I/O pins used to control the
Hitachi HD44780 LCD controller. It also initializes this
controller.The I/O pin definitions that must be made to
ensure that the external LCD operates correctly are:
DS51224B-page 76  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Control I/O pin definitions
RW_PIN PORTxbits.Rx?
TRIS_RW DDRxbits.Rx?
RS_PIN PORTxbits.Rx?
TRIS_RS DDRxbits.Rx?
E_PIN PORTxbits.Rx?
TRIS_E DDRxbits.Rx?
where x is the PORT, ? is the pin number
Data Port definitions
DATA_PORT PORTx
TRIS_DATA_PORT DDRx

The control pins can be on any port and are not
required to be on the same port. The data interface
must be defined as either 4-bit or 8-bit. The 8-bit inter-
face is defined when a #define BIT8 is included in
the header file xlcd.h. If no define is included, then the
4-bit interface is included. When in 8-bit data interface
mode, all 8 pins must be on the same port. When in 4-
bit data interface mode, the 4 pins must be either the
high or low nibble of a single port. When in 4-bit inter-
face mode, the high nibble is specified by including
#define UPPER in the header file xlcd.h. Otherwise,
the lower nibble is specified by commenting this line
out.

After these definitions have been made, the user must
compile xlcd.c into an object to be linked. Please
refer to the MPLAB-CXX User’s Guide for information
on the compilers and to the MPASM User’s Guide with
MPLINK and MPLIB for information on linking.

This function also requires three external routines to be
provided by the user for specific delays:
DelayFor18TCY() 18 Tcy delay
DelayPORXLCD() 15ms delay
DelayXLCD() 5ms delay

Return Value: None

File Name: xlcd.c

Code Example: OpenXLCD(EIGHT_BIT&LINES_5X7);

OpenXLCD (Continued)
 2000 Microchip Technology Inc. DS51224B-page 77

MPLAB®-CXX Reference Guide
putrsXLCD
Device: PIC17C4X, PIC17C756

Function: Writes a string of characters in ROM to the Hitachi
HD44780 LCD controller.

Include: xlcd.h

Prototype: void putrsXLCD (static rom char *buffer);

Arguments: buffer
Pointer to characters to be written to the LCD controller.

Remarks: This functions writes a string of characters located in
program memory to the Hitachi HD44780 LCD control-
ler. It stops transmission after the character before the
null character, i.e., the null character is not sent.

Return Value: None

File Name: xlcd.c

Code Example: rom char mybuff [20];
putrsXLCD(mybuff);

putcXLCD
Function: This function operates identically to WriteDataXLCD.

File Name: #define in xlcd.h

putsXLCD
Device: PIC17C4X, PIC17C756

Function: Writes a string of characters to the Hitachi HD44780
LCD controller.

Include: xlcd.h

Prototype: void putsXLCD (static char *buffer);

Arguments: buffer
Pointer to characters to be written to the LCD controller.

Remarks: This functions writes a string of characters located in
buffer to the Hitachi HD44780 LCD controller. It stops
transmission after the character before the null charac-
ter, i.e., the null character is not sent.

Return Value: None

File Name: xlcd.c

Code Example: char mybuff [20];
putsXLCD(mybuff);
DS51224B-page 78  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

ReadAddrXLCD
Device: PIC17C4X, PIC17C756

Function: Reads the address byte from the Hitachi HD44780 LCD
controller.

Include: xlcd.h

Prototype: unsigned char ReadAddrXLCD (void);

Arguments: None

Remarks: This function reads the address byte from the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the BusyX-
LCD() function.
The address read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was called.

Return Value: This function returns an 8-bit which is the 7-bit address
in the lower 7-bits of the byte and the BUSY status flag
in the 8th bit.
Bit7 Bit0
 BF A6 A5 A4 A3 A2 A1 A0

File Name: xlcd.c

Code Example: char addr;
while (BusyXLCD());
addr = ReadAddrXLCD();

ReadDataXLCD
Device: PIC17C4X, PIC17C756

Function: Reads a data byte from the Hitachi HD44780 LCD con-
troller.

Include: xlcd.h

Prototype: char ReadDataXLCD (void);

Arguments: None

Remarks: This function reads a data byte from the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the BusyX-
LCD() function.
The data read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was called.

Return Value: This function returns the 8-bit data value.

File Name: xlcd.c
 2000 Microchip Technology Inc. DS51224B-page 79

MPLAB®-CXX Reference Guide

Code Example: char data;
while (BusyXLCD());
data = ReadAddrXLCD();

SetCGRamAddr
Device: PIC17C4X, PIC17C756

Function: Sets the character generator address.

Include: xlcd.h

Prototype: void SetCGRamAddr (static unsigned char
CGaddr);

Arguments: CGaddr
Character generator address.

Remarks: This function sets the character generator address of
the Hitachi HD44780 LCD controller. The user must first
check to see if the controller is busy by calling the
BusyXLCD() function.

Return Value: None

File Name: xlcd.c

Code Example: char cgaddr = 0x1F;
while (BusyXLCD());
SetCGRamAddr(cgaddr);

SetDDRamAddr
Device: PIC17C4X, PIC17C756

Function: Sets the display data address.

Include: xlcd.h

Prototype: void SetDDRamAddr (static unsigned char
DDaddr);

Arguments: DDaddr
Display data address.

Remarks: This function sets the display data address of the Hita-
chi HD44780 LCD controller. The user must first check
to see if the controller is busy by calling the BusyX-
LCD() function.

Return Value: None

File Name: xlcd.c

Code Example: char ddaddr = 0x10;
while (BusyXLCD());
SetDDRamAddr(ddaddr);

ReadDataXLCD (Continued)
DS51224B-page 80  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

WriteCmdXLCD
Device: PIC17C4X, PIC17C756

Function: Writes a command to the Hitachi HD44780 LCD con-
troller.

Include: xlcd.h

Prototype: void WriteCmdXLCD (static unsigned char
cmd);

Arguments: cmd
The value of cmd can be one of the following values
(defined in xlcd.h):

Function Set defines
FOUR_BIT 4-bit data interface mode
EIGHT_BIT 8-bit data interface mode
LINE_5X7 5x7 characters, single line display
LINE_5X10 5x10 characters display
LINES_5X7 5x7 characters, multiple line display

Display ON/OFF control defines
DON Display on
DOFF Display off
CURSOR_ON Cursor on
CURSOR_OFF Cursor off
BLINK_ON Blinking cursor on
BLINK_OFF Blinking cursor off

Cursor or Display shift defines
SHIFT_CUR_LEFT Cursor shifts to the left
SHIFT_CUR_RIGHT Cursor shifts to the right
SHIFT_DISP_LEFT Display shifts to the left
SHIFT_DISP_RIGHT Display shifts to the right

The above defines can not be mixed. The only com-
mands that can be issued are function set, display con-
trol, and cursor/display shift control.

Remarks: This function writes the command byte to the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the BusyX-
LCD() function.

Return Value: None

File Name: xlcd.c

Code Example: while (BusyXLCD());
WriteCmdXLCD(EIGHT_BIT&LINES_5X7);
WriteCmdXLCD(DON);
WriteCmdXLCD(SHIFT_DISP_LEFT);

WriteDataXLCD
Device: PIC17C4X, PIC17C756
 2000 Microchip Technology Inc. DS51224B-page 81

MPLAB®-CXX Reference Guide
3.3.2 Example of Use
#include <p17c756.h>
#include <xlcd.h>
#include <delays.h>
#include <usart16.h>
void DelayFor18TCY(void)
{
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 return;
}

Function: Writes a data byte (one character) from the Hitachi
HD44780 LCD controller.

Include: xlcd.h

Prototype: void WriteDataXLCD (static char data);

Arguments: data
The value of data can be any 8-bit value, but should cor-
respond to the character RAM table of the HD44780
LCD controller.

Remarks: This function writes a data byte to the Hitachi HD44780
LCD controller. The user must first check to see if the
LCD controller is busy by calling the BusyXLCD() func-
tion.
The data read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was called.

This function operates identically to putcXLCD.

Return Value: None

File Name: xlcd.c

Code Example: char data;
data = ReadUSART1();
WriteDataXLCD(data);

WriteDataXLCD (Continued)
DS51224B-page 82  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

void DelayPORXLCD(void)
{
 Delay1KTCYx(60);//Delay of 15ms
 return;
}

void DelayXLCD(void)
{
 Delay1KTCYx(20);//Delay of 5ms
 return;
}

void main(void)
{
 char data;
 // configure external LCD
 OpenXLCD(EIGHT_BIT&LINES_5X7);
 // configure USART
 OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(1)
 {
 while(!DataRdyUSART1()); //wait for data
 data = ReadUSART1(); //read data
 WriteDataXLCD(data); //write to LCD
 if(data==’Q’)
 break;
 }
 CloseXLCD(); //close modules
 CloseUSART1();
 return;
}

 2000 Microchip Technology Inc. DS51224B-page 83

MPLAB®-CXX Reference Guide
3.4 Software I²C Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

3.4.1 Individual Functions

Clock_test
Device: PIC17CXXX

Function: Generates delay for slave clock stretching.

Include: swi2c16.h

Prototype: void Clock_test (void);

Arguments: None

Remarks: This function is called to allow for slave clock stretching.
The delay time may need to be adjusted per application
requirements. If at the end of the delay period the clock
line is low, a bit field in the global structure
BUS_STATUS (BUS_STATUS.clk) is set to 1. If the
clock line is high at the end of the delay, this bit field is a
0.

far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; bus state is busy
 unsigned clk :1; clock timeout or
 failure
 unsigned ack :1; acknowledge error or
 not ACK
 unsigned :5; bit padding
 };
 unsigned char dummy; dummy variable
} BUS_STATUS; define union/struct

Return Value: None

File Name: swckti2c.c

Code Example: Clock_test();

SWAckI2C
Device: PIC17CXXX

Function: Generates I2C bus acknowledge condition.

Include: swi2c16.h

Prototype: void SWAckI2C (void);
DS51224B-page 84  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Arguments: None

Remarks: This function is called to generate an I2C bus acknowl-
edge sequence. A bit field in the global structure
BUS_STATUS (BUS_STATUS.ack) is set to 1 if the
slave device did not ack. This error condition could also
indicate a bus error on the SDA line. If no error occurred
this bit field is a 0.

far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; bus state is busy
 unsigned clk :1; clock timeout or
 failure
 unsigned ack :1; acknowledge error or
 not ACK
 unsigned :5; bit padding
 };
 unsigned char dummy; dummy variable
} BUS_STATUS; define union/struct

This function operates identically to SWNotAckI2C.

Return Value: None

File Name: swacki2c.c

Code Example: SWAckI2C();

SWGetcI2C
Function: This function operates identically to SWReadI2C.

File Name: #define in swi2c16.h

SWGetsI2C
Device: PIC17CXXX

Function: Reads in data string via software I2C implementation.

Include: swi2c16.h

Prototype: unsigned char SWGetsI2C (static unsigned
char far *rdptr, static unsigned char
length);

SWAckI2C (Continued)
 2000 Microchip Technology Inc. DS51224B-page 85

MPLAB®-CXX Reference Guide
Arguments: rdptr
Character type pointer to PICmicro RAM for storage of
data read from I2C device.
length
Number of bytes to read from I2C bus.

Remarks: This function reads in a predetermined data string
length. Each byte is retrieved via a call to the
SWGetcI2C function.

Return Value: This function returns -1 if all bytes have been received
and the master generated a not ack bus condition.

File Name: swgtsi2c.c

Code Example: char x[10];
SWGetsI2C(x,5);

SWNotAckI2C
Function: This function operates identically to SWAckI2C.

File Name: #define in swi2c16.h

SWPutcI2C
Function: This function operates identically to SWWriteI2C.

File Name: #define in swi2c16.h

SWPutsI2C
Device: PIC17CXXX

Function: Writes out data string via software I2C implementation.

Include: swi2c16.h

Prototype: unsigned char SWPutsI2C (static unsigned
char far *wrdptr);

Arguments: wrdptr
Character type pointer to data objects in PICmicro
RAM. The data objects are written to the I2C device.

Remarks: This function writes out a data string until a null charac-
ter is evaluated. Each byte is written via a call to the
SWPutcI2C function. The actual called function body is
termed SWWriteI2C. SWPutcI2C and SWWriteI2C
refer to the same function via a #define statement in
the swi2c16.h file.

Return Value: This function returns -1 if there was an error else
returns a 0.

SWGetsI2C (Continued)
DS51224B-page 86  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

File Name: swptsi2c.c

Code Examples: char mybuff [20];
SWPutsI2C(mybuff);

SWReadI2C
Device: PIC17CXXX

Function: Reads a single data byte (one character) via software
I2C implementation.

Include: swi2c16.h

Prototype: unsigned char SWReadI2C (void);

Arguments: None

Remarks: This function reads in a single data byte by generating
the appropriate signals on the predefined I2C clock line.

Return Value: This function returns the acquired I2C data byte. If there
was an error in this function, the return value will be -1.
This condition can be evaluated by testing the bit field
BUS_STATUS.clk. If this bit field is 1, then there was
an error, else it is a 0.
This function operates identically to SWGetcI2C.

File Name: swgtci2c.c

Code Example: char x;
x = SWReadI2C();

SWRestartI2C
Device: PIC17CXXX

Function: Generates I2C restart bus condition.

Include: swi2c16.h

Prototype: void SWRestartI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus restart
condition.

Return Value: None

File Name: swrsti2c.c

Code Example: SWRestartI2C();

SWPutsI2C (Continued)
 2000 Microchip Technology Inc. DS51224B-page 87

MPLAB®-CXX Reference Guide
SWStartI2C
Device: PIC17CXXX

Function: Generates I2C bus start condition.

Include: swi2c16.h

Prototype: void SWStartI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus start con-
dition.

Return Value: None

File Name: swstri2c.c

Code Example: SWStartI2C();

SWStopI2C
Device: PIC17CXXX

Function: Generates I2C bus stop condition.

Include: swi2c16.h

Prototype: void SWStopI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus stop con-
dition.

Return Value: None

File Name: swstpi2c.c

Code Example: SWStopI2C();

SWWriteI2C
Device: PIC17CXXX

Function: Writes out single data byte via software I2C implemen-
tation.

Include: swi2c16.h

Prototype: unsigned char SWWriteI2C (static unsigned
char data_out);

Arguments: data_out
Single data byte to be written to the I2C device.

Remarks: This function writes out a single data byte to the pre-
defined data pin. The clock and data pins are user
defined in the swi2c16.h file and must be set per
application requirements.
This function operates identically to SWPutcI2C.
DS51224B-page 88  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

3.4.2 Example of Use
The following are simple code examples illustrating a software I2C
implementation communicating with a Microchip 24LC01B I2C EE Memory
Device. In all the examples provided no error checking utilizing the value
returned from a function is implemented. The port pins used are defined in the
swi2c16.h file and must be set per application requirments.

#include <p17cxx.h>
#include <swi2c16.h>
#include <delays.h>
extern far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; // bus state is busy
 unsigned clk :1; // clock timeout or failure
 unsigned ack :1; // acknowledge error or not ACK
 unsigned :5; // bit padding
 };
 unsigned char dummy;
} BUS_STATUS;

// FUNCTION Prototype
void main(void);
void byte_write(void);
void page_write(void);
void current_address(void);
void random_read(void);
void sequential_read(void);
void ack_poll(void);
unsigned char warr[] = {8,7,6,5,4,3,2,1,0};
unsigned char rarr[15];
unsigned char far *rdptr = rarr;
unsigned char far *wrptr = warr;
unsigned char var;
#define W_CS PORTA.2
//**
#pragma code _main=0x100
void main(void)
{

Return Value: This function returns -1 if there was an error condition
else returns a 0.

File Name: swptci2c.c

Code Example: char x;
SWWriteI2C(x);

SWWriteI2C (Continued)
 2000 Microchip Technology Inc. DS51224B-page 89

MPLAB®-CXX Reference Guide
 byte_write();
 ack_poll();
 page_write();
 ack_poll();
 Nop();
 sequential_read();
 Nop();
 while (1);
}

void byte_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 swAckI2C();
 var = SWPutcI2C(0x10); // word address
 swAckI2C();
 var = SWPutcI2C(0x66); // data
 SWAckI2C();
 SWStopI2C();
}

void page_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x20); // word address
 SWAckI2C();
 var = SWPutsI2C(wrptr); // data
 SWStopI2C();
}

void sequential_read(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x00); // address to read from
 SWAckI2C();
 SWRestartI2C();
 var = SWPutcI2C(0xA1);
 SWAckI2C();
 var = SWGetsI2C(rdptr,9);
 SWStopI2C();
}

void current_address(void)
{

DS51224B-page 90  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

 SWStartI2C();
 SWPutcI2C(0xA1); // control byte
 SWAckI2C();
 SWGetcI2C(); // word address
 SWNotAckI2C();
 SWStopI2C();
}

void ack_poll(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 while (BUS_STATUS.ack)
 {
 BUS_STATUS.ack = 0;
 SWRestartI2C();
 var = SWPutcI2C(0xA0); // data
 SWAckI2C();
 }
 SWStopI2C();
}

 2000 Microchip Technology Inc. DS51224B-page 91

MPLAB®-CXX Reference Guide
3.5 Software SPI Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

3.5.1 Individual Functions

ClearSWCSSPI
Device: PIC17C4X, PIC17C756

Function: Clears the chip select (CS) pin that is specified in the
swspi16.h header file.

Include: swspi16.h

Prototype: void SWClearCSSPI (void);

Arguments: None

Remarks: This function clears the I/O pin that is specified in
swspi16.h to be the chip select (CS) pin for the software
SPI.

Return Value: None

File Name: swspi16.c

Code Example: ClearSWCSSPI();

OpenSWSPI
Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins for the software SPI.

Include: swspi16.h

Prototype: void SWOpenSPI (void);

Arguments: None

Remarks: This function configures the I/O pins used for the soft-
ware SPI to the correct input or ouput state and logic
level. The I/O pins used for chip select (CS), data in
(DIN), data out (DOUT), and serial clock (SCK) must be
defined in the header file swspi16.h.
The definitions that must be made to ensure that the
software SPI operates correctly are:
DS51224B-page 92  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

I/O pin definitions
SW_CS_PIN PORTxbits.Rx?
TRIS_SW_CS_PIN DDRxbits.Rx?
SW_DIN_PIN PORTxbits.Rx?
TRIS_SW_DIN_PIN DDRxbits.Rx?
SW_DOUT_PIN PORTxbits.Rx?
TRIS_SW_DOUT_PINDDRxbits.Rx?
SW_SCK_PIN PORTxbits.Rx?
TRIS_SW_SCK_PIN DDRxbits.Rx?
where x is the PORT, ? is the pin number

SPI Mode
#define MODE0 or
#define MODE1 or
#define MODE2 or
#define MODE3
Only one of the MODEx can be defined.

After these definitions have been made, compile the
software SPI files into an executable. For information on
compilers, refer to the MPLAB-CXX User’s Guide. Refer
to the MPASM User’s Guide with MPLINK and MPLIB
for information on linking.

Return Value: None

File Name: swspi16.c

Code Example: OpenSWSPI();

putcSWSPI
Function: This function operates identically to WriteSWSPI.

File Name: #define in swspi16.h

SetSWCSSPI
Device: PIC17C4X, PIC17C756

Function: Sets the chip select (CS) pin that is specified in the
swspi16.h header file.

Include: swspi16.h

Prototype: void SWSetCSSPI (void);

Arguments: None

Remarks: This function sets the I/O pin that is specified in
swspi16.h to be the chip select (CS) pin for the software
SPI.

Return Value: None

OpenSWSPI (Continued)
 2000 Microchip Technology Inc. DS51224B-page 93

MPLAB®-CXX Reference Guide
3.5.2 Example of Use
#include <p17c756.h>
#include <swspi16.h>
#include <delays.h>
void main(void)
{
 char address;
 // configure software SPI
 OpenSWSPI();
 for(address=0;address<0x10;address++)
 {
 ClearCSSWSPI(); //clear CS pin
 WriteSWSPI(0x02); //send write cmd
 WriteSWSPI(address); //send address h
 WriteSWSPI(address); //send address low
 SetCSSWSPI(); //set CS pin
 Delay10KTCYx(50); //wait 5000,000TCY
 }
 return;
}

File Name: swspi16.c

Code Example: SetSWCSSPI();

WriteSWSPI
Device: PIC17C4X, PIC17C756

Function: Reads/writes one byte of data out the software SPI.

Include: swspi16.h

Prototype: char SWWriteSPI (static char data);

Arguments: data
Byte of data written to software SPI.

Remarks: This function writes the specified byte of data out the
software SPI and returns the byte of data that was read.
This function does not provide any control of the chip
select pin (CS).
This function operates identically to putcSWSPI.

Return Value: This function returns the byte of data that was read from
the data in (DIN) pin of the software SPI.

File Name: swspi16.c

Code Example: char addr;
WriteSWSPI(addr);

SetSWCSSPI (Continued)
DS51224B-page 94  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

3.6 Software UART Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

3.6.1 Individual Functions

getcUART
Function: This function operates identically to ReadUART.

File Name: #define in uart16.h

getsUART
Device: PIC17C4X, PIC17C756

Function: Reads a string of characters from the software UART.

Include: uart16.h

Prototype: void getsUART (static char *buffer,
static unsigned char len);

Arguments: buffer
Pointer to the string of characters read from the soft-
ware UART.
len
Number of characters read from the software UART.
The value of len can be any 8-bit value, but is restricted
to the maximum size of an array within any bank of
RAM.

Remarks: This function reads a string of characters from the soft-
ware UART and places them in buffer. The number of
characters read is given in the variable len.

Return Value: None

File Name: uart16_c.c

Code Example: char x[10];
getsUART(x,5);

OpenUART
Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins for the software UART.

Include: uart16.h

Prototype: void OpenUART (void);

Arguments: None
 2000 Microchip Technology Inc. DS51224B-page 95

MPLAB®-CXX Reference Guide
Remarks: This function configures the I/O pins used for the soft-
ware UART to the correct input or ouput state and logic
level. The I/O pins used for receive data (RXD) and
transmit data (TXD) must be defined in the header file
uart16_a.asm.
The definitions that must be made to ensure that the
software UART operates correctly are:

I/O pin definitions
SWTXD equ PORTx
SWTXDpin equ ?
TRIS_SWTXD equ DDRx
SWRXD equ PORTx
SWRXDpin equ ?
TRIS_SWRXD equ DDRx
UART_PORT_BSR equ b
where x is the PORT, ? is the pin number, b is the PORTx
bank

After these definitions have been made, compile the
software ART files into an object to be linked. Refer to
the MPLAB-CXX User’s Guide for information on com-
pilers. Refer to the MPASM User’s Guide with MPLINK
and MPLIB for information on linking.

Return Value: None

File Name: uart16_c.c

Code Example: OpenUART();

putcUART
Function: This function operates identically to WriteUART.

File Name: #define in uart16.h

putsUART
Device: PIC17C4X, PIC17C756

Function: Writes a string of characters to the software UART.

Include: uart16.h

Prototype: void getsUART (static char *buffer);

Arguments: buffer
Pointer to characters written to data string of software
UART.

Remarks: This function writes a string of characters to the soft-
ware UART. The entire string including the null is sent to
the UART.

OpenUART (Continued)
DS51224B-page 96  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Return Value: None

File Name: uart16_c.c

Code Example: char mybuff [20];
putsUART(mybuff);

ReadUART
Device: PIC17C4X, PIC17C756

Function: Reads one byte of data out the software UART.

Include: uart16.h

Prototype: char ReadUART (void);

Arguments: None

Remarks: This function reads a byte of data out the software
UART and returns the byte of data.
This function operates identically to getcUART.

Return Value: This function returns the byte of data that was read from
the receive data (RXD) pin of the software UART.

File Name: uart16_a.asm

Code Example: char x;
x = ReadUART();

WriteUART
Device: PIC17C4X, PIC17C756

Function: Writes one byte of data out the software UART.

Include: uart16.h

Prototype: void WriteUART (static char data);

Arguments: data
Byte of data written to software UART. The value of data
can be any 8-bit value.

Remarks: This function writes the specified byte of data out the
software UART.
This function operates identically to putcUART.

Return Value: None

File Name: uart16_a.asm

Code Example: char x;
WriteUART(x);

putsUART (Continued)
 2000 Microchip Technology Inc. DS51224B-page 97

MPLAB®-CXX Reference Guide
3.6.2 Example of Use
#include <p17c756.h>
#include <uart16.h>
void main(void)
{
 char data
 // configure software UART
 OpenUART();
 while(1)
 {
 data = ReadUART(); //read a byte
 WriteUART(data); //bounce it back
 }
 return;
}

DS51224B-page 98  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 4. General Software Library
M
P

L
A

B
-C

17
L

ib
raries

Part
1

4.1 Introduction
This chapter documents general software library functions. The source code
for all of these functions is included with MPLAB-C17 in the
c:\mcc\src\pmc directory, where c:\mcc is the compiler install directory.

See the MPASM User’s Guide with MPLINK and MPLIB for more information
about building libraries.

4.2 Highlights
This chapter is organized as follows:

• Character Classification Functions

• Number and Text Conversion Functions

• Delay Functions

• Memory and String Manipulation Functions
 2000 Microchip Technology Inc. DS51224B-page 99

MPLAB®-CXX Reference Guide
4.3 Character Classification Functions

isalnum
Device: PIC17C4X, PIC17C756

Function: Alphanumeric character classification.

Include: ctype.h

Prototype: char isalnum (static char ch);

Arguments: ch
Character.

Remarks: This function determines if ch is an alphanumeric char-
acter in the ranges of:
A to Z (0x41 to 0x5A)
a to z (0x61 to 0x7A)
0 to 9 (0x30 to 0x39)

Return Value: This function returns 1 when the argument is within the
specified range of values; otherwise 0 is returned.

File Name: isalnum.c

isalpha
Device: PIC17C4X, PIC17C756

Function: Alphabetical character classification.

Include: ctype.h

Prototype: char isalpha (static char ch);

Arguments: ch
Character.

Remarks: This function determines if ch is a valid character of the
alphabet in the ranges of:
A to Z (0x41 to 0x5A)
a to z (0x61 to 0x7A)

Return Value: This function returns 1 when the argument is within the
specified range of values; otherwise 0 is returned.

File Name: isalpha.c

isascii
Device: PIC17C4X, PIC17C756

Function: ASCII character classification.

Include: ctype.h

Prototype: char isascii (static char ch);
DS51224B-page 100  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Arguments: ch
Character.

Remarks: This function determines if ch is an ASCII character
which has a range of 0x00 to 0x7F.

Return Value: This function returns 1 when the argument is within the
specified range of values; otherwise 0 is returned.

File Name: isascii.c

iscntrl
Device: PIC17C4X, PIC17C756

Function: Control character classification.

Include: ctype.h

Prototype: char iscntrl (static char ch);

Arguments: ch
Character.

Remarks: This function determines if ch is a control character in
the ranges of:
0x00 to 0x1F
0x7f

Return Value: This function returns 1 when the argument is within the
specified range of values; otherwise 0 is returned.

File Name: iscntrl.c

isdigit
Device: PIC17C4X, PIC17C756

Function: Numeric character classification.

Include: ctype.h

Prototype: char isdigit (static char ch);

Arguments: ch
Character.

Remarks: This function determines if ch is an numeric character in
the ranges of:
0 to 9 (0x30 to 0x39)

Return Value: This function returns 1 when the argument is within the
specified range of values; otherwise 0 is returned.

File Name: isdigit.c

isascii (Continued)
 2000 Microchip Technology Inc. DS51224B-page 101

MPLAB®-CXX Reference Guide
islower
Device: PIC17C4X, PIC17C756

Function: Lower-case alphabetical character classification.

Include: ctype.h

Prototype: char islower (static char ch);

Arguments: ch
Character.

Remarks: This function determines if ch is a lower-case alphabeti-
cal character in the ranges of:
a to z (0x61 to 0x7A)

Return Value: This function returns 1 when the argument is within the
specified range of values; otherwise 0 is returned.

File Name: islower.c

isupper
Device: PIC17C4X, PIC17C756

Function: Upper-case alphabetical character classification.

Include: ctype.h

Prototype: char isupper (static char ch);

Arguments: ch
Character.

Remarks: This function determines if ch is an upper-case alpha-
betical character in the ranges of:
A to Z (0x41 to 0x5A)

Return Value: This function returns 1 when the argument is within the
specified range of values; otherwise 0 is returned.

File Name: isupper.c

isxdigit
Device: PIC17C4X, PIC17C756

Function: Hexadecimal character classification.

Include: ctype.h

Prototype: char isxdigit (static char ch);

Arguments: ch
Character.

Remarks: This function determines ifch is a hexadecimal charac-
ter in the ranges of:
A to F (0x41 to 0x46)
a to f (0x61 to 0x66)
0 to 9 (0x30 to 0x39)
DS51224B-page 102  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

4.4 Number and Text Conversion Functions

Return Value: This function returns 1 when the argument is within the
specified range of values; otherwise 0 is returned.

File Name: isxdig.c

isxdigit (Continued)

atob
Device: PIC17C4X, PIC17C756

Function: Converts a string to an 8-bit signed byte.

Include: stdlib.h

Prototype: char atob (static char *string);

Arguments: string
Pointer to ASCII string.

Remarks: This function converts the ASCII string into an 8-bit
signed byte. It first finds the length of the string by
searching for the null character. If the string length is
greater than 5 characters, this function returns 0. It then
starts processing the string into the 8-bit signed byte (-
128 to 127).

Return Value: 8-bit signed byte for all strings with 5 characters or less
(-128 to 127). 0 for all strings greater than 5 characters.

File Name: atob.c

atoi
Device: PIC17C4X, PIC17C756

Function: Converts a string to an 16-bit signed integer.

Include: stdlib.h

Prototype: int atoi(static char *string);

Arguments: string
Pointer to ASCII string.

Remarks: This function converts the ASCII string into an 16-bit
signed integer. It first finds the length of the string by
searching for the null character. If the string length is
greater than 7 characters, this function returns 0. It then
starts processing the string into the 16-bit signed inte-
ger (-32768 to 32767).

Return Value: 16-bit signed integer for all strings with 7 characters or
less (-32768 to 32767). 0 for all strings greater than 7
characters.
 2000 Microchip Technology Inc. DS51224B-page 103

MPLAB®-CXX Reference Guide

File Name: atoi.c

atoub
Device: PIC17C4X, PIC17C756

Function: Converts a string to an 8-bit unsigned byte.

Include: stdlib.h

Prototype: unsigned char atoub (static char
*string);

Arguments: string
Pointer to ASCII string.

Remarks: This function converts the ASCII string into an 8-bit
unsigned byte. It first finds the length of the string by
searching for the null character. If the string length is
greater than 4 characters, this function returns 0. It then
starts processing the string into the 8-bit unsigned byte
(0 to 255).

Return Value: 8-bit unsigned byte for all strings with 4 characters or
less (0 to 255). 0 for all strings greater than 4 charac-
ters.

File Name: atoub.c

atoui
Device: PIC17C4X, PIC17C756

Function: Converts a string to an 16-bit unsigned integer.

Include: stdlib.h

Prototype: unsigned int atoui (static char *string);

Arguments: string
Pointer to ASCII string.

Remarks: This function converts the ASCII string into an 16-bit
unsigned integer. It first finds the length of the string by
searching for the null character. If the string length is
greater than 6 characters, this function returns 0. It then
starts processing the string into the 16-bit unsigned
integer. (0 to 65535)

Return Value: 16-bit unsigned integer for all strings with 6 characters
or less (0 to 65535). 0 for all strings greater than 6 char-
acters

File Name: atoui.c

atoi (Continued)
DS51224B-page 104  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

btoa
Device: PIC17C4X, PIC17C756

Function: Converts an 8-bit signed byte to string.

Include: stdlib.h

Prototype: void btoa (static char value, static char
*string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string.

Remarks: This function converts the 8-bit signed byte in the argu-
ment value to a ASCII string representation. The string
must be long enough to hold the ASCII representation
which is:
number(3) + sign(1) + null(1) = 5

The conversion process uses the minimum amount of
characters in the string. Some examples are:
-120 5 characters

-57 4 characters
-6 3 characters
0 2 characters

29 3 characters
107 4 characters

Return Value: None

File Name: btoa.c

itoa
Device: PIC17C4X, PIC17C756

Function: Converts an 16-bit signed integer to string.

Include: stdlib.h

Prototype: void itoa (static int value, static char
*string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string.

Remarks: This function converts the 16-bit signed integer in the
argument value to a ASCII string representation. The
string must be long enough to hold the ASCII represen-
tation which is:
number(5) + sign(1) + null(1) = 7
 2000 Microchip Technology Inc. DS51224B-page 105

MPLAB®-CXX Reference Guide
The conversion process uses the minimum amount of
characters in the string. Some examples are:

-24290 7 characters
-6183 6 characters

-120 5 characters
-57 4 characters
-6 3 characters
0 2 characters

29 3 characters
107 4 characters

1187 5 characters
32000 6 characters

Return Value: None

File Name: itoa.c

toascii
Device: PIC17C4X, PIC17C756

Function: Converts a character to an ASCII character

Include: ctype.h

Prototype: char toascii (static char ch);

Arguments: ch
Character.

Remarks: This function converts ch to a valid ASCII character by
setting the MSB bit7 to a zero.

Return Value: This function returns the converted ASCII character.

File Name: toascii.c

tolower
Device: PIC17C4X, PIC17C756

Function: Converts a character to a lower-case alphabetical ASCII
character.

Include: ctype.h

Prototype: char tolower (static char ch);

Arguments: ch
Character.

Remarks: This function converts ch to a lower-case alphabetical
ASCII character provided that the argument is a valid
upper-case alphabetical character.

itoa (Continued)
DS51224B-page 106  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Return Value: This function returns a lower-case character if the argu-
ment was upper-case to begin with, otherwise the origi-
nal character is returned.

File Name: tolower.c

toupper
Device: PIC17C4X, PIC17C756

Function: Converts a character to a upper-case alphabetical
ASCII character.

Include: ctype.h

Prototype: char toupper (static char ch);

Arguments: ch
Character.

Remarks: This function converts ch to a upper-case alphabetical
ASCII character provided that the argument is a valid
lower-case alphabetical character.

Return Value: This function returns a lower-case character if the argu-
ment was upper-case to begin with, otherwise the origi-
nal character is returned.

File Name: toupper.c

ubtoa
Device: PIC17C4X, PIC17C756

Function: Converts an 8-bit unsigned byte to string.

Include: stdlib.h

Prototype: void ubtoa (static unsigned char value,
static char *string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string.

Remarks: This function converts the 8-bit unsigned byte in the
argument value to a ASCII string representation. The
string must be long enough to hold the ASCII represen-
tation which is:
number(3) + null(1) = 4

tolower (Continued)
 2000 Microchip Technology Inc. DS51224B-page 107

MPLAB®-CXX Reference Guide
The conversion process uses the minimum amount of
characters in the string. Some examples are:

0 2 characters
29 3 characters

107 4 characters
255 4 characters

Return Value: None

File Name: ubtoa.c

uitoa
Device: PIC17C4X, PIC17C756

Function: Converts an 16-bit unsigned integer to string.

Include: stdlib.h

Prototype: void uitoa (static unsigned int value,
static char *string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string.

Remarks: This function converts the 16-bit unsigned integer in the
argument value to a ASCII string representation. The
string must be long enough to hold the ASCII represen-
tation which is:
number(2) + null(1) = 6

The conversion process uses the minimum amount of
characters in the string. Some examples are:

0 2 characters
29 3 characters

107 4 characters
3481 5 characters

57912 6 characters

Return Value: None

File Name: uitoa.c

ubtoa (Continued)
DS51224B-page 108  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

4.5 Delay Functions

Delay1TCY
Device: PIC17C4X, PIC17C756

Function: Delay of 1 instruction cycle (Tcy).

Include: delays.h

Prototype: void Delay1TCY (void);

Arguments: None

Remarks: This function is actually a #define for the Nop()
instruction. When encountered in the source code, the
compiler simply inserts a Nop().

Return Value: None

File Name: #define in delays.h

Delay10TCY
Device: PIC17C4X, PIC17C756

Function: Delay of 10 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10TCY (void);

Arguments: None

Remarks: This function creates a delay of 10 instruction cycles.

Return Value: None

File Name: dy10tcy.asm

Delay10TCYx
Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 10 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10TCYx (static unsigned char
unit);

Arguments: unit
The value of unit can be any 8-bit value from 2 to 255 or
0. A value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 10 instruc-
tion cycles.

Return Value: None

File Name: dy1otcyx.asm
 2000 Microchip Technology Inc. DS51224B-page 109

MPLAB®-CXX Reference Guide
Delay100TCYx
Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 100 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay100TCYx (static unsigned char
unit);

Arguments: unit
The value of unit can be any 8-bit value from 2 to 255 or
0. A value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 100 instruc-
tion cycles.

Return Value: None

File Name: dy100tcx.asm

Delay1KTCYx
Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 1000 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay1KTCYx (static unsigned char
unit);

Arguments: unit
The value of unit can be any 8-bit value from 2 to 255 or
0. A value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 1000
instruction cycles.

Return Value: None

File Name: dy1ktcyx.asm

Delay10KTCYx
Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 10000 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10KTCYx (static unsigned char
unit);

Arguments: unit
The value of unit can be any 8-bit value from 2 to 255 or
0. A value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 10000
instruction cycles.

Return Value: None

File Name: dy10ktcx.asm
DS51224B-page 110  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

4.6 Memory and String Manipulation Functions

memcmp
Device: PIC17C4X, PIC17C756

Function: Compares the contents of two arrays of bytes.

Include: mem.h

Prototype: signed char memcmp (static char *buf1,
static char *buf2, static unsigned char
memsize);

Arguments: buf1
Pointer to first array.
buf2
Pointer to second array.
memsize
Number of elements to be compared in arrays.

Remarks: This function compares the first memsize number of
elements in buf1 to the first memsize number of ele-
ments in buf2 and returns if the buffers are less than,
equal to, or greater than each other.

Return Value: -1 if buf1 < buf2
0 if buf1 == buf2
1 if buf1 > buf2

File Name: memcmp.c

memcpy
Device: PIC17C4X, PIC17C756

Function: Copies the contents of the source buffer into the desti-
nation buffer.

Include: mem.h

Prototype: void memcpy (static char *dest, static
char *src, static unsigned char memsize);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
memsize
Number of elements of src array copied into dest.

Remarks: This function copies the first memsize number of ele-
ments in src to the array dest.

Return Value: None

File Name: memcpy.c
 2000 Microchip Technology Inc. DS51224B-page 111

MPLAB®-CXX Reference Guide
memset
Device: PIC17C4X, PIC17C756

Function: Copies the specified character into the destination array.

Include: mem.h

Prototype: void memset (static char *dest, static
char value, static unsigned char mem-
size);

Arguments: dest
Pointer to destination array.
value
Character value to be copied.
memsize
Number of elements of dest into which value is copied.

Remarks: This function copies the character value into the first
memsize elements of the array dest.

Return Value: None

File Name: memset.c

strcat
Device: PIC17C4X, PIC17C756

Function: Concatenates the source string to the end of the desti-
nation string.

Include: string.h

Prototype: void strcat (static char *dest, static
char *src);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.

Remarks: This function copies the string in src to the end of the
string in dest. The src string starts at the null in dest. A
null character is added to the end of the resulting string
in dest.

Return Value: None

File Name: strcat.c

strcmp
Device: PIC17C4X, PIC17C756

Function: Compares two strings.

Include: string.h
DS51224B-page 112  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Prototype: signed char strcmp (static char *str1,
static char *str2);

Arguments: str1
Pointer to first string.
str2
Pointer to second string.

Remarks: This function compares the string in str1 to the string in
str2 and returns if str1 is less than, equal to, or greater
than str2.

Return Value: -1 if str1 < str2
0 if str1 == str2
1 if str1 > str2

File Name: strcmp.c

strcpy
Device: PIC17C4X, PIC17C756

Function: Copies the source string into the destination string.

Include: string.h

Prototype: void strcpy (static char *dest, static
char *src);

Arguments: dest
Pointer to destination string.
src
Pointer to source string.

Remarks: This function copies the string in src to dest. Characters
in src are copied until the null character is reached. The
string dest is null terminated.

Return Value: None

File Name: strcpy.c

strlen
Device: PIC17C4X, PIC17C756

Function: Returns the length of the string.

Include: string.h

Prototype: unsigned char strlen (static char *str);

Arguments: str
Pointer to string.

Remarks: This function determines the length of the string minus
the null character.

strcmp (Continued)
 2000 Microchip Technology Inc. DS51224B-page 113

MPLAB®-CXX Reference Guide
Return Value: This function returns the length of the string in an
unsigned 8-bit byte.

File Name: strlen.c

strlwr
Device: PIC17C4X, PIC17C756

Function: Converts all upper-case characters in a string to lower-
case.

Include: string.h

Prototype: void strlwr (static char *str);

Arguments: str
Pointer to string.

Remarks: This function converts all upper-case characters in str to
lower-case characters. All characters that are not
upper-case (A to Z) are not affected.

Return Value: None

File Name: strlwr.c

strset
Device: PIC17C4X, PIC17C756

Function: Copies the specified character into all characters in a
string.

Include: string.h

Prototype: void strset (static char *str, static
char ch);

Arguments: str
Pointer to string.
ch
Character.

Remarks: This function copies the character in ch to all characters
in the string up to the null character.

Return Value: None

File Name: strset.c

strupr
Device: PIC17C4X, PIC17C756

Function: Converts all lower-case characters in a string to upper-
case.

strlen (Continued)
DS51224B-page 114  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

Include: string.h

Prototype: void strupr (static char *str);

Arguments: str
Pointer to string.

Remarks: This function converts all lower-case characters in str to
upper-case characters. All characters that are not
lower-case (a to z) are not affected.

Return Value: None

File Name: strupr.c

strupr (Continued)
 2000 Microchip Technology Inc. DS51224B-page 115

MPLAB®-CXX Reference Guide
NOTES:
DS51224B-page 116  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 5. Math Library
M
P

L
A

B
-C

17
L

ib
raries

Part
1

5.1 Introduction
This chapter documents math library functions. For more information on math
libraries, see the Embedded Control Handbook, Volume 2 (DS00167). See
the MPASM User’s Guide with MPLINK and MPLIB for more information on
creating and using libraries in general.

5.2 Highlights
This chapter is organized as follows:

• 32-Bit Integer and 32-Bit Floating Point Math Libraries

• Decimal/Floating Point and Floating Point/Decimal Conversions

5.3 32-Bit Integer and 32-Bit Floating Point Math
Libraries

The math routines used by MPLAB-C17 are based on the Microchip
Application Note AN575. Source code for the routines may be found in the
c:\mcc\src\math directory, where c:\mcc is the compiler install directory.
These source files have been compiled into object code and added to a library
called cmath17.lib, which may be found in the c:\mcc\lib folder. The
cmath17.lib file must be included during the linking process when using
floating point or 32-bit integer routine function calls in your C code.

The mathematical functions performed by the floating point library routines
are: 32-bit signed and unsigned integer multiplication; 32-bit signed and
unsigned integer division; 32-bit floating point multiplication and division. The
routines also contain conversion functions to go from 8, 16 and 32-bit signed
and unsigned integers to 32-bit floating point, as well as a 32-bit floating point
conversion to 32-bit integer. Calling conventions will be discussed later.
 2000 Microchip Technology Inc. DS51224B-page 117

MPLAB®-CXX Reference Guide
5.3.1 Floating Point Representation
Floating point numbers are represented in a modified IEEE-754 format. This
format allows the floating-point routines to take advantage of the processor
architecture and reduce the amount of overhead required in the calculations.
The representation is shown below:

where s is the sign bit, y is the LSb of the exponent and x is a placeholder for
the mantissa and exponent bits.

The two formats may be easily converted from one to the other by simple a
manipulation of the Exponent and Mantissa 0 bytes. The following C code
shows an example of this operation.

Example 5.1: IEEE-754 to Microchip
Rlcf(AARGB0);
Rlcf(AEXP);
Rrcf(AARGB0);

Example 5.2: Microchip to IEEE-754
Rlcf(AARGB0);
Rrcf(AEXP);
Rrcf(AARGB0);

5.3.2 Variables Used by the Floating Point Libraries
Several 8-bit RAM registers are used by the math routines to hold the
operands for and results of floating point and integer operations. Since there
may be two operands required for a floating point operation (such as
multiplication or division), there are two sets of exponent and mantissa
registers reserved. AEXP and BEXP hold the exponent for arguments A and
B respectively while AARGB0, AARGB1, and AARGB2 or BARGB0,
BARGB1, and BARGB2 hold the mantissa.

For 32-bit integers, AARGB0, AARGB1, AARGB2 and AARGB3 or BARGB0,
BARGB1, BARGB2, and BARGB3 are used to hold the operands. Results of
integer operations will be placed in AARGB0, AARGB1, AARGB2, and
AARGB3. In the case of 32-bit division, the remainder is placed in an
additional set of registers, REMB0, REMB1, REMB2, and REMB3. The MSB
of the 32-bit integer is contained in AARGB0, BARGB0 or REMB0.

Format Exponent Mantissa 0 Mantissa 1 Mantissa 2

IEEE-754 sxxx xxxx yxxx xxxx xxxx xxxx xxxx xxxx

Microchip xxxx xxxy sxxx xxxx xxxx xxxx xxxx xxxx

Note: The MSB of the mantissa is stored in the AARGB0 or BARGB0
byte. Results of the floating point routines are placed in the AEXP
and AARGB0:2 registers.
DS51224B-page 118  2000 Microchip Technology Inc.

Math Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

5.3.3 Calling the Math Functions
Before calling a math operation, the exponent and/or mantissa operands must
be set up by your C code. For those operations that require two arguments
(such as division or multiplication), both sets of arguments must be initialized.
Once initialization is complete, the math function may be called using
standard C function calls. The operands of the math routine are not passed
as arguments to the function. Table 5.1 shows the syntax, operation,
operand(s) required and where to extract the result of the operation.

Table 5.1: Math Functions

5.3.4 Example
Given two 32-bit signed integers, int1 (AARG) and int2 (BARG), the
following code will multiply the two numbers and place the result in int1
(AARG). Banking and paging considerations have been omitted for clarity.
Include this code into your C program as inline assembly code.

MOVFP int1, WREG ; Load AARG
MOVWF AARGB0
MOVFP int1+1, WREG
MOVWF AARGB1
MOVFP int1+2, WREG
MOVWF AARGB2
MOVPF int1+3, WREG
MOVWF AARGB3
MOVFP int2, WREG
MOVWF BARGB0 ; Load BARG
MOVFP int2+1, WREG
MOVWF BARGB1
MOVFP int2+2, WREG
MOVWF BARGB2

Syntax Operation Operand(s) Result In

FXM3232U() A·B (unsigned 32-bit integers) A, B A

FXM3232S() A·B (signed 32-bit integers) A, B A

FXD3232U() A/B (unsigned 32-bit integers) A, B A, REM

FXD3232S() A/B (signed 32-bit integers) A, B A, REM

FPM32() A·B (32-bit floating point) A, B A

FPD32() A/B (32-bit floating point) A, B A

FLO3232U() 32-bit unsigned int to 32-bit floating point A A

FLO3232S() 32-bit signed int to 32-bit floating point A A

FLO1632U() 16-bit unsigned int to 32-bit floating point A A

FLO1632S() 16-bit signed int to 32-bit floating point A A

FLO0832U() 8-bit unsigned int to 32-bit floating point A A

FLO0832S() 8-bit signed int to 32-bit floating point A A

INT3232() 32-bit floating point to 32-bit integer A A
 2000 Microchip Technology Inc. DS51224B-page 119

MPLAB®-CXX Reference Guide
MOVPF int2+3, WREG
MOVWF BARGB3
CALL FXM3232S ; Perform the multiply
MOVFP AARGB0, WREG ; Save the result
MOVWF int1
MOVFP AARGB1, WREG
MOVWF int1+1
MOVFP AARGB2, WREG
MOVWF int1+2
MOVFP AARGB3, WREG
MOVWF int1+3

5.4 Decimal/Floating Point and Floating Point/
Decimal Conversions

The details of how decimal numbers are converted to floating point numbers
and how floating point numbers are converted to decimal numbers are
discuss in the following sections.

5.4.1 Converting Decimal to Microchip Floating Point
There are several methods that will allow the conversion of decimal (base 10)
numbers to Microchip floating point format. Microchip provides a PC utility
called FPREP.EXE, which will convert decimal numbers to floating point for
use in the math library routines. This utility may be download from the
Microchip web site along with the AN575 source code.

Alternatively, the floating point equivalent to decimal numbers may be
calculated longhand. To calculate the floating point via a longhand method,
both the exponent and mantissa must be found.

To find the exponent, the following formulae are used:

Equation 5.1:

Equation 5.2:

where Z is the fractional exponent, A10 is the original decimal number, and
Exp is the integer portion of Z.

To solve for the exponent, first begin by rearranging Equation 5.1 to solve for
Z.

2Z
A10=

Exp int Z()=

Z
A10()ln

2()ln
------------------=
DS51224B-page 120  2000 Microchip Technology Inc.

Math Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

The absolute value of Z is then rounded to the next larger absolute value
integer to yield the value of Exp. Finally a bias value of 0x7F is added to
convert Exp to Microchip floating point format.

Next, the mantissa is determined. The exponent value just determined must
be removed from the original decimal number, using division.

Equation 5.3:

where x is the fractional portion of the mantissa, and A10 and Z are values as
described above.

To determine the binary representation of the mantissa, x is compared in turn
to decreasing powers of 2, starting with 20 and decreasing to 2-23. If x is
greater than or equal to the power of 2 currently being compared, a ’1’ is
placed in the corresponding bit position of the binary representation and the
power of 2 value is subtracted from x. The new x is then used for the next
decreasing power of 2 comparison. If x is less than the power of 2 currently
being compared, a ’0’ is placed in the bit position and no subtraction occurs.
The same value of x is used to compare to the next power of 2 value.

This process repeats until all 24 bits have been determined or until subtraction
yields an x value of 0. Finally, to convert this 24-bit value to Microchip floating
point format, the MSb is substituted with the sign of the original decimal
number, i.e., ’1’ for negative or ’0’ for positive.

To demonstrate the method of conversion, the same example as in AN575 will
be used, where A10 = 0.15625.

First, find the exponent:

Next calculate the fractional portion of the mantissa:

Note: x will always be a value greater than 1.

x
A10

2Z
--------=

2
Z

0.15625=

Z
0.15625()ln

2()ln
----------------------------- 2.6780719–= =

Exp int Z() 3–= =

x
0.15625

2
3–

------------------- 1.25= =
 2000 Microchip Technology Inc. DS51224B-page 121

MPLAB®-CXX Reference Guide
And then the binary representation:

Therefore, the binary representation is:

A2=1.01000000000000000000000.

Finally, convert to Microchip floating point format by placing the proper sign bit
in the MSb of the mantissa and add 0x7F to the calculated exponent. The
Microchip floating point representation of 0.156256 is then 0x7C200000. For
more details on the floating point conversion, please consult AN575.

5.4.2 Converting Microchip Floating-Point to Decimal
The process of converting floating-point number to decimal is relatively simple
and can be done by hand (or using a calculator) to check your results. To
convert from floating point to decimal, the following formula is used:

Equation 5.4:

where Exp is the unbiased exponent and A is the binary expansion of the
mantissa.

Some processing of the values stored in AEXP and AARGB0:2 must be
performed in order to use the above formula. The exponent is stored in a
biased format, which simply means that 0x7F has been added to the true
exponent that of the number. To extract the exponent to be used in the above
calculation, subtract 0x7F from the value stored in AEXP.

The sign bit is stored in the MSB of the mantissa. To allow the full 24-bit
precision of the mantissa, the MSB is assumed to be 1 explicitly, once the sign
bit is stripped out. To calculate A2, a simple binary expansion is used, as
shown in the formula below. Since the MSB is explicitly 1, the expansion will
always contain the term 20.

Equation 5.5:

As in AN575, we will use the example of the decimal number 50.2654824574.
which has a floating point representation of 0x84490FDB, with the biased
exponent being 0x84 and the mantissa (including sign bit) being 0x490FDB.
The unbiased exponent is calculated to be Exp = 0x84 - 0x7F = 0x05. To
process the mantissa, it is first translated to binary format and the MSB is set
to prepare for the expansion.

x = 1.25 ≥ 20? Yes bit = 1 x = 1.25 - 1 = 0.25

x = 0.25 ≥ 2-1? No bit = 0 x = 0.25

x = 0.25 ≥ 2-2? Yes bit = 1 x = 0.25 - 0.25 = 0

x = 0 Process complete

A10 2Exp
A2⋅=

A2 2
0

Bit22() 2
1–⋅ Bit21() 2

2–⋅ … Bit0() 2
23–⋅+ + + +=
DS51224B-page 122  2000 Microchip Technology Inc.

Math Library

M
P

L
A

B
-C

17
L

ib
raries

Part
1

0x490FDB =

0100 1001 0000 1111 1101 10112 →

1100 1001 0000 1111 1101 10112

The expansion is then performed according to Equation 5.5.

A2 = 20 + 2-1 + 2-4 + 2-7 + 2-12 + 2-13 + 2-14 + 2-15 + 2-16 + 2-17 +
2-19 + 2-20 + 2-22 + 2-23

A2 = 1.570796371

Finally, to calculate the actual floating point number, the exponent and
expanded mantissa are plugged into the conversion formula (Equation 5.4).

A10= 20 • 1.570796371

A10= 50.26548387

The result of these calculations are accurate out to about 5 decimal places,
with rounding and calculation errors creating some degree of uncertainty for
the remaining decimal places. For more details on the sources of error,
please consult AN575.
 2000 Microchip Technology Inc. DS51224B-page 123

MPLAB®-CXX Reference Guide
NOTES:
DS51224B-page 124  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Part 2 – MPLAB-C18 Libraries
M
P

L
A

B
-C

18
L

ib
raries

Part
2

Chapter 6. Library Overview..127

Chapter 7. Hardware Peripheral Library...131

Chapter 8. Software Peripheral Library ..185

Chapter 9. General Software Library ..209

Chapter 10. Math Library ...235
 2000 Microchip Technology Inc. DS51224B-page 125

MPLAB®-CXX Reference Guide
DS51224B-page 126  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 6. Library Overview
M
P

L
A

B
-C

18
L

ib
raries

Part
2

6.1 Introduction
This chapter gives an overview of the MPLAB-C18 library files that can be
included in an application.

6.2 Highlights
This chapter is organized as follows:

• MPLAB-C18 Libraries Overview

• Standard C Libraries

• Processor-Specific Libraries

• Interrupt Handling

6.3 MPLAB-C18 Libraries Overview
A library is a collection of functions grouped for reference and ease of linking.
See the MPASM User’s Guide with MPLINK and MPLIB for more information
about making and using libraries.

When building an application, usually one file from Section 6.4 will be needed
to successfully link.

The MPLAB-C18 libraries are included in the c:\mcc\lib directory, where
c:\mcc is the compiler install directory. These can be linked directly into an
application with MPLINK.

These files were precompiled in the c:\mcc\src directory at Microchip. If
you chose not to install the compiler and related files in the c:\mcc directory
(ex: c:\cxx\src, d:\mcc\src, etc.), a warning message will be generated
by MPLINK stating that source code from the libraries will not show in the
.lst file and can not be stepped through when using MPLAB. This results
from MPLINK looking for the library source files in the absolute path of
c:\mcc\src.

To include the library code in the .lst file and to be able to single step
through library functions, use the batch files (.bat) in the src directory to
rebuild the files. Then copy the newly compiled files into the lib directory.
 2000 Microchip Technology Inc. DS51224B-page 127

MPLAB®-CXX Reference Guide
6.4 Standard C Libraries

Both of the standard C libraries provide the functions described in the
following chapters:

• General functions are described in Chapter 9.

• Math functions are described in Chapter 10.

In addition, both libraries contain the startup code to initialize the C software
stack and jump to the start of the application function, main(). clib.lib
assigns the appropriate values to initialized data prior to calling the user’s
application. Initialization is required if variables are set to a value when they
are first defined.

The source code for these libraries may be found in:

• c:\mcc\src\startup

• c:\mcc\src\math

• c:\mcc\src\delays

• c:\mcc\src\ctype

• c:\mcc\src\string

• c:\mcc\src\stdlib

where c:\mcc is the compiler install directory.

Use the batch file makeclib.bat to rebuild the libraries.

PICmicro Initialized Data No Initialized Data

All clib.lib c_noinit.lib
DS51224B-page 128  2000 Microchip Technology Inc.

Library Overview

M
P

L
A

B
-C

18
L

ib
raries

Part
2

6.5 Processor-Specific Libraries

These library files contain the processor-specific functions described in the
following chapters:

• Hardware functions are described in Chapter 7.

• Software functions are described in Chapter 8.

In addition, these libraries contain the special function register definitions for
the processor.

The source code for these libraries may be found in:

• c:\mcc\src\pmc

• c:\mcc\src\proc

where c:\mcc is the compiler install directory.

Use the batch file makeplib.bat to rebuild the libraries.

6.6 Interrupt Handling
In MPLAB-C18, unlike MPLAB-C17, interrupts are handled by the #pragma
interrupt directive. No additional library support is required. Please see
the MPLAB-CXX User’s Guide for more information on using the #pragma
interrupt directive.

PICmicro Library Name

18C242 p18c242.lib

18C252 p18c252.lib

18C442 p18c442.lib

18C452 p18c452.lib
 2000 Microchip Technology Inc. DS51224B-page 129

MPLAB®-CXX Reference Guide
NOTES:
DS51224B-page 130  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 7. Hardware Peripheral Library
M
P

L
A

B
-C

18
L

ib
raries

Part
2

7.1 Introduction
This chapter documents hardware peripheral library functions. The source
code for all of these functions is included with MPLAB-C18 in the
c:\mcc\src\pmc directory, where c:\mcc is the compiler install directory.

See the MPASM User’s Guide with MPLINK and MPLIB for more information
about building libraries.

7.2 Highlights
This chapter is organized as follows:

• A/D Converter Functions

• Input Capture Functions

• I2C Functions

• I/O Port Functions

• Microwire Functions

• Pulse Width Modulation (PWM) Functions

• Reset Functions

• SPI Functions

• Timer Functions

• USART Functions
 2000 Microchip Technology Inc. DS51224B-page 131

MPLAB®-CXX Reference Guide
7.3 A/D Converter Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.3.1 Individual Functions

BusyADC
Device: PIC18CXXX

Function: Returns the value of the GO bit in the ADCON0 register.

Include: adc.h

Prototype: char BusyADC (void);

Arguments: None

Remarks: This function returns the value of the GO bit in the
ADCON0 register. If the value is equal to 1, then the A/D
is busy converting. If the value is equal to 0, then the A/
D is done converting.

Return Value: This function returns a char with value either 0 (done)
or 1 (busy).

File Name: adcbusy.c

Code Example: while (BusyACD());

CloseADC
Device: PIC18CXXX

Function: This function disables the A/D convertor.

Include: adc.h

Prototype: void CloseADC (void);

Arguments: None

Remarks: This function first disables the A/D convertor by clearing
the ADON bit in the ADCON0 register. It then disables the
A/D interrupt by clearing the ADIE bit in the PIE2 regis-
ter.

Return Value: None

File Name: adcclose.c

Code Example: CloseADC();

ConvertADC
Device: PIC18CXXX
DS51224B-page 132  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Function: Starts an A/D conversion by setting the GO bit in the
ADCON0 register.

Include: adc.h

Prototype: void ConvertADC (void);

Arguments: None

Remarks: This function sets the GO bit in the ADCON0 register.

Return Value: None

File Name: adcconv.c

Code Example: ConvertADC();

OpenADC
Device: PIC18CXXX

Function: Configures the A/D convertor.

Include: adc.h

Prototype: void OpenADC (unsigned char config,
unsigned char config2);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in adc.h):

A/D clock source
ADC_FOSC_2 Fosc/2
ADC_FOSC_4 Fosc/4
ADC_FOSC_8 Fosc/8
ADC_FOSC_16 Fosc/16
ADC_FOSC_32 Fosc/32
ADC_FOSC_64 Fosc/64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification
ADC_RIGHT_JUST
ADC_LEFT_JUST

ConvertADC (Continued)
 2000 Microchip Technology Inc. DS51224B-page 133

MPLAB®-CXX Reference Guide
A/D voltage reference source
ADC_8ANA_0REF Vref+=Vdd, Vref-=Vss,

All analog channels
ADC_7ANA_1REF AN3=Vref+, All analog

channels except AN3
ADC_5ANA_0REF Vref+=Vdd, Vref-=Vss
ADC_4ANA_1REF AN3=Vref+
ADC_3ANA_0REF Vref+=Vdd, Vref-=Vss
ADC_2ANA_1REF AN3=Vref+
ADC_0ANA_0REF All digital I/O
ADC_6ANA_2REF AN3=Vref+, AN2=Vref-
ADC_6ANA_0REF Vref+=Vdd, Vref-=Vss
ADC_5ANA_1REF AN3=Vref+, Vref-=Vss
ADC_4ANA_2REF AN3=Vref+, AN2=Vref-
ADC_3ANA_2REF AN3=Vref+, AN2=Vref-
ADC_2ANA_2REF AN3=Vref+, AN2=Vref-
ADC_1ANA_0REF AN0 is analog input
ADC_2ANA_0REF AN3=Vref+, AN2=Vref-,

AN0=A

config2
The value of config2 can be a combination of the follow-
ing values (defined in adc.h):

Channel
ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7

A/D Interrupts
ADC_INT_ON Interrupts enabled
ADC_INT_OFF Interrupts disabled

Remarks: This function resets the A/D related Special Function
Registers to the POR state and then configures the
clock, interrupts, justification, voltage reference source,
number of analog and digital I/Os, and current channel.

Return Value: None

File Name: adcopen.c

Code Example: OpenADC(ADC_FOSC_32&
 ADC_RIGHT_JUST&
 ADC_1ANA_0REF,
 ADC_CH0 & ADC_INT_OFF);

OpenADC (Continued)
DS51224B-page 134  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

ReadADC
Device: PIC18CXXX

Function: Reads the result of an A/D conversion.

Include: adc.h

Prototype: int ReadADC (void);

Arguments: None

Remarks: This function reads the 16-bit result of an A/D conver-
sion.

Return Value: This function returns the 16-bit signed result of the A/D
conversion. If the ADFM bit in ADCON1 is set, then the
result is always right justified leaving the MSbs cleared.
If the ADFM bit is cleared, then the result is left justified
where the LSbs are cleared.

File Name: adcread.c

Code Example: int result;
result = ReadADC();

SetChanADC
Device: PIC18CXXX

Function: Selects a specific A/D channel.

Include: adc.h

Prototype: void SetChanADC (unsigned char channel);

Arguments: channel
The value of channel can be one of the following values
(defined in adc.h):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11

Remarks: This function first clears the channel select bits in the
ADCON0 register, which selects channel 0. It then ORs
the value channel with ADCON0 register.

Return Value: None

File Name: adcsetch.c
 2000 Microchip Technology Inc. DS51224B-page 135

MPLAB®-CXX Reference Guide
7.3.2 Example of Use
#include <p18C452.h>
#include <adc.h>
#include <stdlib.h>
#include <delays.h>
#include <usart.h>
 void main(void)
 {
 int result;
 char str[7];
 // configure A/D convertor
 OpenADC(ADC_FOSC_32&
 ADC_RIGHT_JUST&ADC_8ANA_0REF,
 ADC_CH0&ADC_INT_OFF);
 // configure USART
 OpenUSART(USART_TX_INT_OFF&
 USART_RX_INT_OFF&
 USART_ASYNCH_MODE&
 USART_EIGHT_BIT&USART_CONT_RX, 25);
 Delay10TCYx(5); // Delay for 50TCY
 ConvertADC(); // Start Conversion
 result = ReadADC(); // read result
 itoa(result,str); // convert to string
 putsUSART(str); // Write string to USART
 CloseADC(); // Close Modules
 CloseUSART();
 return;

 }

Code Example: SetChanADC(ADC_CH0);

SetChanADC (Continued)
DS51224B-page 136  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

7.4 Input Capture Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.4.1 Individual Functions

CloseCapture1
CloseCapture2
Device: PIC18CXXX

Function: This function disables the specified input capture.

Include: capture.h

Prototype: void CloseCapture1 (void);
void CloseCapture2 (void);

Arguments: None

Remarks: This function simply disables the interrupt of the speci-
fied input capture.

Return Value: None

File Name: cp1close.c
cp2close.c

Code Example: CloseCapture1();

OpenCapture1
OpenCapture2
Device: PIC18CXXX

Function: This function configures the specified input capture.

Include: capture.h

Prototype: void OpenCapture1 (unsigned char config);
void OpenCapture2 (unsigned char config);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in capture.h):

OpenCapture functions
CAPTURE_INT_ON Interrupts ON
CAPTURE_INT_OFF Interrupts OFF
C1_EVERY_FALL_EDGE
C1_EVERY_RISE_EDGE
C1_EVERY_4_RISE_EDGE
C1_EVERY_16_RISE_EDGE
 2000 Microchip Technology Inc. DS51224B-page 137

MPLAB®-CXX Reference Guide
Remarks: This function first resets the capture module to the POR
state and then configures the specified input capture for
edge detection, i.e., every falling edge, every rising
edge, every fourth rising edge, or every sixteenth rising
edge.

The capture functions use a structure, defined in
capture.h, to indicate overflow status of each of the
capture modules. This structure is called CapStatus and
has the following bit fields:
Cap1OVF
Cap2OVF

In addition to opening the capture, Timer1 or Timer3
must also be opened with an OpenTimer (...) statement
before any of the captures will operate.

Return Value: None

File Name: cp1open.c
cp2open.c

Code Example: OpenCapture1(CAPTURE_INT_ON&C1_EVERY_4_RI
SE_EDGE);

ReadCapture1
ReadCapture2
Device: PIC18CXXX

Function: Reads the result of a capture event from the specified
input capture.

Include: capture.h

Prototype: unsigned int ReadCapture1 (void);
unsigned int ReadCapture2 (void);

Arguments: None

Remarks: This function reads the value of the respective input
capture SFRs.
Capture1: CA1L,CA1H
Capture2: CA2L,CA2H

Return Value: This function returns the result of the capture event. The
value is a 16-bit unsigned integer.

File Name: cp1read.c
cp2read.c

Code Example: unsigned int result;
result = ReadCapture1();

OpenCapture1
OpenCapture2 (Continued)
DS51224B-page 138  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

7.4.2 Example of Use
#include <p18C452.h>
#include <capture.h>
#include <timers.h>
#include <usart.h>
void main(void)
{
 unsigned int result;
 char str[7];
 // Configure Capture1
 OpenCapture1(C1_EVERY_4_RISE_EDGE&CAPTURE1_CAPTURE);
 // Configure Timer3
 OpenTimer3(TIMER_INT_OFF&T3_SOURCE_INT);
 // Configure USART
 OpenUSART(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(!PIR1bits.CA1IF); // Wait for event
 result = ReadCapture1(); // read result
 uitoa(result,str); // convert to string
 if(!CapStatus.Cap1OVF)
 {
 putsUSART(str); // write string
 CloseCapture1(); // to USART
 }
 CloseTimer3();
 CloseUSART();
 return;
}

 2000 Microchip Technology Inc. DS51224B-page 139

MPLAB®-CXX Reference Guide
7.5 I²C® Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.5.1 Individual Functions

AckI2C
Device: PIC18CXXX

Function: Generates I2C bus Acknowledge condition.

Include: i2c.h

Prototype: void AckI2C (void);

Arguments: None

Remarks: This function generates an I2C bus Acknowledge condi-
tion.

Return Value: None

File Name: acki2c.c

Code Example: AckI2C();

CloseI2C
Device: PIC18CXXX

Function: Disables the SSP module.

Include: i2c.h

Prototype: void CloseI2C (void);

Arguments: None

Remarks: Pin I/O returns under control of TRISC and LATC regis-
ter settings.

Return Value: None

File Name: closei2c.c

Code Example: CloseI2C();

DataRdyI2C
Device: PIC18CXXX

Function: Provides status back to user if the SSPBUF register
contains data.

Include: i2c.h

Prototype: unsigned char DataRdyI2C (void);

Arguments: None
DS51224B-page 140  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Remarks: Determines if there is a byte to be read from the SSP-
BUF register.

Return Value: This function returns 1 if there is data in the SSPBUF
register else returns 0 which indicates no data in SSP-
BUF register.

File Name: dtrdyi2c.c

Code Example: if (DataRdyI2C());

getcI2C
Function: This function operates identically to ReadI2C.

File Name: #define in i2c.h

getsI2C
Device: PIC18CXXX

Function: This function is used to read a predetermined data
string length from the I2C bus.

Include: i2c.h

Prototype: unsigned char getsI2C (unsigned char
*rdptr, unsigned char length);

Arguments: rdptr
Character type pointer to PICmicro RAM for storage of
data read from I2C device.
length
Number of bytes to read from I2C device.

Remarks: Master I2C mode: This routine reads a predefined data
string length from the I2C bus. Each byte is retrieved via
a call to the getcI2C function. The actual called function
body is termed ReadI2C. ReadI2C and getcI2C refer to
the same function via a #define statement in the
i2c.h file.

Return Value: Master I2C mode: This function returns 0 if all bytes
have been sent or -1 if a bus collision has occurred.

File Name: getsi2c.c

Code Example: unsigned char string[15];
unsigned char *ptrstring;
ptrstring = string;
getsI2C(ptrstring, 15);

DataRdyI2C
 2000 Microchip Technology Inc. DS51224B-page 141

MPLAB®-CXX Reference Guide

IdleI2C
Device: PIC18CXXX

Function: Generates wait condition until I2C bus is idle.

Include: i2c.h

Prototype: void IdleI2C (void);

Arguments: None

Remarks: This function checks the R/W bit of the SSPSTAT regis-
ter and the SEN, RSEN, PEN, RCEN and ACKEN bits
of the SSPCON2 register. When the state of any of these
bits is a logic 1 the function loops on itself. When all of
these bits are clear the function terminates and returns
to the calling function. The IdleI2C function is
required since the hardware I2C peripheral does not
allow for spooling of bus sequences. The I2C peripheral
must be in an idle state before an I2C operation can be
initiated or a write collision will be generated.

Return Value: None

File Name: idlei2c.c

Code Example: IdleI2C();

NotAckI2C
Device: PIC18CXXX

Function: Generates I2C bus Not Acknowledge condition.

Include: i2c.h

Prototype: void NotAckI2C (void);

Arguments: None

Remarks: This function generates an I2C bus Not Acknowledge
condition.

Return Value: None

File Name: noacki2c.c

Code Example: NotAckI2C();

OpenI2C
Device: PIC18CXXX

Function: Configures the SSP module.

Include: i2c.h

Prototype: void OpenI2C (unsigned char sync_mode,
unsigned char slew);
DS51224B-page 142  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Arguments: sync_mode
The value of function parameter sync_mode can be one
of the following values defined in i2c.h:
SLAVE_7 I2C Slave mode, 7-bit address
SLAVE_10 I2C Slave mode, 10-bit address
MASTER I2C Master mode

slew
The value of function parameter slew can be one of the
following values defined in i2c.h:
SLEW_OFF Slew rate disabled for 100kHz mode
SLEW_ON Slew rate enabled for 400kHz mode

Remarks: OpenI2C resets the SSP module to the POR state and
then configures the module for master/slave mode and
slew rate enable/disable.

Return Value: None

File Name: openi2c.c

Code Examples: OpenI2C(MASTER, SLEW_ON);

putcI2C
Function: This function operates identically to WriteI2C.

File Name: #define in i2c.h

putsI2C
Device: PIC18CXXX

Function: This function is used to write out a data string to the I2C
bus.

Include: i2c.h

Prototype: unsigned char putsI2C (unsigned char
*wrptr);

Arguments: wrptr
Character type pointer to data objects in PICmicro
RAM. The data objects are written to the I2C device.

OpenI2C (Continued)
 2000 Microchip Technology Inc. DS51224B-page 143

MPLAB®-CXX Reference Guide
Remarks: Master I2C mode: This routine writes a data string to
the I2C bus until a null character is reached. Each byte
is written via a call to the putcI2C function. The actual
called function body is termed WriteI2C. WriteI2C and
putcI2C refer to the same function via a #define state-
ment in the i2c.h file.
Slave I2C mode: This routine writes a string out to the
I2C bus until a null character is reached. Each byte is
placed directly in the SSPBUF register and the putcI2C
routine is not called.

Return Value: Master I2C Mode: This function returns -2 if the slave
I2C device responded with a Not Ack or -3 if a write col-
lision occurred. The function returns 0 if the null charac-
ter was reached in the data string.
Slave I2C mode: This function returns -2 if the master
I2C device responded with a Not Ack which terminated
the data transfer. The function returns 0 if the null char-
acter was reached in the data string

File Name: putsi2c.c

Code Example: unsigned char string[] = “data to send”;
unsigned char *ptrstring;
ptrstring = string;
putsI2C(ptrstring);

ReadI2C
Device: PIC18CXXX

Function: This function is used to read a single byte (one charac-
ter) from the I2C bus.

Include: i2c.h

Prototype: unsigned char ReadI2C (void);

Arguments: None

Remarks: This function reads in a single byte from the I2C bus.
This function performs the same function as getcI2C.

Return Value: The return value is the data byte read from the I2C bus.

File Name: readi2c.c

Code Example: unsigned char value;
value = ReadI2C();

putsI2C (Continued)
DS51224B-page 144  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

RestartI2C
Device: PIC18CXXX

Function: Generates I2C bus restart condition.

Include: i2c.h

Prototype: void RestartI2C (void);

Arguments: None

Remarks: This function generates an I2C bus restart condition.

Return Value: None

File Name: rstrti2c.c

Code Example: RestartI2C();

StartI2C
Device: PIC18CXXX

Function: Generates I2C bus start condition.

Include: i2c.h

Prototype: void StartI2C (void);

Arguments: None

Remarks: This function generates a I2C bus start condition.

Return Value: None

File Name: starti2c.c

Code Example: StartI2C();

StopI2C
Device: PIC18CXXX

Function: Generates I2C bus stop condition.

Include: i2c.h

Prototype: void StopI2C (void);

Arguments: None

Remarks: This function generates an I2C bus stop condition.

Return Value: None

File Name: stopi2c.c

Code Example: StopI2C();
 2000 Microchip Technology Inc. DS51224B-page 145

MPLAB®-CXX Reference Guide

WriteI2C
Device: PIC18CXXX

Function: This function is used to write out a single data byte (one
character) to the I2C bus device.

Include: i2c.h

Prototype: unsigned char WriteI2C (unsigned char
data_out);

Arguments: data_out
A single data byte to be written to the I2C bus device.

Remarks: This function writes out a single data byte to the I2C bus
device. This function performs the same function as
putcI2C.

Return Value: This function returns -1 if there was a write collision else
it returns a 0.

File Name: writei2c.c

Code Example: WriteI2C(‘a’);

Note: The routines to follow are specialized and specific to EE I2C mem-
ory devices such as, but not limited to, the Microchip 24LC01B.
Each of the routines depicted below utilize the previous basic ’C’
routines in a composite standalone function.

EEAckPolling
Device: PIC18CXXX

Function: This function is used to generate the acknowledge poll-
ing sequence for Microchip EE I2C memory devices.

Include: i2c.h

Prototype: unsigned char EEAckPolling (unsigned char
control);

Arguments: control
EEPROM control / bus device select address byte.

Remarks: This function is used to generate the acknowledge poll-
ing sequence for Microchip EE I2C memory devices.
This routine can be used for I2C EE memory device
which utilize acknowledge polling.

Return Value: The return value is -1 if there bus collision error, -3 if
there is a write collision error, or else return 0 for no
error.

File Name: i2ceeap.c

Code Example: temp = EEAckPolling(0xA0);
DS51224B-page 146  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

EEByteWrite
Device: PIC18CXXX

Function: This function is used to write a single byte to the I2C
bus.

Include: i2c.h

Prototype: unsigned char EEByteWrite (unsigned char
control, unsigned char address, unsigned
char data);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
data
Data to write to EEPROM address specified in function
parameter address.

Remarks: This function writes a single data byte to the I2C bus.
This routine can be used for any Microchip I2C EE
memory device which requires only 1 byte of address
information.

Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a NOT ACK error, -3 if there was a write
collision error, or else return 0 if there were no errors.

File Name: i2ceebw.c

Code Example: temp = EEByteWrite(0xA0, 0x30, 0xA5);

EECurrentAddRead
Device: PIC18CXXX

Function: This function is used to read a single byte from the I2C
bus.

Include: i2c.h

Prototype: unsigned int EECurrentAddRead (unsigned
char control);

Arguments: control
EEPROM control / bus device select address byte.

Remarks: This function reads in a single byte from the I2C bus.
The address location of the data to read is that of the
current pointer within the I2C EE device. The memory
device contains an address counter that maintains the
address of the last word accessed, incremented by one.
 2000 Microchip Technology Inc. DS51224B-page 147

MPLAB®-CXX Reference Guide
Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a NOT ACK error, -3 if there was a write
collision error, or else returns the contents of the SSP-
BUF register.
The error condition is found in the MSB of the return
value and the SSPBUF contents are returned in the LSB.

File Name: i2ceecar.c

Code Example: temp = EECurrentAddRead(0xA1);

EEPageWrite
Device: PIC18CXXX

Function: This function is used to write a string of data to the I2C
EE device.

Include: i2c.h

Prototype: unsigned char EEPageWrite (unsigned char
control, unsigned char address, unsigned
char *wrptr);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
wrptr
Pointer to character type data objects in PICmicro RAM.
The data objects pointed to by wrptr will be written to
the I2C bus.

Remarks: This function writes a null terminated string of data
objects to the I2C EE memory device.

Return Value: The return value is -1 if there was a bus collision error,
 -2 if there was a NOT ACK error, -3 if there was a write
collision error, or else returns 0 if there were no errors.

File Name: i2ceepw.c

Code Example: temp = EEPageWrite(0xA0, 0x70, wrptr);

EERandomRead
Device: PIC18CXXX

Function: This function is used to read a single byte from the I2C
bus.

Include: i2c.h

Prototype: unsigned int EERandomRead (unsigned char
control, unsigned char address);

EECurrentAddRead (Continued)
DS51224B-page 148  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.

Remarks: This function reads in a single byte from the I2C bus.
The routine can be used for Microchip I2C EE memory
devices which only require 1 byte of address informa-
tion.

Return Value: The return value is -1 if there was a bus collision error,
 -2 if there was a NOT ACK error, -3 if there was a write
collision error, or else returns the contents of the SSP-
BUF register.
The error condition is found in the MSB of the return
value and the SSPBUF contents are returned in the LSB.

File Name: i2ceerr.c

Code Example: temp = EERandomRead(0xA0,0x30);

EESequentialRead
Device: PIC18CXXX

Function: This function is used to read in a string of data from the
I2C bus.

Include: i2c.h

Prototype: unsigned char EESequentialRead (unsigned
char control, unsigned char address,
unsigned char *rdptr, unsigned char
length);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
rdptr
Character type pointer to PICmicro RAM area for place-
ment of data read from EEPROM device.
length
Number of bytes to read from EEPROM device.

Remarks: This function reads in a predefined string length of data
from the I2C bus. The routine can be used for Microchip
I2C EE memory devices which only require 1 byte of
address information. The length of the data string to
read in is passed as a function parameter.

Return Value: The return value is -1 if there was a bus collision error,
 -2 if there was a NOT ACK error, -3 if there was a write
collision error, or else returns 0 if there were no errors.

EERandomRead (Continued)
 2000 Microchip Technology Inc. DS51224B-page 149

MPLAB®-CXX Reference Guide
7.5.2 Example of Use
The following are simple code examples illustrating the SSP module config-
ured for I2C master communication. The routines illustrate I2C communica-
tions with a Microchip 24LC01B I2C EE Memory Device. In all the examples
provided no error checking utilizing the function return value is implemented.

The basic I2C routines for the hardware I2C module of the PIC18CXXX such
as StartI2C, StopI2C, AckI2C, NotAckI2C, RestartI2C, putcI2C, getcI2C,
putsI2C, getsI2C, etc., are utilized within the specialized EE I2C routines such
as EESequentialRead or EEPageWrite.

#include "p18cxx.h"
#include "i2c.h"
// FUNCTION Prototype
void main(void);
// POINTERS and ARRAYS
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,0};
//24LC01B page write
// unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,
// 11,12,13,14,15,16,0};
//24LC04B page write
unsigned char *wrptr = arraywr;
unsigned char arrayrd[20];
unsigned char *rdptr = arrayrd;
unsigned char temp;
unsigned int temp;

//***
void main(void)
{
 OpenI2C(MASTER, SLEW_ON); //initialize I2C module
 SSPADD = 9; //400Khz Baud clock(9) @16MHz
 //100khz Baud clock(39) @16MHz

 temp = 0;
 tempi = 0;
while(1)
 {
 temp = EEByteWrite(0xA0, 0x30, 0xA5);
 temp = EEAckPolling(0xA0);
 tempi= EECurrentAddRead(0xA1);
 temp = EEPageWrite(0xA0, 0x70, wrptr);
 temp = EEAckPolling(0xA0);

File Name: i2ceesr.c

Code Example: temp = EESequentialRead(0xA0, 0x70,
rdptr, 15);

EESequentialRead (Continued)
DS51224B-page 150  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

 temp = EESequentialRead(0xA0, 0x70, rdptr, 15);
 tempi= EERandomRead(0xA0,0x30);
 }
}

7.6 I/O Port Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.6.1 Individual Functions

ClosePORTB
Device: PIC18CXXX

Function: Disables the interrupts and internal pull-up resistors for
PortB.

Include: portb.h

Prototype: void ClosePORTB (void);

Arguments: None

Remarks: This function disables the PORTB interrupt on change
and the internal pull-up resistors.

Return Value: None

File Name: pbclose.c

Code Example: ClosePORTB();

CloseRB0INT
CloseRB1INT
CloseRB2INT
Device: PIC18CXXX

Function: Disables the interrupts and internal pull-up resistors for
PortB.

Include: portb.h

Prototype: void CloseRB0INT (void);
void CloseRB1INT (void);
void CloseRB2INT (void);

Arguments: None

Remarks: This function disables the PORTB interrupt on change by
clearing the RBIE bit in the PIE register. It also disables
the internal pull-up resistors by setting the NOT_RBPU
bit in the PORTA register.

Return Value: None
 2000 Microchip Technology Inc. DS51224B-page 151

MPLAB®-CXX Reference Guide

File Name: rb0close.c
rb1close.c
rb2close.c

Code Example: CloseRB0INT();

DisablePullups
Device: PIC18CXXX

Function: Disables the internal pull-up resistors on PORTB.

Include: portb.h

Prototype: void DisablePullups (void);

Arguments: None

Remarks: This function disables the internal pull-up resistors on
PORTB by setting the NOT_RBPU bit in the PORTA regis-
ter.

Return Value: None

File Name: pulldis.c

Code Example: DisablePullups();

EnablePullups
Device: PIC18CXXX

Function: Enables the internal pull-up resistors on PORTB.

Include: portb.h

Prototype: void EnablePullups (void);

Arguments: None

Remarks: This function enables the internal pull-up resistors on
PORTB by clearing the NOT_RBPU bit in the PORTA reg-
ister.

Return Value: None

File Name: pullen.c

Code Example: EnablePullups();

OpenPORTB
Device: PIC18CXXX

Function: Configures the interrupts and internal pull-up resistors
on PortB.

CloseRB0INT
CloseRB1INT
CloseRB2INT (Continued)
DS51224B-page 152  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Include: portb.h

Prototype: void OpenPORTB (unsigned char
config);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in portb.h):
PORTB_CHANGE_INT_ON Interrupt ON
PORTB_CHANGE_INT_OFF Interrupt OFF
PORTB_PULLUPS_ON pull-up resistors enabled
PORTB_PULLUPS_OFF pull-up resistors disabled

Remarks: This function configures the interrupts and internal pull-
up resistors on PORTB.

Return Value: None

File Name: pbopen.c

Code Example: OpenPORTB(PORTB_CHANGE_INT_ON);

OpenRB0INT
OpenRB1INT
OpenRB2INT
Device: PIC18CXXX

Function: Configures the interrupts and internal pull-up resistors
on PortB.

Include: portb.h

Prototype: void OpenRB0INT (unsigned char config);
void OpenRB1INT (unsigned char config);
void OpenRB2INT (unsigned char config);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in portb.h):
PORTB_CHANGE_INT_ON Interrupt ON
PORTB_CHANGE_INT_OFF Interrupt OFF
PORTB_PULLUPS_ON pull-up resistors enabled
PORTB_PULLUPS_OFF pull-up resistors disabled

Remarks: This function configures the interrupts and internal pull-
up resistors on PORTB.

Return Value: None

File Name: rb0open.c
rb1open.c
rb2open.c

Code Example: OpenPORTB(PORTB_CHANGE_INT_ON);

OpenPORTB (Continued)
 2000 Microchip Technology Inc. DS51224B-page 153

MPLAB®-CXX Reference Guide
7.6.2 Example of Use
No example available at time of printing.

7.7 Microwire® Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.7.1 Individual Functions

CloseMwire
Device: PIC18CXXX

Function: Disables the SSP module.

Include: mwire.h

Prototype: void CloseMwire (void);

Arguments: None

Remarks: Pin I/O returns under control TRISC and LATC register
settings.

Return Value: None

File Name: closmwir.c

Code Example: CloseMwire();

DataRdyMwire
Device: PIC18CXXX

Function: Provides status back to user if the Microwire device has
completed the internal write cycle.

Include: mwire.h

Prototype: unsigned char DataRdyMwire (void);

Arguments: None

Remarks: Determines if Microwire device is ready.

Return Value: This function returns 1 if the Microwire device is ready
else returns 0 which indicates that the internal write
cycle is not complete or there could be a bus error.

File Name: drdymwir.c

Code Example: while (!DataRdyMwire());

getcMwire
Function: This function operates identically to ReadMwire.

File Name: #define in mwire.h
DS51224B-page 154  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

getsMwire
Device: PIC18CXXX

Function: This routine reads a string from the Microwire device.

Include: mwire.h

Prototype: void getsMwire (unsigned char
*rdptr, unsigned char length);

Arguments: rdptr
Pointer to PICmicro RAM for placement of data read
from Microwire device.
length
Number of bytes to read from Microwire device.

Remarks: This function is used to read a predetermined length of
data from a Microwire device. User must first issue start
bit, opcode and address before reading a data string.

Return Value: None

File Name: getsmwir.c

Code Example: unsigned char arrayrd[20];
unsigned char *rdptr = arrayrd;
getsMwire(rdptr, 10);

OpenMwire
Device: PIC18CXXX

Function: Configures the SSP module.

Include: mwire.h

Prototype: void OpenMwire (unsigned char sync_mode);

Arguments: sync_mode
The value of the function parameter sync_mode can be
one of the following values defined in mwire.h:
FOSC_4 clock = Fosc/4
FOSC_16 clock = Fosc/16
FOSC_64 clock = Fosc/64
FOSC_TMR2 clock = TMR2 output/2

Remarks: OpenMwire resets the SSP module to the POR state
and then configures the module for Microwire communi-
cations.

Return Value: None

File Name: openmwir.c

Code Examples: OpenMwire(FOSC_16);
 2000 Microchip Technology Inc. DS51224B-page 155

MPLAB®-CXX Reference Guide
putcMwire
Function: This function operates identically to WriteMwire.

File Name: #define in mwire.h

ReadMwire
Device: PIC18CXXX

Function: This function is used to read a single byte (one charac-
ter) from a Microwire device.

Include: mwire.h

Prototype: unsigned char ReadMwire (unsigned char
high_byte, unsigned char low_byte);

Arguments: high_byte
First byte of 16-bit instruction word.
low_byte
Second byte of 16-bit instruction word.

Remarks: This function reads in a single byte from a Microwire
device. The start bit, opcode and address compose the
high and low bytes passed into this function.
This function operates identically to getcMwire.

Return Value: The return value is the data byte read from the Microw-
ire device.

File Name: readmwir.c

Code Example: ReadMwire(0x03, 0x00);

WriteMwire
Device: PIC18CXXX

Function: This function is used to write out a single data byte (one
character).

Include: mwire.h

Prototype: unsigned char WriteMwire (unsigned char
data_out);

Arguments: data_out
Single byte of data to write to Microwire device.

Remarks: This function writes out single data byte to a Microwire
device utilizing the SSP module.
This function operates identically to putcMwire.

Return Value: This function returns -1 if there was a write collision,
else it returns a 0.

File Name: writmwir.c

Code Example: WriteMwire(0x55);
DS51224B-page 156  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

7.7.2 Example of Use
The following are simple code examples illustrating the SSP module
communicating with a Microchip 93LC66 Microwire EE Memory Device. In all
the examples provided no error checking utilizing the value returned from a
function is implemented.

#include "p18cxxx.h"
#include "mwire.h"

// 93LC66 x 8
// FUNCTION Prototype
void main(void);
void ew_enable(void);
void erase_all(void);
void busy_poll(void);
void write_all(unsigned char data);
void byte_read(unsigned char address);
void read_mult(unsigned char address, unsigned char
 *rdptr, unsigned char length);
void write_byte(unsigned char address, unsigned char
data);
unsigned char arrayrd[20];
unsigned char *rdptr = arrayrd;
unsigned char var;

// DEFINE 93LC66 MACROS
#define READ 0x0C
#define WRITE 0x0A
#define ERASE 0x0E
#define EWEN 0x09
#define EWEN 0x80
#define ERAL 0x09
#define ERAL 0x00
#define WRAL 0x08
#define WRAL 0x80
#define EWDS 0x08
#define EWDS 0x00
#define W_CS LATCbits.LATC2
void main(void)
{
 TRISCbits.TRISC2 = 0;
 W_CS = 0; //ensure CS is negated
 OpenMwire(FOSC_16); //enable SSP perpiheral
 ew_enable(); //send erase/write enable
 write_byte(0x13, 0x34); //write byte (address,data)
 busy_poll();
 Nop();
 byte_read(0x13); //read single byte (address)
 read_mult(0x10, rdptr, 10); //read multiple bytes
 2000 Microchip Technology Inc. DS51224B-page 157

MPLAB®-CXX Reference Guide
 erase_all(); //erase entire array
 CloseMwire(); //disable SSP peripheral
}

void busy_poll(void)
{
 W_CS = 1;
 do
 {
 var = DataRdyMwire(); //test for busy/ready
 }while(var != 0);
 W_CS = 0;
}
void write_byte(unsigned char address, unsigned char
data)
{
 W_CS = 1;
 putcMwire(WRITE); //write command
 putcMwire(address); //address
 putcMwire(data); //write single byte
 W_CS = 0;
}

void byte_read(unsigned char address)
{
 W_CS = 1;
 getcMwire(READ,address); //read one byte
 W_CS = 0;
}

void read_mult(unsigned char address, unsigned char
 *rdptr, unsigned char length)
{
 W_CS = 1;
 putcMwire(READ); //read command
 putcMwire(address); //address (A7 - A0)
 getsMwire(rdptr, length); //read multiple bytes
 W_CS = 0;
}

void ew_enable(void)
{
 W_CS = 1; //assert chip select
 putcMwire(EWEN1); //enable write command byte 1
 putcMwire(EWEN2); //enable write command byte 2
 W_CS = 0; //negate chip select
}

void erase_all(void)
DS51224B-page 158  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

{
 W_CS = 1;
 putcMwire(ERAL1); //erase all command byte 1
 putcMwire(ERAL2); //erase all command byte 2
 W_CS = 0;
}

7.8 Pulse Width Modulation Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.8.1 Individual Functions

ClosePWM1
ClosePWM2
Device: PIC18CXXX

Function: This function disables the specified PWM channel.

Include: pwm.h

Prototype: void ClosePWM1 (void);
void ClosePWM2 (void);

Arguments: None

Remarks: This function disables the specified PWM channel.

Return Value: None

File Name: pw1close.c
pw2close.c

Code Example: ClosePWM2();

OpenPWM1
OpenPWM2
Device: PIC18CXXX

Function: Configures the specified PWM channel.

Include: pwm.h

Prototype: void OpenPWM1 (char period);
void OpenPWM2 (char period);
 2000 Microchip Technology Inc. DS51224B-page 159

MPLAB®-CXX Reference Guide
Arguments: period
The value of period can be any value from 0x00 to 0xff.
This value determines the PWM frequency by using the
following formula:
Period1 = [(PR1)+1] x 4 x Tosc
Period2 = [(PR1)+1] x 4 x Tosc

= [(PR2)+1] x 4 x Tosc
Period3 = [(PR1)+1] x 4 x Tosc

= [(PR2)+1] x 4 x Tosc

Remarks: This function configures the specified PWM channel for
period and for time base. PWM uses only Timer1.

In addition to opening the PWM, Timer1 must also be
opened with an OpenTimer1(...) statement before any
of the PWM will operate.

Return Value: None

File Name: pw1open.c
pw2open.c

Code Example: OpenPWM1(0xff);

SetDCPWM1
SetDCPWM2
Device: PIC18CXXX

Function: Writes a new dutycycle value to the specified PWM
channel dutycycle registers.

Include: pwm.h

Prototype: void SetDCPWM1 (unsigned int dutycycle);
void SetDCPWM2 (unsigned int dutycycle);

Arguments: dutycycle
The value of dutycycle can be any 10-bit number. Only
the lower 10-bits of dutycycle are written into the duty-
cycle registers. The dutycycle, or more specifically the
high time of the PWM waveform, can be calculated from
the following formula:
PWM x Dutycycle = (DCx<9:0>) x Tosc
where DCx<9:0> is the 10-bit value from the
PWxDCH:PWxDCL registers.

Remarks: This function writes the new value for dutycycle to the
specified PWM channel dutycycle registers.

The maximum resolution of the PWM waveform can be
calculated from the period using the following formula:
Resolution (bits) = log(Fosc/Fpwm) / log(2)

OpenPWM1
OpenPWM2 (Continued)
DS51224B-page 160  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

7.8.2 Example of Use
#include <p18C452.h>
#include <pwm.h>
#include <timers.h>
void main(void)
{
 int i;
 //set duty cycle
 SetDCPWM1(0);
 //open PW2
 OpenPWM1(T1_SOURCE,0xff);
 //open timer
 OpenTimer1(TIMER_INT_OFF&T1_SOURCE_INT&T1_T2_8BIT);
 for(i=0;i<1024;i++)
 {
 while(!PIR1bits.TMR1IF);
 PIR1bits.TMR1IF = 0;
 SetDCPWM1(i); //slowly increment duty cycle
 }
 ClosePWM1(); //close modules
 CloseTimer1();
 return;

}

7.9 Reset Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.9.1 Individual Functions

Return Value: None

File Name: pw1setdc.c
pw2setdc.c

Code Example: SetDCPWM1(0);

SetDCPWM1
SetDCPWM2 (Continued)

isBOR
Device: PIC18CXXX

Function: Detects a reset condition due to the Brown-out Reset
circuit.

Include: reset.h
 2000 Microchip Technology Inc. DS51224B-page 161

MPLAB®-CXX Reference Guide
Prototype: char isBOR (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset
due to the Brown-out Reset circuit. This condition is
indicated by the following status bits:
POR = 1
BOR = 0
TO = don’t care
PD = don’t care
Include the statement #define BOR_ENABLED in the
header file reset.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2
of this manual for information on compilers. Refer to the
MPASM User’s Guide with MPLINK and MPLIB
(DS33014F) for information on linking.

Return Value: This function returns 1 if the reset was due to the
Brown- out Reset circuit, otherwise 0 is returned.

File Name: isbor.c

Code Example: if(isBOR());
 then ...

isLVD
Device: PIC18CXXX

Function: Detects if low voltage detect condition occurred.

Include: reset.h

Prototype: char isLVD (void);

Arguments: None

Remarks: This function detects if the voltage of the device has
become lower than the value specified in the LVDCON
register (LVDL3:LVDL0 bits.)

Return Value: This function returns 1 if the reset was due to LVD dur-
ing normal operation, otherwise 0 is returned.

File Name: islvd.c

Code Example: if(isLVD());
 then ...

isMCLR
Device: PIC18CXXX

Function: Detects if a MCLR reset during normal operation
occurred.

isBOR (Continued)
DS51224B-page 162  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Include: reset.h

Prototype: char isMCLR (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset via
the MCLR pin while in normal operation. This situation
is indicated by the following status bits:
POR = 1
BOR = 1 if Brown-out is enabled
TO = 1 if WDT is enabled
PD = 1

Return Value: This function returns 1 if the reset was due to MCLR
during normal operation, otherwise 0 is returned.

File Name: ismclr.c

Code Example: if(isMCLR());
 then ...

isPOR
Device: PIC18CXXX

Function: Detects a Power-on Reset condition.

Include: reset.h

Prototype: char isPOR (void);

Arguments: None

Remarks: This function detects if the microcontroller just left a
Power-on Reset. This condition is indicated by the fol-
lowing status bits:
TO = 1
PD = 1
This condition also for MCLR reset during normal
operation and CLRWDT instruction executed

PIC18CXXX
POR = 0
BOR = 0
TO = 1
PD = 1

After isPOR is called, statusreset should be called
to set the POR and BOR bits.

Return Value: This function returns 1 if the device just left a Power-on
Reset, otherwise 0 is returned.

File Name: ispor.c

Code Example: if(isPOR());
 then ...

isMCLR (Continued)
 2000 Microchip Technology Inc. DS51224B-page 163

MPLAB®-CXX Reference Guide
isWDTTO
Device: PIC18CXXX

Function: Detects a reset condition due to the WDT during normal
operation.

Include: reset.h

Prototype: char isWDTTO (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset
due to the WDT during normal operation. This condition
is indicated by the following status bits:
TO = 0
PD = 1

PIC18CXXX
POR = 1
BOR = 1
TO = 0
PD = 1

Include the statement #define WDT_ENABLED in the
header file reset.h. After the definitions have been
made, compile the reset.h file.

Return Value: This function returns 1 if the reset was due to the WDT
during normal operation, otherwise 0 is returned.

File Name: iswdtto.c

Code Example: while(!isWDTTO());

isWDTWU
Device: PIC18CXXX

Function: Detects when the WDT wakes up the device from
SLEEP.

Include: reset.h

Prototype: char isWDTWU (void);

Arguments: None

Remarks: This function detects if the microcontroller was brought
out of SLEEP by the WDT. This condition is indicated by
the following status bits:

TO = 0
PD = 0

PIC18CXXX
POR = 1
BOR = 1
TO = 0
PD = 0
DS51224B-page 164  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Include the statement #define WDT_ENABLED in the
header file reset.h. After the definitions have been
made, compile the reset.h file.

Return Value: This function returns 1 if device was brought out of
SLEEP by the WDT, otherwise 0 is returned.

File Name: iswdtwu.c

Code Example: if(isWDTWU());
 then ...

isWU
Device: PIC18CXXX

Function: Detects if the microcontroller was just waken up from
SLEEP via the MCLR pin or interrupt.

Include: reset.h

Prototype: char isWU (void);

Arguments: None

Remarks: This function detects if the microcontroller was brought
out of SLEEP by the MCLR pin or an interrupt. This con-
dition is indicated by the following status bits:

TO = 1
PD = 0

PIC18CXXX
POR = 1
BOR = 1
TO = 1
PD = 0

Return Value: This function returns 1 if the device was brought out of
SLEEP by the MCLR pin or an interrupt, otherwise 0 is
returned.

File Name: iswu.c

Code Example: if(isWU());
 then ...

StatusReset
Device: PIC18CXXX

Function: Sets the POR and BOR bits in the CPUSTA register.

Include: reset.h

Prototype: void StatusReset (void);

Arguments: None

isWDTWU (Continued)
 2000 Microchip Technology Inc. DS51224B-page 165

MPLAB®-CXX Reference Guide
7.9.2 Example of Use
There are no interdependencies between reset functions. See individual
function code examples.

7.10 SPI™ Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.10.1 Individual Functions

Remarks: This function sets the POR and BOR bits in the CPUSTA
register. These bits must be set in software after a
Power-on Reset has occurred.

Return Value: None

File Name: statrst.c

Code Example: StatusReset();

StatusReset (Continued)

CloseSPI
Device: PIC18CXXX

Function: Disables the SSP module.

Include: spi.h

Prototype: void CloseSPI (void);

Arguments: None

Remarks: This function disables the SSP module. Pin I/O returns
under the control of the TRISC and LATC Registers.

Return Value: None

File Name: closespi.c

Code Example: CloseSPI();

DataRdySPI
Device: PIC18CXXX

Function: Determines if the SSPBUF contains data.

Include: spi.h

Prototype: unsigned char DataRdySPI (void);

Arguments: None

Remarks: This function determines if there is a byte to be read
from the SSPBUF register.
DS51224B-page 166  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Return Value: This function returns 1 if there is data in the SSPBUF
register else returns a 0.

File Name: dtrdyspi.c

Code Example: while (!DataRdySPI());

getcSPI
Function: This function operates identically to ReadSPI.

File Name: #define in spi.h

getsSPI
Device: PIC18CXXX

Function: Reads in data string from the SPI bus.

Include: spi.h

Prototype: void getsSPI (unsigned char *rdptr,
unsigned char length);

Arguments: rdptr
Character type pointer to PICmicro RAM or placement
of data read from SPI device.
length
Number of bytes to read from SPI device.

Remarks: This function reads in a predetermined data string
length from the SPI bus. The length of the data string to
read in is passed as a function parameter. Each byte is
retrieved via a call to the getcSPI function. The actual
called function body is termed ReadSPI. ReadSPI and
getcSPI refer to the same function via a #define
statement in the spi.h file.

Return Value: None

File Name: getsspi.c

Code Example: unsigned char *wrptr;
getsSPI(wrptr, 10);

OpenSPI
Device: PIC18CXXX

Function: Initializes the SSP module.

Include: spi.h

DataRdySPI (Continued)
 2000 Microchip Technology Inc. DS51224B-page 167

MPLAB®-CXX Reference Guide
Prototype: void OpenSPI (unsigned char sync_mode,
unsigned char bus_mode, unsigned char
smp_phase);

Arguments: The value of sync_mode, bus_mode and smp_phase
parameters can be one of the following values defined
in spi.h:
sync_mode
FOSC_4 SPI Master mode, clock = Fosc/4
FOSC_16 SPI Master mode, clock = Fosc/16
FOSC_64 SPI Master mode, clock = Fosc/64
FOSC_TMR2SPI Master mode, clock = TMR2 output/2
SLV_SSON SPI Slave mode, /SS pin control enabled
SLV_SSOFF SPI Slave mode, /SS pin control disabled

bus_mode
MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

smp_phase
SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out

Remarks: This function setups the SSP module for use with a SPI
bus device.

Return Value: None

File Name: openspi.c

Code Example: OpenSPI(FOSC_16, MODE_00, SMPEND);

putcSPI
Function: This function operates identically to WriteSPI.

File Name: #define in spi.h

putsSPI
Device: PIC18CXXX

Function: Writes data string out to the SPI bus.

Include: spi.h

Prototype: void putsSPI (unsigned char *wrptr);

Arguments: wrptr
Pointer to character type data objects in PICmicro RAM.
Those objects pointed to by wrptr will be written to the
SPI bus.

OpenSPI (Continued)
DS51224B-page 168  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Remarks: This function writes out a data string to the SPI bus
device. The routine is terminated by reading a null char-
acter in the data string.

Return Value: None

File Name: putsspi.c

Code Example: unsigned char *wrptr = “Hello!”;
putsSPI(wrptr);

ReadSPI
Device: PIC18CXXX

Function: Reads a single byte (one character) from the SSPBUF
register.

Include: spi.h

Prototype: unsigned char ReadSPI (void);

Arguments: None

Remarks: This function initiates a SPI bus cycle for the acquisition
of a byte of data.
This function operates identically to getcSPI.

Return Value: This function returns a byte of data read during a SPI
read cycle.

File Name: readspi.c

Code Example: char x;
x = ReadSPI();

WriteSPI
Device: PIC18CXXX

Function: Writes a single byte of data (one character) out to the
SPI bus.

Include: spi.h

Prototype: unsigned char WriteSPI (unsigned char
data_out);

Arguments: data_out
Single byte to write to SPI device on bus.

Remarks: This function writes a single data byte out and then
checks for a write collision.
This function operates identically to putcSPI.

Return Value: This function returns -1 if a write collision occurred else
a 0 if no write collision.

File Name: writespi.c

Code Example: WriteSPI(‘a’);

putsSPI (Continued)
 2000 Microchip Technology Inc. DS51224B-page 169

MPLAB®-CXX Reference Guide
7.10.2 Example of Use
The following are simple code examples illustrating the SSP module
communicating with a Microchip 24C080 SPI EE Memory Device. In all the
examples provided no error checking utilizing the value returned from a
function is implemented.

#include <p18cxxx.h>
#include <spi.h>
// FUNCTION Prototype
void main(void);
void set_wren(void);
void busy_polling(void);
unsigned char status_read(void);
void status_write(unsigned char data);
void byte_write(unsigned char addhigh, unsigned char
 addlow, unsigned char data);
void page_write(unsigned char addhigh, unsigned char
 addlow, unsigned char *wrptr);
void array_read(unsigned char addhigh, unsigned char
 addlow, unsigned char *rdptr,
 unsigned char count);
unsigned char byte_read(unsigned char addhigh,
 unsigned char addlow);
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,11,
 12,13,14,15,16,0};
//24C040/080/160 page write size
unsigned char *wrptr = arraywr;
unsigned char arrayrd[16];
unsigned char *rdptr = arrayrd;
unsigned char var;
#define SPI_CS LATCbits.LATC2
//**
void main(void)
{
 TRISCbits.TRISC2 = 0;
 SPI_CS = 1; // ensure SPI memory device
 // Chip Select is reset
 OpenSPI(FOSC_16, MODE_00, SMPEND);
 set_wren();
 status_write(0);

 busy_polling();
 set_wren();
 byte_write(0x00, 0x61, ’E’);

 busy_polling();
 var = byte_read(0x00, 0x61);

 set_wren();
DS51224B-page 170  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

 page_write(0x00, 0x30, wrptr);
 busy_polling();

 array_read(0x00, 0x30, rdptr, 16);
 var = status_read();

 CloseSPI();
 while(1);
}

void set_wren(void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WREN); //send write enable command
 SPI_CS = 1; //negate chip select
}

void page_write (unsigned char addhigh, unsigned char
 addlow, unsigned char *wrptr)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 putsSPI(wrptr); //send data byte
 SPI_CS = 1; //negate chip select
}

void array_read (unsigned char addhigh, unsigned char
 addlow, unsigned char *rdptr,
 unsigned char count)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 getsSPI(rdptr, count); //read multiple bytes
 SPI_CS = 1;
}

void byte_write (unsigned char addhigh, unsigned char
 addlow, unsigned char data)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = putcSPI(data); //send data byte
 SPI_CS = 1; //negate chip select
 2000 Microchip Technology Inc. DS51224B-page 171

MPLAB®-CXX Reference Guide
}

unsigned char byte_read (unsigned char addhigh,
 unsigned char addlow)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = getcSPI(); //read single byte
 SPI_CS = 1;
 return (var);
}

unsigned char status_read (void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(RDSR); //send read status command
 var = getcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 return (var);
}

void status_write (unsigned char data)
{
 SPI_CS = 0;
 var = putcSPI(WRSR); //write status command
 var = putcSPI(data); //status byte to write
 SPI_CS = 1; //negate chip select
}

void busy_polling (void)
{
 do
 {
 SPI_CS = 0; //assert chip select
 var = putcSPI(RDSR); //send read status command
 var = fetcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 } while (var & 0x01); //stay in loop until notbusy
}

DS51224B-page 172  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

7.11 Timer Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.11.1 Individual Functions

CloseTimer0
CloseTimer1
CloseTimer2
CloseTimer3
Device: PIC18CXXX

Function: This function disables the specified timer.

Include: timers.h

Prototype: void CloseTimer0 (void);
void CloseTimer1 (void);
void CloseTimer2 (void);
void CloseTimer3 (void);

Arguments: None

Remarks: This function simply disables the interrupt and the spec-
ified timer.

Return Value: None

File Name: t0close.c
t1close.c
t2close.c
t3close.c

Code Example: CloseTimer0();

OpenTimer0
OpenTimer1
OpenTimer2
OpenTimer3
Device: PIC18CXXX

Function: Configures the specified timer.

Include: timers.h

Prototype: void OpenTimer0 (unsigned char config);
void OpenTimer1 (unsigned char config);
void OpenTimer2 (unsigned char config);
void OpenTimer3 (unsigned char config);
 2000 Microchip Technology Inc. DS51224B-page 173

MPLAB®-CXX Reference Guide
Arguments: config
The value of config can be a combination of the follow-
ing values (defined in timers.h):

All OpenTimer functions
TIMER_INT_ON Interrupts ON
TIMER_INT_OFFInterrupts OFF

OpenTimer0
T0_8BIT 8-bit mode
T0_16BIT 16-bit mode
T0_EDGE_FALL External clock on falling edge
T0_EDGE_RISE External clock on rising edge
T0_SOURCE_EXT External clock source (I/O pin)
T0_SOURCE_INT Internal clock source (Tosc)
T0_PS_1_1 1:1 prescale
T0_PS_1_2 1:2 prescale
T0_PS_1_4 1:4 prescale
T0_PS_1_8 1:8 prescale
T0_PS_1_16 1:16 prescale
T0_PS_1_32 1:32 prescale
T0_PS_1_64 1:64 prescale
T0_PS_1_128 1:128 prescale
T0_PS_1_256 1:256 prescale

OpenTimer1
T1_8BIT_RW 8-bit mode
T1_16BIT_RW 16-bit mode
T1_SOURCE_EXT External clock source (I/O pin)
T1_SOURCE_INT Internal clock source (Tosc)
PS_1_1 1:1 prescale
PS_1_2 1:2 prescale
PS_1_4 1:4 prescale
PS_1_8 1:8 prescale
T1_OSC1EN_ON Enable Timer1 oscillator
T1_OSC1EN_OFF Disable Timer1 oscillator
T1_SYNC_EXT_ON Sync external clock input
T1_SYNC_EXT_OFF Don’t sync external clock input
T1_SOURCE_CCP Timer1 source for both CCP’s
T1_CCP1_T3_CCP2 Timer1 source for CCP1

OpenTimer0
OpenTimer1
OpenTimer2
OpenTimer3 (Continued)
DS51224B-page 174  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

OpenTimer2
T2_PS_1_1 1:1 prescale
T2_PS_1_4 1:4 prescale
T2_PS_1_16 1:16 prescale
T2_POST_1_1 1:1 postscale
T2_POST_1_2 1:2 postscale
 : :
T2_POST_1_15 1:15 postscale
T2_POST_1_16 1:16 postscale

OpenTimer3
T3_SOURCE_EXT External clock source (I/O pin)
T3_SOURCE_INT Internal clock source (Tosc)
T3_8BIT_RW 8-bit mode
T3_16BIT_RW 16-bit mode
T3_PS_1_1 1:1 prescale
T3_PS_1_2 1:2 prescale
T3_PS_1_4 1:4 prescale
T3_PS_1_8 1:8 prescale
T3_OSC1EN_ON Enable Timer1 oscillator
T3_OSC1EN_OFF Disable Timer1 oscillator
T3_SYNC_EXT_ON Sync external clock input
T3_SYNC_EXT_OFF Don’t sync external clock input
T3_SOURCE_CCP Timer3 source for both CCP’s
T1_CCP1_T3_CCP2 Timer3 source for CCP2

Remarks: This function configures the specified timer for inter-
rupts, internal/external clock source, prescaler, etc.
 Timer0 -> 8 or 16-bit
 Timer1 -> 16-bit
 Timer2 -> 8-bit
 Timer3 -> 16-bit

Return Value: None

File Name: t0open.c
t1open.c
t2open.c
t3open.c

Code Example: OpenTimer0(TIMER_INT_OFF&T0_SOURCE_INT&
T0_PS_1_32);

OpenTimer0
OpenTimer1
OpenTimer2
OpenTimer3 (Continued)
 2000 Microchip Technology Inc. DS51224B-page 175

MPLAB®-CXX Reference Guide
ReadTimer0
ReadTimer1
ReadTimer2
ReadTimer3
Device: PIC18CXXX

Function: Reads the contents of the specified timer register(s).

Include: timers.h

Prototype: unsigned int ReadTimer0 (void);
unsigned int ReadTimer1 (void);
unsigned char ReadTimer2 (void);
unsigned int ReadTimer3 (void);

Arguments: None

Remarks: This function reads the value of the respective timer
register(s).
Timer0: TMR0L,TMR0H
Timer1: TMR1L,TMR1H
Timer2: TMR2
Timer3: TMR3L,TMR3H

Return Value: These functions returns the value of the timer regis-
ter(s) which may be 8-bits or 16-bits.
Timer0: int (16-bits)
Timer1: int (16-bits)
Timer2: char (8-bits)
Timer3: int (16-bits)

File Name: t0read.c
t1read.c
t2read.c
t3read.c

Code Example: unsigned int result;
result = ReadTimer0();

WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3
Device: PIC18CXXX

Function: Reads the contents of the specified timer register(s).

Include: timers.h

Prototype: void WriteTimer0 (unsigned int timer);
void WriteTimer1 (unsigned int timer);
void WriteTimer2 (unsigned char timer);
void WriteTimer3 (unsigned int timer);
DS51224B-page 176  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

7.11.2 Example of Use
#include <p18C452.h>
#include <timers.h>
#include <usart.h>
void main (void)
{
 int result;
 char str[7];
 // configure timer0
 OpenTimer0(TIMER_INT_OFF&T0_SOURCE_NT&T0_PS_1_32);
 // configure USART
 OpenUSART(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(1)
 {
 while(!PORTBbits.RB3); //wait for RB3 high
 result = ReadTimer0(); //read timer
 if(result>0xc000)
 break;
 WriteTimer0(0); //write new value

Arguments: timer
This function writes the value timer to the respective
timer register(s).
Timer0: TMR0L,TMR0H
Timer1: TMR1L,TMR1H
Timer2: TMR2
Timer3: TMR3L,TMR3H

Remarks: These functions write a value to the timer register(s)
which may be 8-bits or 16-bits.
Timer0: int (16-bits)
Timer1: int (16-bits)
Timer2: char (8-bits)
Timer3: int (16-bits)

Return Value: None

File Name: t0write.c
t1write.c
t2write.c
t3write.c

Code Example: WriteTimer0(0);

WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3 (Continued)
 2000 Microchip Technology Inc. DS51224B-page 177

MPLAB®-CXX Reference Guide
 uitoa(result,str); //convert to string
 putsUSART(str); //print string
 }
 CloseTimer0(); //close modules
 CloseUSART();
 return;
}

7.12 USART Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

7.12.1 Individual Functions

BusyUSART
Device: PIC18CXXX

Function: Returns the status of the TRMT flag bit in the TXSTA?
register.

Include: usart.h

Prototype: char BusyUSART (void);

Arguments: None

Remarks: This function returns the status of the TRMT flag bit in
the TXSTA? register.

Return Value: If the USART transmitter is busy, a value of 1 is
returned. If the USART receiver is idle, then a value of 0
is returned.

File Name: ubusy.c

Code Example: while (BusyUSART());

CloseUSART
Device: PIC18CXXX

Function: Disables the specified USART.

Include: usart.h

Prototype: void CloseUSART (void);

Arguments: None

Remarks: This function disables the specified USARTs interrupts,
transmitter, and receiver.

Return Value: None

File Name: uclose.c

Code Example: CloseUSART();
DS51224B-page 178  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

DataRdyUSART
Device: PIC18CXXX

Function: Returns the status of the RCIF flag bit in the PIR regis-
ter.

Include: usart.h

Prototype: char DataRdyUSART (void);

Arguments: None

Remarks: This function returns the status of the RCIF flag bit in
the PIR register.

Return Value: If data is available, a value of 1 is returned. If data is not
available, then a value of 0 is returned.

File Name: udrdy.c

Code Example: while (!DataRdyUSART());

getcUSART
Function: This function operates identically to ReadUSART.

File Name: #define in usart.h

getsUSART
Device: PIC18CXXX

Function: Reads a string of characters until the specified number
of characters have been read.

Include: usart.h

Prototype: void getsUSART (char *buffer, unsigned
char len);

Arguments: buffer
The value of buffer is a pointer to the string where
incoming characters are to be stored. The length of this
string should be at least len + 1.
len
The value of len is limited to the available amount of
RAM locations remaining in any one bank - 1. There
must be one extra location to store the null character.

Remarks: This function waits for and reads len number of charac-
ters out of the specified USART. There is no timeout
when waiting for characters to arrive. After len charac-
ters have been written to the string, a null character is
appended to the end of the string.

Return Value: None

File Name: ugets.c
 2000 Microchip Technology Inc. DS51224B-page 179

MPLAB®-CXX Reference Guide

Code Example: char x[10];
getsUSART(x,5);

OpenUSART
Device: PIC18CXXX

Function: Configures the specified USART module.

Include: usart.h

Prototype: void OpenUSART (unsigned char config,
char spbrg);

Arguments: config
The value of config can be a combination of the follow-
ing values (defined in usart.h):
USART_TX_INT_ON Transmit interrupt ON
USART_TX_INT_OFF Transmit interrupt OFF
USART_RX_INT_ON Receive interrupt ON
USART_RX_INT_OFF Receive interrupt OFF

USART_ASYNCH_MODE Asynchronous Mode
USART_SYNCH_MODE Synchronous Mode

USART_EIGHT_BIT 8-bit transmit/receive
USART_NINE_BIT 9-bit transmit/receive

USART_SYNC_SLAVE Synchronous slave mode
USART_SYNC_MASTER Synchronous master mode

USART_SINGLE_RX Single reception
USART_CONT_RX Continuous reception

USART_BRGH_HIGH High baud rate
USART_BRGH_LOW Low baud rate

spbrg
The value of spbrg determines the baud rate of the
USART. The formulas for baud rate are:
asynchronous mode: FOSC/(64 (spbrg + 1))
synchronous mode: FOSC/(4 (spbrg + 1))

Remarks: This function configures the USART module for inter-
rupts, baud rate, sync or async operation, 8- or 9-bit
mode, master or slave mode, and single or continuous
reception.

Return Value: None

File Name: uopen.c

Code Example: OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_
OFF&USART_ASYNCH_MODE&USART_EIGHT_BIT&USA
RT_CONT_RX&USART_BRGH_HIGH, 25);

getsUSART (Continued)
DS51224B-page 180  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

putcUSART
Function: This function operates identically to WriteUSART.

File Name: #define in usart.h

putsUSART
putrsUSART
Device: PIC18CXXX

Function: Writes a string of characters to the USART including the
null character.

Include: usart.h

Prototype: void putsUSART (char *data);
void putrsUSART (const rom char *data);

Arguments: data
The value of data is a pointer to a string in contiguous
locations in RAM or ROM.

Remarks: This function writes a string of data to the USART
including the null character.

Return Value: None

File Name: uputs.c
uputrs.c

Code Example: char mybuff [20];
putsUSART(mybuff);

ReadUSART
Device: PIC18CXXX

Function: Reads a byte (one character) out of the USART receive
buffer, including the 9th bit if enabled.

Include: usart.h

Prototype: char ReadUSART (void);

Arguments: None
 2000 Microchip Technology Inc. DS51224B-page 181

MPLAB®-CXX Reference Guide
Remarks: This function reads a byte out of the USART receive
buffer. The 9th bit is recorded as well as the status bits.
The status bits and the 9th data bits are saved in a
union named USART_Status with the following decla-
ration:
union USART
{
 unsigned char val;
 struct
 {
 unsigned RX_NINE:1;
 unsigned TX_NINE:1;
 unsigned FRAME_ERROR:1;
 unsigned OVERRUN_ERROR:1;
 unsigned fill:4;
 };
};
The 9th bit is recorded only if 9-bit mode is enabled.
The status bits are always recorded.
This function operates identically to getcUSART.

Return Value: This function returns the next character in the USART
receive buffer.

File Name: uread.c

Code Example: char x;
x = ReadUSART();

WriteUSART
Device: PIC18CXXX

Function: Writes a byte (one character) to the USART transmit
buffer, including the 9th bit if enabled.

Include: usart.h

Prototype: void WriteUSART1 (char data);

Arguments: data
The value of data can be any number from 0x00 to 0xff.

ReadUSART (Continued)
DS51224B-page 182  2000 Microchip Technology Inc.

Hardware Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

7.12.2 Example of Use
#include <p18C452.h>
#include <usart.h>
void main(void)
{
 // configure USART
 OpenUSART(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX&USART_BRGH_HIGH, 25);
 while(1)
 {
 while(!PORTAbits.RA0)//wait for RA0 high
 WriteUSART(PORTD);//write value of PORTD
 if(PORTD == 0x80)
 break;
 }
 CloseUSART();
 return;
}

Remarks: This function writes a byte to the USART transmit buffer.
The 9th bit is written as well. The 9th data bits are saved
in a union named USART_Status with the following
declaration:
union USART
{
 unsigned char val;
 struct
 {
 unsigned RX_NINE:1;
 unsigned TX_NINE:1;
 unsigned FRAME_ERROR:1;
 unsigned OVERRUN_ERROR:1;
 unsigned fill:4;
 };
};
The 9th bit is used only if 9-bit mode is enabled.
This function operates identically to putcUSART.

Return Value: None

File Name: uwrite.c

Code Example: char x;
WriteUSART(x);

WriteUSART (Continued)
 2000 Microchip Technology Inc. DS51224B-page 183

MPLAB®-CXX Reference Guide
NOTES:
DS51224B-page 184  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 8. Software Peripheral Library
M
P

L
A

B
-C

18
L

ib
raries

Part
2

8.1 Introduction
This chapter documents software peripheral library functions. The source
code for all of these functions is included with MPLAB-C18 in the
c:\mcc\src\pmc directory, where c:\mcc is the compiler install directory.

See the MPASM User’s Guide with MPLINK and MPLIB for more information
about building libraries.

8.2 Highlights
This chapter is organized as follows:

• External LCD Functions

• Software I2C Functions

• Software SPI Functions

• Software UART Functions
 2000 Microchip Technology Inc. DS51224B-page 185

MPLAB®-CXX Reference Guide
8.3 External LCD Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

8.3.1 Individual Functions

BusyXLCD
Device: PIC18CXXX

Function: Returns the status of the busy flag of the Hitachi
HD44780 LCD controller.

Include: xlcd.h

Prototype: unsigned char BusyXLCD (void);

Arguments: None

Remarks: This function returns the status of the busy flag of the
Hitachi HD44780 LCD controller.

Return Value: This function returns 0 if the LCD controller is not busy;
otherwise 1 is returned.

File Name: busyxlcd.c

Code Example: while (BusyXLCD());

OpenXLCD
Device: PIC18CXXX

Function: Configures the I/O pins and initializes the Hitachi
HD44780 LCD controller.

Include: xlcd.h

Prototype: void OpenXLCD (unsigned char lcdtype);

Arguments: lcdtype
The value of lcdtype can be one of the following values
(defined in xlcd.h):
Function Set defines
FOUR_BIT 4-bit data interface mode
EIGHT_BIT 8-bit data interface mode
LINE_5X7 5x7 characters, single line display
LINE_5X10 5x10 characters display
LINES_5X7 5x7 characters, multiple line display

Remarks: This function configures the I/O pins used to control the
Hitachi HD44780 LCD controller. It also initializes this
controller.The I/O pin definitions that must be made to
ensure that the external LCD operates correctly are:
DS51224B-page 186  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Control I/O pin definitions
RW_PIN PORTxbits.Rx?
TRIS_RW DDRxbits.Rx?
RS_PIN PORTxbits.Rx?
TRIS_RS DDRxbits.Rx?
E_PIN PORTxbits.Rx?
TRIS_E DDRxbits.Rx?
where x is the PORT, ? is the pin number
Data Port definitions
DATA_PORT PORTx
TRIS_DATA_PORT DDRx

The control pins can be on any port and are not
required to be on the same port. The data interface
must be defined as either 4-bit or 8-bit. The 8-bit inter-
face is defined when a #define BIT8 is included in
the header file xlcd.h. If no define is included, then the
4-bit interface is included. When in 8-bit data interface
mode, all 8 pins must be on the same port. When in 4-
bit data interface mode, the 4 pins must be either the
high or low nibble of a single port. When in 4-bit inter-
face mode, the high nibble is specified by including
#define UPPER in the header file xlcd.h. Otherwise,
the lower nibble is specified by commenting this line
out.

After these definitions have been made, the user must
compile xlcd.c into an object to be linked. Please
refer to the MPLAB-CXX User’s Guide for information
on the compilers and to the MPASM User’s Guide with
MPLINK and MPLIB for information on linking.

This function also requires three external routines to be
provided by the user for specific delays:
DelayFor18TCY() 18 Tcy delay
DelayPORXLCD() 15ms delay
DelayXLCD() 5ms delay

Return Value: None

File Name: openxlcd.c

Code Example: OpenXLCD(EIGHT_BIT&LINES_5X7);

OpenXLCD (Continued)
 2000 Microchip Technology Inc. DS51224B-page 187

MPLAB®-CXX Reference Guide
putsXLCD
putrsXLCD
Device: PIC18CXXX

Function: Writes a string of characters to the Hitachi HD44780
LCD controller.

Include: xlcd.h

Prototype: void putsXLCD (char *buffer);
void putrsXLCD (const rom char *buffer);

Arguments: buffer
Pointer to characters to be written to the LCD controller.

Remarks: This functions writes a string of characters located in
buffer to the Hitachi HD44780 LCD controller. It stops
transmission after the character before the null charac-
ter, i.e., the null character is not sent.

Return Value: None

File Name: putsxlcd.c
putrxlcd.c

Code Example: char mybuff [20];
putsXLCD(mybuff);

putcXLCD
Function: This function operates identically to WriteDataXLCD.

File Name: #define in xlcd.h

ReadAddrXLCD
Device: PIC18CXXX

Function: Reads the address byte from the Hitachi HD44780 LCD
controller.

Include: xlcd.h

Prototype: unsigned char ReadAddrXLCD (void);

Arguments: None

Remarks: This function reads the address byte from the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the BusyX-
LCD() function.
The address read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was called.
DS51224B-page 188  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Return Value: This function returns an 8-bit which is the 7-bit address
in the lower 7-bits of the byte and the BUSY status flag
in the 8th bit.
Bit7 Bit0
 BF A6 A5 A4 A3 A2 A1 A0

File Name: readaddr.c

Code Example: char addr;
while (BusyXLCD());
addr = ReadAddrXLCD();

ReadDataXLCD
Device: PIC18CXXX

Function: Reads a data byte from the Hitachi HD44780 LCD con-
troller.

Include: xlcd.h

Prototype: char ReadDataXLCD (void);

Arguments: None

Remarks: This function reads a data byte from the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the BusyX-
LCD() function.
The data read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was called.

Return Value: This function returns the 8-bit data value.

File Name: readdata.c

Code Example: char data;
while (BusyXLCD());
data = ReadAddrXLCD();

SetCGRamAddr
Device: PIC18CXXX

Function: Sets the character generator address.

Include: xlcd.h

Prototype: void SetCGRamAddr (unsigned char CGaddr);

Arguments: CGaddr
Character generator address.

ReadAddrXLCD (Continued)
 2000 Microchip Technology Inc. DS51224B-page 189

MPLAB®-CXX Reference Guide

Remarks: This function sets the character generator address of
the Hitachi HD44780 LCD controller. The user must first
check to see if the controller is busy by calling the
BusyXLCD() function.

Return Value: None

File Name: setcgram.c

Code Example: char cgaddr = 0x1F;
while (BusyXLCD());
SetCGRamAddr(cgaddr);

SetDDRamAddr
Device: PIC18CXXX

Function: Sets the display data address.

Include: xlcd.h

Prototype: void SetDDRamAddr (unsigned char DDaddr);

Arguments: DDaddr
Display data address.

Remarks: This function sets the display data address of the Hita-
chi HD44780 LCD controller. The user must first check
to see if the controller is busy by calling the BusyX-
LCD() function.

Return Value: None

File Name: setddram.c

Code Example: char ddaddr = 0x10;
while (BusyXLCD());
SetDDRamAddr(ddaddr);

WriteCmdXLCD
Device: PIC18CXXX

Function: Writes a command to the Hitachi HD44780 LCD con-
troller.

Include: xlcd.h

Prototype: void WriteCmdXLCD (unsigned char cmd);

Arguments: cmd
The value of cmd can be one of the following values
(defined in xlcd.h):

SetCGRamAddr (Continued)
DS51224B-page 190  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Function Set defines
FOUR_BIT 4-bit data interface mode
EIGHT_BIT 8-bit data interface mode
LINE_5X7 5x7 characters, single line display
LINE_5X10 5x10 characters display
LINES_5X7 5x7 characters, multiple line display

Display ON/OFF control defines
DON Display on
DOFF Display off
CURSOR_ON Cursor on
CURSOR_OFF Cursor off
BLINK_ON Blinking cursor on
BLINK_OFF Blinking cursor off

Cursor or Display shift defines
SHIFT_CUR_LEFT Cursor shifts to the left
SHIFT_CUR_RIGHT Cursor shifts to the right
SHIFT_DISP_LEFT Display shifts to the left
SHIFT_DISP_RIGHT Display shifts to the right

The above defines can not be mixed. The only com-
mands that can be issued are function set, display con-
trol, and cursor/display shift control.

Remarks: This function writes the command byte to the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the BusyX-
LCD() function.

Return Value: None

File Name: wcmdxlcd.c

Code Example: while (BusyXLCD());
WriteCmdXLCD(EIGHT_BIT&LINES_5X7);
WriteCmdXLCD(DON);
WriteCmdXLCD(SHIFT_DISP_LEFT);

WriteDataXLCD
Device: PIC18CXXX

Function: Writes a data byte (one character) from the Hitachi
HD44780 LCD controller.

Include: xlcd.h

Prototype: void WriteDataXLCD (char data);

Arguments: data
The value of data can be any 8-bit value, but should cor-
respond to the character RAM table of the HD44780
LCD controller.

WriteCmdXLCD (Continued)
 2000 Microchip Technology Inc. DS51224B-page 191

MPLAB®-CXX Reference Guide
8.3.2 Example of Use
#include <p18C452.h>
#include <xlcd.h>
#include <delays.h>
#include <usart.h>
void DelayFor18TCY(void)
{
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 return;
}

void DelayPORXLCD(void)
{
 Delay1KTCYx(60);//Delay of 15ms
 return;
}

void DelayXLCD(void)
{

Remarks: This function writes a data byte to the Hitachi HD44780
LCD controller. The user must first check to see if the
LCD controller is busy by calling the BusyXLCD() func-
tion.
The data read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was called.

This function operates identically to putcXLCD.

Return Value: None

File Name: writdata.c

Code Example: char data;
data = ReadUSART1();
WriteDataXLCD(data);

WriteDataXLCD (Continued)
DS51224B-page 192  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

 Delay1KTCYx(20);//Delay of 5ms
 return;
}

void main(void)
{
 char data;
 // configure external LCD
 OpenXLCD(EIGHT_BIT&LINES_5X7);
 // configure USART
 OpenUSART(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(1)
 {
 while(!DataRdyUSART()); //wait for data
 data = ReadUSART(); //read data
 WriteDataXLCD(data); //write to LCD
 if(data==’Q’)
 break;
 }
 CloseXLCD(); //close modules
 CloseUSART();
 return;
}

 2000 Microchip Technology Inc. DS51224B-page 193

MPLAB®-CXX Reference Guide
8.4 Software I²C Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

8.4.1 Individual Functions

Clock_test
Device: PIC18CXXX

Function: Generates delay for slave clock stretching.

Include: sw_i2c.h

Prototype: void Clock_test (void);

Arguments: None

Remarks: This function is called to allow for slave clock stretching.
The delay time may need to be adjusted per application
requirements. If at the end of the delay period the clock
line is low, a bit field in the global structure
BUS_STATUS (BUS_STATUS.clk) is set to 1. If the
clock line is high at the end of the delay, this bit field is a
0.

far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; bus state is busy
 unsigned clk :1; clock timeout or
 failure
 unsigned ack :1; acknowledge error or
 not ACK
 unsigned :5; bit padding
 };
 unsigned char dummy; dummy variable
} BUS_STATUS; define union/struct

Return Value: None

File Name: swckti2c.c

Code Example: Clock_test();

SWAckI2C
Device: PIC18CXXX

Function: Generates I2C bus acknowledge condition.

Include: sw_i2c.h

Prototype: void SWAckI2C (void);
DS51224B-page 194  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Arguments: None

Remarks: This function is called to generate an I2C bus acknowl-
edge sequence. A bit field in the global structure
BUS_STATUS (BUS_STATUS.ack) is set to 1 if the
slave device did not ack. This error condition could also
indicate a bus error on the SDA line. If no error occurred
this bit field is a 0.

far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; bus state is busy
 unsigned clk :1; clock timeout or
 failure
 unsigned ack :1; acknowledge error or
 not ACK
 unsigned :5; bit padding
 };
 unsigned char dummy; dummy variable
} BUS_STATUS; define union/struct

This function operates identically to SWNotAckI2C.

Return Value: None

File Name: swacki2c.c

Code Example: SWAckI2C();

SWGetcI2C
Function: This function operates identically to SWReadI2C.

File Name: #define in sw_i2c.h

SWGetsI2C
Device: PIC18CXXX

Function: Reads in data string via software I2C implementation.

Include: sw_i2c.h

Prototype: unsigned char SWGetsI2C (unsigned char
far *rdptr, unsigned char length);

Arguments: rdptr
Character type pointer to PICmicro RAM for storage of
data read from I2C device.
length
Number of bytes to read from I2C bus.

SWAckI2C (Continued)
 2000 Microchip Technology Inc. DS51224B-page 195

MPLAB®-CXX Reference Guide
Remarks: This function reads in a predetermined data string
length. Each byte is retrieved via a call to the
SWGetcI2C function.

Return Value: This function returns -1 if all bytes have been received
and the master generated a not ack bus condition.

File Name: swgtsi2c.c

Code Example: char x[10];
SWGetsI2C(x,5);

SWNotAckI2C
Function: This function operates identically to SWAckI2C.

File Name: #define in sw_i2c.h

SWPutcI2C
Function: This function operates identically to SWWriteI2C.

File Name: #define in sw_i2c.h

SWPutsI2C
Device: PIC18CXXX

Function: Writes out data string via software I2C implementation.

Include: sw_i2c.h

Prototype: unsigned char SWPutsI2C (unsigned char
far *wrdptr);

Arguments: wrdptr
Character type pointer to data objects in PICmicro
RAM. The data objects are written to the I2C device.

Remarks: This function writes out a data string until a null charac-
ter is evaluated. Each byte is written via a call to the
SWPutcI2C function. The actual called function body is
termed SWWriteI2C. SWPutcI2C and SWWriteI2C
refer to the same function via a #define statement in
the sw_i2c.h file.

Return Value: This function returns -1 if there was an error else
returns a 0.

File Name: swptsi2c.c

Code Examples: char mybuff [20];
SWPutsI2C(mybuff);

SWGetsI2C (Continued)
DS51224B-page 196  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

SWReadI2C
Device: PIC18CXXX

Function: Reads a single data byte (one character) via software
I2C implementation.

Include: sw_i2c.h

Prototype: unsigned char SWReadI2C (void);

Arguments: None

Remarks: This function reads in a single data byte by generating
the appropriate signals on the predefined I2C clock line.

Return Value: This function returns the acquired I2C data byte. If there
was an error in this function, the return value will be -1.
This condition can be evaluated by testing the bit field
BUS_STATUS.clk. If this bit field is 1, then there was
an error, else it is a 0.
This function operates identically to SWGetcI2C.

File Name: swgtci2c.c

Code Example: char x;
x = SWReadI2C();

SWRestartI2C
Device: PIC18CXXX

Function: Generates I2C restart bus condition.

Include: sw_i2c.h

Prototype: void SWRestartI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus restart
condition.

Return Value: None

File Name: swrsti2c.c

Code Example: SWRestartI2C();

SWStartI2C
Device: PIC18CXXX

Function: Generates I2C bus start condition.

Include: sw_i2c.h

Prototype: void SWStartI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus start con-
dition.
 2000 Microchip Technology Inc. DS51224B-page 197

MPLAB®-CXX Reference Guide
Return Value: None

File Name: swstri2c.c

Code Example: SWStartI2C();

SWStopI2C
Device: PIC18CXXX

Function: Generates I2C bus stop condition.

Include: sw_i2c.h

Prototype: void SWStopI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus stop con-
dition.

Return Value: None

File Name: swstpi2c.c

Code Example: SWStopI2C();

SWWriteI2C
Device: PIC18CXXX

Function: Writes out single data byte via software I2C implemen-
tation.

Include: sw_i2c.h

Prototype: unsigned char SWWriteI2C (unsigned char
data_out);

Arguments: data_out
Single data byte to be written to the I2C device.

Remarks: This function writes out a single data byte to the pre-
defined data pin. The clock and data pins are user
defined in the sw_i2c.h file and must be set per appli-
cation requirements.
This function operates identically to SWPutcI2C.

Return Value: This function returns -1 if there was an error condition
else returns a 0.

File Name: swptci2c.c

Code Example: char x;
SWWriteI2C(x);

SWStartI2C (Continued)
DS51224B-page 198  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

8.4.2 Example of Use
The following are simple code examples illustrating a software I2C
implementation communicating with a Microchip 24LC01B I2C EE Memory
Device. In all the examples provided no error checking utilizing the value
returned from a function is implemented. The port pins used are defined in the
sw_i2c.h file and must be set per application requirments.

#include <p18cxxx.h>
#include <sw_i2c.h>
#include <delays.h>
extern far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; // bus state is busy
 unsigned clk :1; // clock timeout or failure
 unsigned ack :1; // acknowledge error or not ACK
 unsigned :5; // bit padding
 };
 unsigned char dummy;
} BUS_STATUS;

// FUNCTION Prototype
void main(void);
void byte_write(void);
void page_write(void);
void current_address(void);
void random_read(void);
void sequential_read(void);
void ack_poll(void);
unsigned char warr[] = {8,7,6,5,4,3,2,1,0};
unsigned char rarr[15];
unsigned char far *rdptr = rarr;
unsigned char far *wrptr = warr;
unsigned char var;
#define W_CS PORTA.2
//**
#pragma code _main=0x100
void main(void)
{
 byte_write();
 ack_poll();
 page_write();
 ack_poll();
 Nop();
 sequential_read();
 Nop();
 while (1);
}

 2000 Microchip Technology Inc. DS51224B-page 199

MPLAB®-CXX Reference Guide
void byte_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 swAckI2C();
 var = SWPutcI2C(0x10); // word address
 swAckI2C();
 var = SWPutcI2C(0x66); // data
 SWAckI2C();
 SWStopI2C();
}

void page_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x20); // word address
 SWAckI2C();
 var = SWPutsI2C(wrptr); // data
 SWStopI2C();
}

void sequential_read(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x00); // address to read from
 SWAckI2C();
 SWRestartI2C();
 var = SWPutcI2C(0xA1);
 SWAckI2C();
 var = SWGetsI2C(rdptr,9);
 SWStopI2C();
}

void current_address(void)
{
 SWStartI2C();
 SWPutcI2C(0xA1); // control byte
 SWAckI2C();
 SWGetcI2C(); // word address
 SWNotAckI2C();
 SWStopI2C();
}

void ack_poll(void)
DS51224B-page 200  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 while (BUS_STATUS.ack)
 {
 BUS_STATUS.ack = 0;
 SWRestartI2C();
 var = SWPutcI2C(0xA0); // data
 SWAckI2C();
 }
 SWStopI2C();
}

8.5 Software SPI Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

8.5.1 Individual Functions

ClearSWCSSPI
Device: PIC18CXXX

Function: Clears the chip select (CS) pin that is specified in the
sw_spi.h header file.

Include: sw_spi.h

Prototype: void ClearSWCSSPI (void);

Arguments: None

Remarks: This function clears the I/O pin that is specified in
swspi16.h to be the chip select (CS) pin for the software
SPI.

Return Value: None

File Name: clrcsspi.c

Code Example: ClearSWCSSPI();

OpenSWSPI
Device: PIC18CXXX

Function: Configures the I/O pins for the software SPI.

Include: sw_spi.h

Prototype: void OpenSWSPI (void);

Arguments: None
 2000 Microchip Technology Inc. DS51224B-page 201

MPLAB®-CXX Reference Guide

Remarks: This function configures the I/O pins used for the soft-
ware SPI to the correct input or ouput state and logic
level. The I/O pins used for chip select (CS), data in
(DIN), data out (DOUT), and serial clock (SCK) must be
defined in the header file swspi16.h.
The definitions that must be made to ensure that the
software SPI operates correctly are:

I/O pin definitions
SW_CS_PIN PORTxbits.Rx?
TRIS_SW_CS_PIN DDRxbits.Rx?
SW_DIN_PIN PORTxbits.Rx?
TRIS_SW_DIN_PIN DDRxbits.Rx?
SW_DOUT_PIN PORTxbits.Rx?
TRIS_SW_DOUT_PINDDRxbits.Rx?
SW_SCK_PIN PORTxbits.Rx?
TRIS_SW_SCK_PIN DDRxbits.Rx?
where x is the PORT, ? is the pin number

SPI Mode
#define MODE0 or
#define MODE1 or
#define MODE2 or
#define MODE3
Only one of the MODEx can be defined.

After these definitions have been made, compile the
software SPI files into an executable. For information on
compilers, refer to the MPLAB-CXX User’s Guide. Refer
to the MPASM User’s Guide with MPLINK and MPLIB
for information on linking.

Return Value: None

File Name: opensspi.c

Code Example: OpenSWSPI();

putcSWSPI
Function: This function operates identically to WriteSWSPI.

File Name: #define in sw_spi.h

SetSWCSSPI
Device: PIC18CXXX

Function: Sets the chip select (CS) pin that is specified in the
sw_spi.h header file.

Include: sw_spi.h

OpenSWSPI (Continued)
DS51224B-page 202  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2
8.5.2 Example of Use

#include <p18C452.h>
#include <sw_spi.h>
#include <delays.h>
void main(void)
{
 char address;
 // configure software SPI
 OpenSWSPI();
 for(address=0;address<0x10;address++)
 {
 ClearCSSWSPI(); //clear CS pin
 WriteSWSPI(0x02); //send write cmd
 WriteSWSPI(address); //send address h

Prototype: void SetSWCSSPI (void);

Arguments: None

Remarks: This function sets the I/O pin that is specified in
swspi16.h to be the chip select (CS) pin for the software
SPI.

Return Value: None

File Name: setcsspi.c

Code Example: SetSWCSSPI();

WriteSWSPI
Device: PIC18CXXX

Function: Reads/writes one byte of data out the software SPI.

Include: sw_spi.h

Prototype: char WriteSWSPI (char data);

Arguments: data
Byte of data written to software SPI.

Remarks: This function writes the specified byte of data out the
software SPI and returns the byte of data that was read.
This function does not provide any control of the chip
select pin (CS).
This function operates identically to putcSWSPI.

Return Value: This function returns the byte of data that was read from
the data in (DIN) pin of the software SPI.

File Name: wrtsspi.c

Code Example: char addr;
WriteSWSPI(addr);

SetSWCSSPI (Continued)
 2000 Microchip Technology Inc. DS51224B-page 203

MPLAB®-CXX Reference Guide
 WriteSWSPI(address); //send address low
 SetCSSWSPI(); //set CS pin
 Delay10KTCYx(50); //wait 5000,000TCY
 }
 return;
}

8.6 Software UART Functions
This section contains a list of individual functions and an example of use of
the functions in this section. Functions may be implemented as macros.

8.6.1 Individual Functions

getcUART
Function: This function operates identically to ReadUART.

File Name: #define in sw_uart.h

getsUART
Device: PIC18CXXX

Function: Reads a string of characters from the software UART.

Include: sw_uart.h

Prototype: void getsUART (char *buffer, unsigned
char len);

Arguments: buffer
Pointer to the string of characters read from the soft-
ware UART.
len
Number of characters read from the software UART.
The value of len can be any 8-bit value, but is restricted
to the maximum size of an array within any bank of
RAM.

Remarks: This function reads a string of characters from the soft-
ware UART and places them in buffer. The number of
characters read is given in the variable len.

Return Value: None

File Name: getsuart.c

Code Example: char x[10];
getsUART(x,5);
DS51224B-page 204  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

OpenUART
Device: PIC18CXXX

Function: Configures the I/O pins for the software UART.

Include: sw_uart.h

Prototype: void OpenUART (void);

Arguments: None

Remarks: This function configures the I/O pins used for the soft-
ware UART to the correct input or ouput state and logic
level. The I/O pins used for receive data (RXD) and
transmit data (TXD) must be defined in the header file
uart16_a.asm.
The definitions that must be made to ensure that the
software UART operates correctly are:

I/O pin definitions
SWTXD equ PORTx
SWTXDpin equ ?
TRIS_SWTXD equ DDRx
SWRXD equ PORTx
SWRXDpin equ ?
TRIS_SWRXD equ DDRx
UART_PORT_BSR equ b
where x is the PORT, ? is the pin number, b is the PORTx
bank

After these definitions have been made, compile the
software ART files into an object to be linked. Refer to
the MPLAB-CXX User’s Guide for information on com-
pilers. Refer to the MPASM User’s Guide with MPLINK
and MPLIB for information on linking.

Return Value: None

File Name: openuart.asm

Code Example: OpenUART();

putcUART
Function: This function operates identically to WriteUART.

File Name: #define in sw_uart.h

putsUART
Device: PIC18CXXX

Function: Writes a string of characters to the software UART.

Include: sw_uart.h

Prototype: void getsUART (char *buffer);
 2000 Microchip Technology Inc. DS51224B-page 205

MPLAB®-CXX Reference Guide

Arguments: buffer
Pointer to characters written to data string of software
UART.

Remarks: This function writes a string of characters to the soft-
ware UART. The entire string including the null is sent to
the UART.

Return Value: None

File Name: putsuart.c

Code Example: char mybuff [20];
putsUART(mybuff);

ReadUART
Device: PIC18CXXX

Function: Reads one byte of data out the software UART.

Include: sw_uart.h

Prototype: char ReadUART (void);

Arguments: None

Remarks: This function reads a byte of data out the software
UART and returns the byte of data.
This function operates identically to getcUART.

Return Value: This function returns the byte of data that was read from
the receive data (RXD) pin of the software UART.

File Name: readuart.asm

Code Example: char x;
x = ReadUART();

WriteUART
Device: PIC18CXXX

Function: Writes one byte of data out the software UART.

Include: sw_uart.h

Prototype: void WriteUART (char data);

Arguments: data
Byte of data written to software UART. The value of data
can be any 8-bit value.

Remarks: This function writes the specified byte of data out the
software UART.
This function operates identically to putcUART.

Return Value: None

File Name: writuart.asm

putsUART (Continued)
DS51224B-page 206  2000 Microchip Technology Inc.

Software Peripheral Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

8.6.2 Example of Use
#include <p18C452.h>
#include <sw_uart.h>
void main(void)
{
 char data
 // configure software UART
 OpenUART();
 while(1)
 {
 data = ReadUART(); //read a byte
 WriteUART(data); //bounce it back
 }
 return;
}

Code Example: char x;
WriteUART(x);

WriteUART (Continued)
 2000 Microchip Technology Inc. DS51224B-page 207

MPLAB®-CXX Reference Guide
NOTES:
DS51224B-page 208  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 9. General Software Library
M
P

L
A

B
-C

18
L

ib
raries

Part
2

9.1 Introduction
This chapter documents general software library functions. The source code
for all of these functions is included with MPLAB-C18 in the following
directories:

• c:\mcc\src\string

• c:\mcc\src\stdlib

• c:\mcc\src\delays

• c:\mcc\src\ctype

where c:\mcc is the compiler install directory.

See the MPASM User’s Guide with MPLINK and MPLIB for more information
about building libraries.

9.2 Highlights
This chapter is organized as follows:

• Character Classification Functions

• Number and Text Conversion Functions

• Delay Functions

• Memory and String Manipulation Functions
 2000 Microchip Technology Inc. DS51224B-page 209

MPLAB®-CXX Reference Guide
9.3 Character Classification Functions

isalnum
Device: PIC18CXXX

Function: Determine if a character is alphanumeric.

Include: ctype.h

Prototype: unsigned char isalnum (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be alphanumeric if it is in
the range of ‘A’ to ‘Z’, ‘a’ to ‘z’ or ‘0’ to ‘9’.

Return Value: Non-zero if the character is alphanumeric; zero other-
wise.

File Name: isalnum.c

isalpha
Device: PIC18CXXX

Function: Determine if a character is alphabetic.

Include: ctype.h

Prototype: unsigned char isalpha (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be alphabetic if it is in the
range of ‘A’ to ‘Z’ or ‘a’ to ‘z’.

Return Value: Non-zero if the character is alphabetic; zero otherwise.

File Name: isalpha.c

iscntrl
Device: PIC18CXXX

Function: Determine if a character is a control character.

Include: ctype.h

Prototype: unsigned char iscntrl (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a control character if it is
not a printable character as defined by isprint().

Return Value: Non-zero if the character is a control character; zero
otherwise.
DS51224B-page 210  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

File Name: iscntrl.c

isdigit
Device: PIC18CXXX

Function: Determine if a character is a decimal digit.

Include: ctype.h

Prototype: unsigned char isdigit (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a digit character if it is in
the range of ‘0’ to ‘9’.

Return Value: Non-zero if the character is a digit character; zero other-
wise.

File Name: isdigit.c

isgraph
Device: PIC18CXXX

Function: Determine if a character is a graphical character.

Include: ctype.h

Prototype: unsigned char isgraph (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a graphical case alpha-
betic character if it is any printable character except
space.

Return Value: Non-zero if the character is a graphical character; zero
otherwise.

File Name: isgraph.c

islower
Device: PIC18CXXX

Function: Determine if a character is a lower case alphabetic
character.

Include: ctype.h

Prototype: unsigned char islower (unsigned char ch);

Arguments: ch
Character to be checked.

iscntrl (Continued)
 2000 Microchip Technology Inc. DS51224B-page 211

MPLAB®-CXX Reference Guide
Remarks: A character is considered to be a lower case alphabetic
character if it is in the range of ‘a’ to ‘z’.

Return Value: Non-zero if the character is a lower case alphabetic
character; zero otherwise.

File Name: islower.c

isprint
Device: PIC18CXXX

Function: Determine if a character is a printable character.

Include: ctype.h

Prototype: unsigned char isprint (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a printable character if it
is not a control character. For ASCII encoding, this is
the set [0x20,0x7e].

Return Value: Non-zero if the character is a printable character; zero
otherwise.

File Name: isprint.c

ispunct
Device: PIC18CXXX

Function: Determine if a character is a punctuation character.

Include: ctype.h

Prototype: unsigned char ispunct (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a punctuation character
if it is a printable character which is neither a space nor
an alphanumeric character.

Return Value: Non-zero if the character is a punctuation character;
zero otherwise.

File Name: ispunct.c

isupper
Device: PIC18CXXX

islower (Continued)
DS51224B-page 212  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Function: Determine if a character is an upper case alphabetic
character.

Include: ctype.h

Prototype: unsigned char isupper (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be an upper case alpha-
betic character if it is in the range of ‘A’ to ‘Z’.

Return Value: Non-zero if the character is an upper case alphabetic
character; zero otherwise.

File Name: isupper.c

isspace
Device: PIC18CXXX

Function: Determine if a character is a white space character.

Include: ctype.h

Prototype: unsigned char isspace (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a white space character
if it is one of the following: space (‘ ’), tab(‘\t’), carriage
return (‘\r’), new line (‘\n’), form feed (‘\f’), or vertical tab
(‘\v’)..

Return Value: Non-zero if the character is a white space character;
zero otherwise.

File Name: isspace.c

isxdigit
Device: PIC18CXXX

Function: Determine if a character is a hexadecimal digit.

Include: ctype.h

Prototype: unsigned char isxdigit (unsigned char
ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a hex digit character if it
is in the range of ‘0’ to ‘9’, ‘a’ to ‘f’ or ‘A’ to ‘F’.

Return Value: Non-zero if the character is a hex digit character; zero
otherwise.

isupper (Continued)
 2000 Microchip Technology Inc. DS51224B-page 213

MPLAB®-CXX Reference Guide
File Name: isxdig.c

tolower
Device: PIC18CXXX

Function: Convert a character to its lower case equivalent.

Include: ctype.h

Prototype: unsigned char tolower (unsigned char ch);

Arguments: ch
Character to be converted.

Remarks: If the character to be converted is an upper case char-
acter, it is converted to its lower case equivalent; else no
change is made.

Return Value: The converted character.

File Name: tolower.c

toupper
Device: PIC18CXXX

Function: Convert a character to its upper case equivalent.

Include: ctype.h

Prototype: unsigned char toupper (unsigned char ch);

Arguments: ch
Character to be converted.

Remarks: If the character to be converted is a lower case charac-
ter, it is converted to its upper case equivalent; else no
change is made.

Return Value: The converted character.

File Name: toupper.c

isxdigit (Continued)
DS51224B-page 214  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

9.4 Number and Text Conversion Functions

atob
Device: PIC18CXXX

Function: Converts a string to an 8-bit signed byte.

Include: stdlib.h

Prototype: signed char atob (const char *s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string into an 8-bit
signed byte (-128 to 127). This function is an MPLAB-
C18 extension to the ANSI required libraries. Overflow
results for this function are undefined.

Return Value: 8-bit signed byte for all strings in the range (-128 to
127).

File Name: atob.asm

atof
Device: PIC18CXXX

Function: Converts a string into a floating point value.

Include: stdlib.h

Prototype: double atof (const char *string);

Arguments: string
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string into a floating
point value. Examples of floating point strings that are
recognized are:
-3.1415
1.0E2

Return Value: The function returns the converted value.

File Name: atof.c

atoi
Device: PIC18CXXX

Function: Converts a string to an 16-bit signed integer.

Include: stdlib.h

Prototype: int atoi(const char *string);

Arguments: string
Pointer to ASCII string to be converted.
 2000 Microchip Technology Inc. DS51224B-page 215

MPLAB®-CXX Reference Guide

Remarks: This function converts the ASCII string into an 16-bit
signed integer (-32768 to 32767). Overflow results for
this function are undefined.

Return Value: 16-bit signed integer for all strings in the range (-32768
to 32767).

File Name: atoi.asm

atol
Device: PIC18CXXX

Function: Converts a string into a long integer representation.

Include: stdlib.h

Prototype: long atol(const char *string);

Arguments: string
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string into a long value.
The string is assumed to be in radix 10.

Return Value: The function returns the converted value.

File Name: atol.asm

btoa
Device: PIC18CXXX

Function: Converts an 8-bit signed byte to string.

Include: stdlib.h

Prototype: char *btoa (signed char value, char
*string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string that will hold the result.

Remarks: This function converts the 8-bit signed byte in the argu-
ment value to a ASCII string representation. The string
must be long enough to hold the ASCII representation,
including the sign character for negative values and a
trailing NULL character.

This function is an MPLAB-C18 extension of the ANSI
required libraries.

Return Value: Pointer to the result string.

File Name: btoa.asm

atoi (Continued)
DS51224B-page 216  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

itoa
Device: PIC18CXXX

Function: Converts an 16-bit signed integer to string.

Include: stdlib.h

Prototype: char *itoa (int value, char *string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string that will hold the result.

Remarks: This function converts the 16-bit signed integer in the
argument value to a ASCII string representation, includ-
ing the sign character for negative values and a trailing
NULL character.

This function is an MPLAB-C18 extension of the ANSI
required libraries.

Return Value: Pointer to the result string.

File Name: itoa.asm

ltoa
Device: PIC18CXXX

Function: Converts a signed long integer to a string.

Include: stdlib.h

Prototype: char *ltoa(long value, char *string);

Arguments: value
A signed long integer to be converted.
string
Pointer to ASCII string that will hold the result.

Remarks: This function converts the signed long integer in the
argument value to a ASCII string representation. string
must be long enough to hold the ASCII representation,
including the sign character for negative values and a
trailing NULL character. This function is an MPLAB-
C18 extension to the ANSI required libraries.

Return Value: Pointer to the result string.

File Name: ltoa.asm

rand
Device: PIC18CXXX

Function: Generates a psuedo-random integer.

Include: stdlib.h
 2000 Microchip Technology Inc. DS51224B-page 217

MPLAB®-CXX Reference Guide
Prototype: int rand(void);

Arguments: None.

Remarks: Calls to this function return pseudo-random integer val-
ues in the range [0,32767]. To use this function effec-
tively, you must seed the random number generator
using the srand() function. This function will always
return the same sequence of integers when identical
seed values are used.

Return Value: A psuedo-random integer value.

File Name: rand.asm

srand
Device: PIC18CXXX

Function: Sets the starting seed for the psuedo-random number
sequence.

Include: stdlib.h

Prototype: void rand(unsigned int seed);

Arguments: seed
The starting value for the pseudo-random number
sequence.

Remarks: This function sets the starting seed for the pseudo-ran-
dom number sequence generated by the rand() func-
tion. The rand() function will always return the same
sequence of integers when identical seed values are
used. If rand() is called without srand() having first
been called, the sequence of numbers generated will be
the same as if srand() had been called with a seed
value of 1.

Return Value: None.

File Name: rand.asm

tolower
Device: PIC18CXXX

Function: Converts a character to a lower-case alphabetical ASCII
character.

Include: ctype.h

Prototype: char tolower (char ch);

Arguments: ch
Character.

rand (Continued)
DS51224B-page 218  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Remarks: This function converts ch to a lower-case alphabetical
ASCII character provided that the argument is a valid
upper-case alphabetical character.

Return Value: This function returns a lower-case character if the argu-
ment was upper-case to begin with, otherwise the origi-
nal character is returned.

File Name: tolower.c

toupper
Device: PIC18CXXX

Function: Converts a character to a upper-case alphabetical
ASCII character.

Include: ctype.h

Prototype: char toupper (char ch);

Arguments: ch
Character.

Remarks: This function converts ch to a upper-case alphabetical
ASCII character provided that the argument is a valid
lower-case alphabetical character.

Return Value: This function returns a lower-case character if the argu-
ment was upper-case to begin with, otherwise the origi-
nal character is returned.

File Name: toupper.c

ultoa
Device: PIC18CXXX

Function: Converts an unsigned long integer to a string.

Include: stdlib.h

Prototype: char *ultoa(unsigned long value, char
*string);

Arguments: value
An unsigned long integer to be converted.
string
Pointer to ASCII string that will hold the result.

Remarks: This function converts the unsigned long integer in the
argument value to a ASCII string representation. string
must be long enough to hold the ASCII representation,
including a trailing NULL character. This function is an
MPLAB-C18 extension to the ANSI required libraries.

Return Value: Pointer to the result string.

File Name: ultoa.asm

tolower (Continued)
 2000 Microchip Technology Inc. DS51224B-page 219

MPLAB®-CXX Reference Guide
9.5 Delay Functions

Delay1TCY
Device: PIC18CXXX

Function: Delay of 1 instruction cycle (Tcy).

Include: delays.h

Prototype: void Delay1TCY (void);

Arguments: None

Remarks: This function is actually a #define for the Nop()
instruction. When encountered in the source code, the
compiler simply inserts a Nop().

Return Value: None

File Name: #define in delays.h

Delay10TCYx
Device: PIC18CXXX

Function: Delay of multiples of 10 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10TCYx (unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value from 1 to 255 or
0. A value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 10 instruc-
tion cycles.

Return Value: None

File Name: d10tcyx.asm

Delay100TCYx
Device: PIC18CXXX

Function: Delay of multiples of 100 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay100TCYx (unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value from 1 to 255 or
0. A value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 100 instruc-
tion cycles.

Return Value: None
DS51224B-page 220  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

File Name: d100tcyx.asm

Delay1KTCYx
Device: PIC18CXXX

Function: Delay of multiples of 1000 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay1KTCYx (unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value from 1 to 255 or
0. A value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 1000
instruction cycles.

Return Value: None

File Name: d1ktcyx.asm

Delay10KTCYx
Device: PIC18CXXX

Function: Delay of multiples of 10000 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10KTCYx (unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value from 1 to 255 or
0. A value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 10000
instruction cycles.

Return Value: None

File Name: d10ktcyx.asm

Delay100TCYx (Continued)
 2000 Microchip Technology Inc. DS51224B-page 221

MPLAB®-CXX Reference Guide
9.6 Memory and String Manipulation Functions

memchr
Device: PIC18CXXX

Function: Locates the first occurrence of a byte value in a speci-
fied memory region.

Include: string.h

Prototype: void *memchr (const void *mem, unsigned
char c, size_t n);

Arguments: mem
Pointer to a memory region.
c
Byte value to find.
n
Maximum number of bytes to search.

Remarks: This function searches up to n bytes of the region mem
to find the first occurrence of c.
This function differs from the ANSI specified function in
that c is defined as an unsigned char parameter
rather than an int parameter.

Return Value: If c appears in the first n bytes of mem, this function
returns a pointer to the character in mem. Otherwise, it
returns a null pointer.

File Names: memchr.asm

memcmp
memcmppgm
memcmppgm2ram
memcmpram2pgm
Device: PIC18CXXX

Function: Compares the contents of two arrays of bytes.

Include: string.h
DS51224B-page 222  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Prototype: signed char memcmp (const void *buf1,
const void *buf2, size_t memsize);
signed char memcmppgm (const rom void
*buf1, const rom void *buf2, sizerom_t
memsize);
signed char memcmppgm2ram (const rom void
*buf1, const void *buf2, sizeram_t mem-
size);
signed char memcmpram2pgm (const void
*buf1, const rom void *buf2, sizeram_t
memsize);

Arguments: buf1
Pointer to first array.
buf2
Pointer to second array.
memsize
Number of elements to be compared in arrays.

Remarks: This function compares the first memsize number of
bytes in buf1 to the first memsize number of bytes in
buf2 and returns if the buffers are less than, equal to, or
greater than each other.

Return Value: memcmp returns a value that is:
<0 if buf1 is less than buf2
==0 if buf1 is the same as buf2
>0 if buf1 is greater than buf2

File Names: memcmp.asm
memcmpp2p.asm
memcmpp2r.asm
memcmpr2p.asm

memcpy
memcpypgm2ram
Device: PIC18CXXX

Function: Copies the contents of the source buffer into the desti-
nation buffer.

Include: string.h

Prototype: void *memcpy (void *dest, const void
*src, size_t memsize);
void *memcpypgm2ram (void *dest, const
rom void *src, sizeram_t memsize);

memcmp
memcmppgm
memcmppgm2ram
memcmpram2pgm (Continued)
 2000 Microchip Technology Inc. DS51224B-page 223

MPLAB®-CXX Reference Guide
Arguments: dest
Pointer to destination array.
src
Pointer to source array.
memsize
Number of bytes of src array copied into dest.

Remarks: This function copies the first memsize number of bytes
in src to the array dest. If src and dest overlap, the
behavior is undefined.

Return Value: This function returns the value of dest.

File Names: memcpy.asm
memcpyp2r.asm

memmove
memmovepgm2ram
Device: PIC18CXXX

Function: Copies the contents of the source buffer into the desti-
nation buffer, even if the regions overlap.

Include: string.h

Prototype: void *memmove (void *dest, const void
*src, size_t memsize);
void *memmovepgm2ram (void *dest, const
rom void *src, sizeram_t memsize);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
memsize
Number of bytes of src array copied into dest.

Remarks: This function copies the first memsize number of bytes
in src to the array dest. This function performs correctly
even if src and dest overlap.

Return Value: This function returns the value of dest.

File Names: memmove.asm
memmovp2r.asm

memset
Device: PIC18CXXX

Function: Copies the specified character into the destination array.

memcpy
memcpypgm2ram (Continued)
DS51224B-page 224  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Include: string.h

Prototype: void *memset (void *dest, unsigned char
value, size_t memsize);

Arguments: dest
Pointer to destination array.
value
Character value to be copied.
memsize
Number of bytes of dest into which value is copied.

Remarks: This function copies the character value into the first
memsize bytes of the array dest. This functions differs
from the ANSI specified function in that value is defined
as an unsigned char rather than as an int parame-
ter.

Return Value: This function returns the value of dest.

File Name: memset.asm

strcat
strcatpgm2ram
Device: PIC18CXXX

Function: Appends a copy of the source string to the end of the
destination string.

Include: string.h

Prototype: char *strcat (char *dest, const char
*src);
char *strcatpgm2ram (char *dest, const
rom char *src);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.

Remarks: This function copies the string in src to the end of the
string in dest. The src string starts at the null in dest. A
null character is added to the end of the resulting string
in dest. If src and dest overlap, the behavior is unde-
fined.

Return Value: This function returns the value of dest.

File Names: strcat.asm
scatp2r.asm

memset (Continued)
 2000 Microchip Technology Inc. DS51224B-page 225

MPLAB®-CXX Reference Guide

strchr
Device: PIC18CXXX

Function: Locates the first occurrence of a specified character in a
string.

Include: string.h

Prototype: char *strchr (const char *str, const char
c);

Arguments: str
Pointer to a string to be searched.
c
Character to find.

Remarks: This function searches the string str to find the first
occurrence of character c.
This function differs from the ANSI specified function in
that c is defined as an unsigned char parameter
rather than an int parameter.

Return Value: If c appears in str, this function returns a pointer to the
character in str. Otherwise, it returns a null pointer.

File Names: strchr.asm

strcmp
strcmppgm2ram
Device: PIC18CXXX

Function: Compares two strings.

Include: string.h

Prototype: signed char strcmp (const char *str1,
const char *str2);
signed char strcmppgm2ram (const char
*str1, const rom char *str2);

Arguments: str1
Pointer to first string.
str2
Pointer to second string.

Remarks: This function compares the string in str1 to the string in
str2 and returns a value indicating if str1 is less than,
equal to, or greater than str2.

Return Value: strcmp returns a value that is:
<0 if str1 is less than str2
==0 if str1 is the same as str2
>0 if str1 is greater than str2

File Name: strcmp.asm
scmpp2r.asm
DS51224B-page 226  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

strcpy
strcpypgm2ram
Device: PIC18CXXX

Function: Copies the source string into the destination string.

Include: string.h

Prototype: char *strcpy (char *dest, const char
*src);
char *strcpypgm2ram (char *dest, const
rom char *src);

Arguments: dest
Pointer to destination string.
src
Pointer to source string.

Remarks: This function copies the string in src to dest. Characters
in src are copied up to, and including, the terminating
null character in src. If src and dest overlap, the behav-
ior is undefined.

Return Value: This function returns the value of dest.

File Name: strcpy.asm
scpyp2r.asm

strcspn
Device: PIC18CXXX

Function: Calculates the number of consecutive characters at the
beginning of a string that are not contained in a set of
characters.

Include: string.h

Prototype: size_t *strcspn (const char *str1, const
char *str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.

Remarks: This function will determine the number of consecutive
characters from the beginning of str1 that are not con-
tained in str2. For example:
str1 str2 result
"hello" "aeiou" 1
"antelope" "aeiou" 0
"antelope" "xyz" 8

Return Value: This function returns the number of consecutive charac-
ters from the beginning of str1 that are not contained in
str2, as shown in the examples above.

File Names: strcspn.asm
 2000 Microchip Technology Inc. DS51224B-page 227

MPLAB®-CXX Reference Guide
strpbrk
Device: PIC18CXXX

Function: Searches a string for the first occurrence of a character
from a specified set of characters.

Include: string.h

Prototype: char *strpbrk (const char *str1, const
char *str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.

Remarks: This function will search str1 for the first occurrence of a
character contained in str2.

Return Value: If a character in str2 is found, a pointer to that character
in str1 is returned. If no character from str2 is found in
str1, a null pointer is returned.

File Names: strpbrk.asm

strlen
Device: PIC18CXXX

Function: Returns the length of the string.

Include: string.h

Prototype: size_t strlen (const char *str);

Arguments: str
Pointer to string.

Remarks: This function determines the length of the string, not
including the terminating null character.

Return Value: This function returns the length of the string.

File Name: strlen.asm

strlwr
Device: PIC18CXXX

Function: Converts all upper-case characters in a string to lower-
case.

Include: string.h

Prototype: char *strlwr (char *str);

Arguments: str
Pointer to string.
DS51224B-page 228  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Remarks: This function converts all upper-case characters in str to
lower-case characters. All characters that are not
upper-case (A to Z) are not affected.

Return Value: This function returns the value of str.

File Name: strlwr.asm

strncat
strncatpgm2ram
Device: PIC18CXXX

Function: Appends a specified number of characters from the
source string to the destination string.

Include: string.h

Prototype: char *strncat (char *dest, const char
*src, size_t n);
char *strncatpgm2ram (char *dest, const
rom char *src, sizeram_t n));

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
n
Number of characters to append.

Remarks: This function appends exactly n characters from the
string in src to the end of the string in dest. If a null
character is copied before n characters have been cop-
ied, null characters will be appended to dest until
exactly n characters have been appended.
If src and dest overlap, the behavior is undefined.

Return Value: This function returns the value of dest.

File Names: strncat.asm
sncatp2r.asm

strncmp
Device: PIC18CXXX

Function: Compares two strings, up to a specified number of char-
acters.

Include: string.h

Prototype: signed char strncmp (const char *str1,
const char *str2, size_t n);

strlwr (Continued)
 2000 Microchip Technology Inc. DS51224B-page 229

MPLAB®-CXX Reference Guide

Arguments: str1
Pointer to first string.
str2
Pointer to second string.
n
Maximum number of characters to compare.

Remarks: This function compares the string in str1 to the string in
str2 and returns a value indicating if str1 is less than,
equal to, or greater than str2. If n characters are com-
pared and no differences are found, this function will
return a value indicating that the strings are equivalent.

Return Value: strncmp returns a value based on the first character
that differs between str1 and str2. It returns:
<0 if str1 is less than str2
==0 if str1 is the same as str2
>0 if str1 is greater than str2

File Name: strncmp.asm

strncpy
strncpypgm2ram
Device: PIC18CXXX

Function: Copies characters from the source string into the desti-
nation string, up to the specified number of characters.

Include: string.h

Prototype: char *strncpy (char *dest, const char
*src, size_t n);
char *strncpypgm2ram (char *dest, const
rom char *src, sizeram_t n);

Arguments: dest
Pointer to destination string.
src
Pointer to source string.
n
Maximum number of characters to copy.

Remarks: This function copies the string in src to dest. Charac-
ters in src are copied into dest until the terminating null
character or n characters have been copied. If n char-
acters were copied and no null character was found
then dest will not be null-terminated.
If copying takes place between objects that overlap, the
behavior is undefined.

Return Value: This function returns the value of dest.

File Name: strncpy.asm
sncpyp2r.asm

strncmp (Continued)
DS51224B-page 230  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

strrchr
Device: PIC18CXXX

Function: Locates the last occurrence of a specified character in a
string.

Include: string.h

Prototype: char *strrchr (const char *str, const
char c);

Arguments: str
Pointer to a string to be searched.
c
Character to find.

Remarks: This function searches the string str, including the termi-
nating null character, to find the last occurrence of char-
acter c.
This function differs from the ANSI specified function in
that c is defined as an unsigned char parameter
rather than an int parameter.

Return Value: If c appears in str, this function returns a pointer to the
character in str. Otherwise, it returns a null pointer.

File Names: strrchr.asm

strspn
Device: PIC18CXXX

Function: Calculates the number of consecutive characters at the
beginning of a string that are contained in a set of char-
acters.

Include: string.h

Prototype: size_t *strspn (const char *str1, const
char *str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.

Remarks: This function will determine the number of consecutive
characters from the beginning of str1 that are contained
in str2. For example:
str1 str2 result
"banana" "ab" 2
"banana" "abn" 6
"banana" "an" 0

Return Value: This function returns the number of consecutive charac-
ters from the beginning of str1 that are contained in str2,
as shown in the examples above.

File Names: strspn.asm
 2000 Microchip Technology Inc. DS51224B-page 231

MPLAB®-CXX Reference Guide
strstr
Device: PIC18CXXX

Function: Locates the first occurrence of a string inside another
string.

Include: string.h

Prototype: char *strstr (const char *str, const char
*substr);

Arguments: str
Pointer to a string to be searched.
substr
Pointer to a string pattern for which to search.

Remarks: This function will find the first occurrence of the string
substr (excluding the null terminator) within string str.

Return Value: If the string is located, a pointer to that string in str will
be returned. Otherwise a null pointer is returned.

File Names: strstr.asm

strtok
Device: PIC18CXXX

Function: Breaks a string into substrings, or tokens, by inserting
null characters in place of specified delimiters.

Include: string.h

Prototype: char *strtok (char *str, const char
*delim);

Arguments: str
Pointer to a string to be searched.
delim
Pointer to a set of characters that indicate the end of a
token.
DS51224B-page 232  2000 Microchip Technology Inc.

General Software Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

Remarks: This function can be used to split up a string into sub-
strings by replacing specified characters with null char-
acters. The first time this function is invoked on a
particular string, that string should be passed in str.
After the first time, this function can continue parsing
the string from the last delimiter by invoking it with a null
value passed in str.
When strtok is invoked with a non-null parameter for
str, it starts searching str from the beginning. It skips all
leading characters that appear in the string delim, then
skips all characters not appearing in delim, then sets
the next character to null.
When strtok is invoked with a null parameter for str, it
searches the string that was most recently examined,
beginning with the character after the one that was set
to null during the previous call. It skips all characters
not appearing in delim, then sets the next character to
null.
If strtok finds the end of the string before it finds a
delimiter, it does not modify the string.
The set of characters that is passed in delim need not
be the same for each call to strtok.

Return Value: If a delimiter was found, this function returns a pointer
into str to the first character that was searched that did
not appear in the set of characters delim. This charac-
ter represents the first character of a token that was cre-
ated by the call.
If no delimiter was found prior to the terminating null
character, a null pointer is returned from the function.

File Names: strtok.asm

strupr
Device: PIC18CXXX

Function: Converts all lower-case characters in a string to upper-
case.

Include: string.h

Prototype: char *strupr (char *str);

Arguments: str
Pointer to string.

Remarks: This function converts all lower-case characters in str to
upper-case characters. All characters that are not
lower-case (a to z) are not affected.

Return Value: This function returns the value of str.

File Name: strupr.asm

strtok (Continued)
 2000 Microchip Technology Inc. DS51224B-page 233

MPLAB®-CXX Reference Guide
NOTES:
DS51224B-page 234  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Chapter 10. Math Library
M
P

L
A

B
-C

18
L

ib
raries

Part
2

10.1 Introduction
This chapter documents math library functions. For more information on math
libraries, see the Embedded Control Handbook, Volume 2 (DS00167). See
the MPASM User’s Guide with MPLINK and MPLIB for more information on
creating and using libraries in general.

10.2 Highlights
This chapter is organized as follows:

• 32-Bit Integer and 32-Bit Floating Point Math Libraries

• Decimal/Floating Point and Floating Point/Decimal Conversions

10.3 32-Bit Integer and 32-Bit Floating Point Math
Libraries

The math routines used by MPLAB-C18 are based on the Microchip
Application Note AN575. Source code for the routines may be found in the
c:\mcc\src\math directory, where c:\mcc is the compiler install directory.
These source files have been compiled into object code and added to the
clib.lib standard library, which may be found in the c:\mcc\lib folder.
The clib.lib file must be included during the linking process when using
floating point or 32-bit integer routine function calls in your C code.

The mathematical functions performed by the floating point library routines
are: 32-bit signed and unsigned integer multiplication; 32-bit signed and
unsigned integer division; 32-bit floating point multiplication and division. The
routines also contain conversion functions to go from 8, 16 and 32-bit signed
and unsigned integers to 32-bit floating point, as well as a 32-bit floating point
conversion to 32-bit integer.
 2000 Microchip Technology Inc. DS51224B-page 235

MPLAB®-CXX Reference Guide
10.3.1 Floating Point Representation
Floating point numbers are represented in a modified IEEE-754 format. This
format allows the floating-point routines to take advantage of the processor
architecture and reduce the amount of overhead required in the calculations.
The representation is shown below:

where s is the sign bit, y is the LSb of the exponent and x is a placeholder for
the mantissa and exponent bits.

The two formats may be easily converted from one to the other by simple a
manipulation of the Exponent and Mantissa 0 bytes. The following C code
shows an example of this operation.

Example 10.1: IEEE-754 to Microchip
Rlcf(AARGB0);
Rlcf(AEXP);
Rrcf(AARGB0);

Example 10.2: Microchip to IEEE-754
Rlcf(AARGB0);
Rrcf(AEXP);
Rrcf(AARGB0);

10.3.2 Variables Used by the Floating Point Libraries
Several 8-bit RAM registers are used by the math routines to hold the
operands for and results of floating point and integer operations. Since there
may be two operands required for a floating point operation (such as
multiplication or division), there are two sets of exponent and mantissa
registers reserved. AEXP and BEXP hold the exponent for arguments A and
B respectively while AARGB0, AARGB1, and AARGB2 or BARGB0,
BARGB1, and BARGB2 hold the mantissa.

For 32-bit integers, AARGB0, AARGB1, AARGB2 and AARGB3 or BARGB0,
BARGB1, BARGB2, and BARGB3 are used to hold the operands. Results of
integer operations will be placed in AARGB0, AARGB1, AARGB2, and
AARGB3. In the case of 32-bit division, the remainder is placed in an
additional set of registers, REMB0, REMB1, REMB2, and REMB3. The MSB
of the 32-bit integer is contained in AARGB0, BARGB0 or REMB0.

Format Exponent Mantissa 0 Mantissa 1 Mantissa 2

IEEE-754 sxxx xxxx yxxx xxxx xxxx xxxx xxxx xxxx

Microchip xxxx xxxy sxxx xxxx xxxx xxxx xxxx xxxx

Note: The MSB of the mantissa is stored in the AARGB0 or BARGB0
byte. Results of the floating point routines are placed in the AEXP
and AARGB0:2 registers.
DS51224B-page 236  2000 Microchip Technology Inc.

Math Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

10.4 Decimal/Floating Point and Floating Point/
Decimal Conversions

The details of how decimal numbers are converted to floating point numbers
and how floating point numbers are converted to decimal numbers are
discuss in the following sections.

10.4.1 Converting Decimal to Microchip Floating Point
There are several methods that will allow the conversion of decimal (base 10)
numbers to Microchip floating point format. Microchip provides a PC utility
called FPREP.EXE, which will convert decimal numbers to floating point for
use in the math library routines. This utility may be download from the
Microchip web site along with the AN575 source code.

Alternatively, the floating point equivalent to decimal numbers may be
calculated longhand. To calculate the floating point via a longhand method,
both the exponent and mantissa must be found.

To find the exponent, the following formulae are used:

Equation 10.1:

Equation 10.2:

where Z is the fractional exponent, A10 is the original decimal number, and
Exp is the integer portion of Z.

To solve for the exponent, first begin by rearranging Equation 10.1 to solve for
Z.

The absolute value of Z is then rounded to the next larger absolute value
integer to yield the value of Exp. Finally a bias value of 0x7F is added to
convert Exp to Microchip floating point format.

Next, the mantissa is determined. The exponent value just determined must
be removed from the original decimal number, using division.

Equation 10.3:

2
Z

A10=

Exp int Z()=

Z
A10()ln

2()ln
------------------=

x
A10

2Z
--------=
 2000 Microchip Technology Inc. DS51224B-page 237

MPLAB®-CXX Reference Guide
where x is the fractional portion of the mantissa, and A10 and Z are values as
described above.

To determine the binary representation of the mantissa, x is compared in turn
to decreasing powers of 2, starting with 20 and decreasing to 2-23. If x is
greater than or equal to the power of 2 currently being compared, a ’1’ is
placed in the corresponding bit position of the binary representation and the
power of 2 value is subtracted from x. The new x is then used for the next
decreasing power of 2 comparison. If x is less than the power of 2 currently
being compared, a ’0’ is placed in the bit position and no subtraction occurs.
The same value of x is used to compare to the next power of 2 value.

This process repeats until all 24 bits have been determined or until subtraction
yields an x value of 0. Finally, to convert this 24-bit value to Microchip floating
point format, the MSb is substituted with the sign of the original decimal
number, i.e., ’1’ for negative or ’0’ for positive.

To demonstrate the method of conversion, the same example as in AN575 will
be used, where A10 = 0.15625.

First, find the exponent:

Next calculate the fractional portion of the mantissa:

Note: x will always be a value greater than 1.

2
Z

0.15625=

Z
0.15625()ln

2()ln
----------------------------- 2.6780719–= =

Exp int Z() 3–= =

x
0.15625

2
3–

------------------- 1.25= =
DS51224B-page 238  2000 Microchip Technology Inc.

Math Library

M
P

L
A

B
-C

18
L

ib
raries

Part
2

And then the binary representation:

Therefore, the binary representation is:

A2=1.01000000000000000000000.

Finally, convert to Microchip floating point format by placing the proper sign bit
in the MSb of the mantissa and add 0x7F to the calculated exponent. The
Microchip floating point representation of 0.156256 is then 0x7C200000. For
more details on the floating point conversion, please consult AN575.

10.4.2 Converting Microchip Floating-Point to Decimal
The process of converting floating-point number to decimal is relatively simple
and can be done by hand (or using a calculator) to check your results. To
convert from floating point to decimal, the following formula is used:

Equation 10.4:

where Exp is the unbiased exponent and A is the binary expansion of the
mantissa.

Some processing of the values stored in AEXP and AARGB0:2 must be
performed in order to use the above formula. The exponent is stored in a
biased format, which simply means that 0x7F has been added to the true
exponent that of the number. To extract the exponent to be used in the above
calculation, subtract 0x7F from the value stored in AEXP.

The sign bit is stored in the MSB of the mantissa. To allow the full 24-bit
precision of the mantissa, the MSB is assumed to be 1 explicitly, once the sign
bit is stripped out. To calculate A2, a simple binary expansion is used, as
shown in the formula below. Since the MSB is explicitly 1, the expansion will
always contain the term 20.

Equation 10.5:

As in AN575, we will use the example of the decimal number 50.2654824574.
which has a floating point representation of 0x84490FDB, with the biased
exponent being 0x84 and the mantissa (including sign bit) being 0x490FDB.
The unbiased exponent is calculated to be Exp = 0x84 - 0x7F = 0x05. To
process the mantissa, it is first translated to binary format and the MSB is set
to prepare for the expansion.

x = 1.25 ≥ 20? Yes bit = 1 x = 1.25 - 1 = 0.25

x = 0.25 ≥ 2-1? No bit = 0 x = 0.25

x = 0.25 ≥ 2-2? Yes bit = 1 x = 0.25 - 0.25 = 0

x = 0 Process complete

A10 2Exp
A2⋅=

A2 2
0

Bit22() 2
1–⋅ Bit21() 2

2–⋅ … Bit0() 2
23–⋅+ + + +=
 2000 Microchip Technology Inc. DS51224B-page 239

MPLAB®-CXX Reference Guide
0x490FDB =

0100 1001 0000 1111 1101 10112 →

1100 1001 0000 1111 1101 10112

The expansion is then performed according to Equation 10.5.

A2 = 20 + 2-1 + 2-4 + 2-7 + 2-12 + 2-13 + 2-14 + 2-15 + 2-16 + 2-17 +
2-19 + 2-20 + 2-22 + 2-23

A2 = 1.570796371

Finally, to calculate the actual floating point number, the exponent and
expanded mantissa are plugged into the conversion formula (Equation 10.4).

A10= 20 • 1.570796371

A10= 50.26548387

The result of these calculations are accurate out to about 5 decimal places,
with rounding and calculation errors creating some degree of uncertainty for
the remaining decimal places. For more details on the sources of error,
please consult AN575.
DS51224B-page 240  2000 Microchip Technology Inc.

®
MPLAB -CXX REFERENCE GUIDE

Glossary
Introduction
To provide a common frame of reference, this glossary defines the terms for
several Microchip tools.

Highlights
This glossary contains terms and definitions for the following tools:

• MPLAB IDE, MPLAB-SIM, MPLAB Editor

• MPASM, MPLINK, MPLIB

• MPLAB-CXX

• MPLAB-ICE, PICMASTER Emulators

• MPLAB-ICD

• PICSTART Plus, PRO MATE programmer

Terms
Absolute Section

A section with a fixed (absolute) address which can not be changed by the
linker.

Access RAM (PIC18CXXX Devices Only)

Special general purpose registers on PIC18CXXX devices that allow access
regardless of the setting of the bank select bit (BSR).

Alpha Character

Alpha characters are those characters, regardless of case, that are letters of
the alphabet: (a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters include alpha characters and numbers: (0,1, …, 9).

Application

A set of software and hardware developed by the user, usually designed to be
a product controlled by a PICmicro microcontroller.

Assemble

What an assembler does. See assembler.

Assembler

A language tool that translates a user’s assembly source code (.asm) into
machine code. MPASM is Microchip’s assembler.
 2000 Microchip Technology Inc. DS51224B-page 241

MPLAB®-CXX Reference Guide
Assembly

A programming language that is once removed from machine language.
Machine languages consist entirely of numbers and are almost impossible for
humans to read and write. Assembly languages have the same structure and
set of commands as machine languages, but they enable a programmer to
use names (mnemonics) instead of numbers.

Assigned Section

A section which has been assigned to a target memory block in the linker
command file. The linker allocates an assigned section into its specified target
memory block.

Break Point – Hardware

An event whose execution will cause a halt.

Break Point – Software

An address where execution of the firmware will halt. Usually achieved by a
special break opcode.

Build

A function that recompiles all the source files for an application.

C

A high level programming language that may be used to generate code for
PICmicro MCUs, especially high-end device families.

Calibration Memory

A special function register or registers used to hold values for calibration of a
PICmicro microcontroller on-board RC oscillator.

COFF

Common Object File Format. An intermediate file format generated by
MPLINK that contains machine code and debugging information.

Command Line Interface

Command line interface refers to executing a program on the DOS command
line with options. Executing MPASM with any command line options or just the
file name will invoke the assembler. In the absence of any command line
options, a prompted input interface (shell) will be executed.

Compile

What a compiler does. See compiler.

Compiler

A language tool that translates a user’s C source code into machine code.
MPLAB-C17 and MPLAB-C18 are Microchip’s C compilers for PIC17CXXX
and PIC18CXXX devices, respectively.
DS51224B-page 242  2000 Microchip Technology Inc.

Glossary
Configuration Bits

Unique bits programmed to set PICmicro microcontroller modes of operation.
A configuration bit may or may not be preprogrammed. These bits are set in
the Options > Development Mode dialog for simulators or emulators and in
the _ _ CONFIG MPASM directive for programmers.

Control Directives

Control directives in MPASM permit sections of conditionally assembled code.

Data Directives

Data directives are those that control MPASM’s allocation of memory and
provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

General purpose file registers (GPRs) from RAM on the PICmicro device
being emulated. The File Register window displays data memory.

Directives

Directives provide control of the assembler’s operation by telling MPASM how
to treat mnemonics, define data, and format the listing file. Directives make
coding easier and provide custom output according to specific needs.

Download

Download is the process of sending data from the PC host to another device,
such as an emulator, programmer or target board.

EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of
PROM that can be erased electrically. Data is written or erased one byte at a
time. EEPROM retains its contents even when power is turned off.

Emulation

The process of executing software loaded into emulation memory as if the
firmware resided on the microcontroller device under development.

Emulation Memory

Program memory contained within the emulator.

Emulator

Hardware that performs emulation.

Emulator System

The MPLAB-ICE emulator system includes the pod, processor module, device
adapter, cables, and MPLAB Software. The PICMASTER emulator system
includes the pod, device-specific probe, cables, and MPLAB Software.

Event

A description of a bus cycle which may include address, data, pass count,
external input, cycle type (fetch, R/W), and time stamp. Events are used to
describe triggers and break points.
 2000 Microchip Technology Inc. DS51224B-page 243

MPLAB®-CXX Reference Guide
Executable Code

See Hex Code.

Export

Send data out of the MPLAB IDE in a standardized format.

Expressions

Expressions are used in the operand field of MPASM’s source line and may
contain constants, symbols, or any combination of constants and symbols
separated by arithmetic operators. Each constant or symbol may be preceded
by a plus or minus to indicate a positive or negative expression.

Extended Microcontroller Mode
(PIC17CXXX and PIC18CXXX Devices Only)

In extended microcontroller mode, on-chip program memory as well as
external memory is available. Execution automatically switches to external if
the program memory address is greater than the internal memory space of
the PIC17CXXX or PIC18CXXX device.

External Input Line (MPLAB-ICE only)

An external input signal logic probe line (TRIGIN) for setting an event based
upon external signals.

External Linkage

A function or variable has external linkage if it can be accessed from outside
the module in which it is defined.

External RAM (PIC17CXXX and PIC18CXXX Devices Only)

Off-chip Read/Write memory.

External Symbol

A symbol for an identifier which has external linkage.

External Symbol Definition

A symbol for a function or variable defined in the current module.

External Symbol Reference

A symbol which references a function or variable defined outside the current
module.

External Symbol Resolution

A process performed by the linker in which external symbol definitions from all
input modules are collected in an attempt to update all external symbol
references. Any external symbol references which do not have a
corresponding definition cause a linker error to be reported.

Note: MPASM expressions are evaluated in 32 bit integer math.
(Floating point is not currently supported.)
DS51224B-page 244  2000 Microchip Technology Inc.

Glossary
File Registers

On-chip general purpose and special function registers.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle
instruction. Since the PICmicro architecture is pipelined, it prefetches the next
instruction in the physical address space while it is executing the current
instruction. However, if the current instruction changes the program counter,
this prefetched instruction is explicitly ignored, causing a forced NOP cycle.

GPR

See Data Memory.

Halt

A function that stops the emulator. Executing Halt is the same as stopping at a
break point. The program counter stops, and the user can inspect and change
register values, and single step through code.

Hex Code

Executable instructions assembled or compiled from source code into
standard hexadecimal format code. Also called executable or machine code.
Hex code is contained in a hex file.

Hex File

An ASCII file containing hexadecimal addresses and values (hex code)
suitable for programming a device. This format is readable by a device
programmer.

High Level Language

A language for writing programs that is of a higher level of abstraction from
the processor than assembler code. High level languages (such as C) employ
a compiler to translate statements into machine instructions that the target
processor can execute.

ICD

In-Circuit Debugger. MPLAB-ICD is Microchip’s in-circuit debugger for
PIC16F87X devices. MPLAB-ICD works with MPLAB IDE.

ICE

In-Circuit Emulator. MPLAB-ICE is Microchip’s in-circuit emulator that works
with MPLAB IDE.

IDE

Integrated Development Environment. An application that has multiple
functions for firmware development. The MPLAB IDE integrates a compiler,
an assembler, a project manager, an editor, a debugger, a simulator, and an
 2000 Microchip Technology Inc. DS51224B-page 245

MPLAB®-CXX Reference Guide
assortment of other tools within one Windows application. A user developing
an application can write code, compile, debug, and test an application without
leaving the MPLAB IDE desktop.

Identifier

A function or variable name.

Import

Bring data into the MPLAB Integrated Development Environment (IDE) from
an outside source, such as from a hex file.

Initialized Data

Data which is defined with an initial value. In C, int myVar=5; defines a
variable which will reside in an initialized data section.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from
outside the module in which it is defined.

Librarian

A language tool that creates and manipulates libraries. MPLIB is Microchip’s
librarian.

Library

A library is a collection of relocatable object modules. It is created by
assembling multiple source files to object files, and then using the librarian to
combine the object files into one library file. A library can be linked with object
modules and other libraries to create executable code.

Link

What a linker does. See Linker.

Linker

A language tool that combines object files and libraries to create executable
code. Linking is performed by Microchip’s linker, MPLINK.

Linker Script Files

Linker script files are the command files of MPLINK (.LKR). They define linker
options and describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the MPASM listing file
format. They allow the specification of titles, pagination and other listing
control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for
each C source statement, assembly instruction, MPASM directive, or macro
encountered in a source file.
DS51224B-page 246  2000 Microchip Technology Inc.

Glossary
Local Label

A local label is one that is defined inside a macro with the LOCAL directive.
These labels are particular to a given instance of a macro’s instantiation. In
other words, the symbols and labels that are declared as local are no longer
accessible after the ENDM macro is encountered.

Logic Probes

Up to 14 logic probes connected to the emulator. The logic probes provide
external trace inputs, trigger output signal, +5V, and a common ground.

Machine Code

Either object or executable code.

Macro

A collection of assembler instructions that are included in the assembly code
when the macro name is encountered in the source code. Macros must be
defined before they are used; forward references to macros are not allowed.

All statements following a MACRO directive and prior to an ENDM directive are
part of the macro definition. Labels used within the macro must be local to the
macro so the macro can be called repetitively.

Macro Directives

Directives that control the execution and data allocation within macro body
definitions.

Make Project

A command that rebuilds an application, re-compiling only those source files
that have changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also µC.

Memory Models

Versions of libraries and/or precompiled object files based on a device’s
memory (RAM/ROM) size and structure.

Microcontroller

A highly integrated chip that contains all the components comprising a
controller. Typically this includes a CPU, RAM, some form of ROM, I/O ports,
and timers. Unlike a general-purpose computer, which also includes all of
these components, a microcontroller is designed for a very specific task – to
control a particular system. As a result, the parts can be simplified and
reduced, which cuts down on production costs.

Microcontroller Mode (PIC17CXXX and PIC18CXXX Devices Only)

One of the possible program memory configurations of the PIC17CXXX and
PIC18CXXX families of microcontrollers. In microcontroller mode, only
internal execution is allowed. Thus, only the on-chip program memory is
available in microcontroller mode.
 2000 Microchip Technology Inc. DS51224B-page 247

MPLAB®-CXX Reference Guide
Microprocessor Mode (PIC17CXXX and PIC18CXXX Devices Only)

One of the possible program memory configurations of the PIC17CXXX and
PIC18CXXX families of microcontrollers. In microprocessor mode, the on-chip
program memory is not used. The entire program memory is mapped
externally.

Mnemonics

Instructions that are translated directly into machine code. Mnemonics are
used to perform arithmetic and logical operations on data residing in program
or data memory of a microcontroller. They can also move data in and out of
registers and memory as well as change the flow of program execution. Also
referred to as Opcodes.

MPASM

Microchip Technology’s relocatable macro assembler. MPASM is a DOS or
Windows-based PC application that provides a platform for developing
assembly language code for Microchip’s PICmicro microcontroller families.
Generically, MPASM will refer to the entire development platform including the
macro assembler and utility functions.

MPASM will translate source code into either object or executable code. The
object code created by MPASM may be turned into executable code through
the use of the MPLINK linker.

MPLAB-CXX

Refers to MPLAB-C17 and MPLAB-C18 C compilers.

MPLAB-ICD

Microchip’s in-circuit debugger for PIC16F87X devices. MPLAB-ICD works
with MPLAB IDE. The MPLAB-ICD system consists of a module, header,
demo board (optional), cables, and MPLAB Software.

MPLAB-ICE

Microchip’s in-circuit emulator that works with MPLAB IDE.

MPLAB IDE

The name of the main executable program that supports the IDE with an
Editor, Project Manager, and Emulator/Simulator Debugger. The MPLAB
Software resides on the PC host. The executable file name is MPLAB.EXE.
MPLAB.EXE calls many other files.

MPLAB-SIM

Microchip’s simulator that works with MPLAB IDE.

MPLIB

MPLIB is a librarian for use with COFF object modules (filename.o)
created using either MPASM v2.0, MPASMWIN v2.0, or MPLAB-C v2.0 or
later.

MPLIB will combine multiple object files into one library file. Then MPLIB can
be used to manipulate the object files within the created library.
DS51224B-page 248  2000 Microchip Technology Inc.

Glossary
MPLINK

MPLINK is a linker for the Microchip relocatable assembler, MPASM, and the
Microchip C compilers, MPLAB-C17 or MPLAB-C18. MPLINK also may be
used with the Microchip librarian, MPLIB. MPLINK is designed to be used with
MPLAB IDE, though it does not have to be.

MPLINK will combine object files and libraries to create a single executable
file.

MPSIM

The DOS version of Microchip’s simulator. MPLAB-SIM is the newest
simulator from Microchip.

MRU

Most Recently Used. Refers to files and windows available to be selected
from MPLAB IDE main pull down menus.

Nesting Depth

The maximum level to which macros can include other macros. Macros can
be nested to 16 levels deep.

Non Real-Time

Refers to the processor at a break point or executing single step instructions
or MPLAB IDE being run in simulator mode.

Node

MPLAB IDE project component.

NOP

No Operation. An instruction that has no effect when executed except to
advance the program counter.

Object Code

The intermediate code that is produced from the source code after it is
processed by an assembler or compiler. Relocatable code is code produced
by MPASM or MPLAB-C17/C18 that can be run through MPLINK to create
executable code. Object code is contained in an object file.

Object File

A module which may contain relocatable code or data and references to
external code or data. Typically, multiple object modules are linked to form a
single executable output. Special directives are required in the source code
when generating an object file. The object file contains object code.

Object File Directives

Directives that are used only when creating an object file.
 2000 Microchip Technology Inc. DS51224B-page 249

MPLAB®-CXX Reference Guide
Off-Chip Memory (PIC17CXXX and PIC18CXXX Devices Only)

Off-chip memory refers to the memory selection option for the PIC17CXXX or
PIC18CXXX device where memory may reside on the target board, or where
all program memory may be supplied by the Emulator. The Memory tab
accessed from Options > Development Mode provides the Off-Chip Memory
selection dialog box.

Opcodes

Operational Codes. See Mnemonics.

Operators

Arithmetic symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used
when forming well-defined expressions. Each operator has an assigned
precedence.

Pass Counter

A counter that decrements each time an event (such as the execution of an
instruction at a particular address) occurs. When the pass count value
reaches zero, the event is satisfied. You can assign the Pass Counter to break
and trace logic, and to any sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any IBM or compatible Personal Computer running Windows 3.1x or
Windows 95/98, Windows NT, or Windows 2000. MPLAB IDE runs on 486 or
higher machines.

PICmicro MCUs

PICmicro microcontrollers (MCUs) refers to all Microchip microcontroller
families.

PICMASTER Emulator

The hardware unit that provides tools for emulating and debugging firmware
applications. This unit contains emulation memory, break point logic,
counters, timers, and a trace analyzer among some of its tools. MPLAB-ICE is
the newest emulator from Microchip.

PICSTART Plus

A device programmer from Microchip. Programs 8, 14, 28, and 40 pin
PICmicro microcontrollers. Must be used with MPLAB Software.

Pod

The external emulator box that contains emulation memory, trace memory,
event and cycle timers, and trace/break point logic. Occasionally used as an
abbreviated name for the MPLAB-ICE emulator.
DS51224B-page 250  2000 Microchip Technology Inc.

Glossary
Power-on-Reset Emulation

A software randomization process that writes random values in data RAM
areas to simulate uninitialized values in RAM upon initial power application.

Precedence

The concept that some elements of an expression are evaluated before
others; i.e., * and / before + and -. In MPASM, operators of the same
precedence are evaluated from left to right. Use parentheses to alter the order
of evaluation.

Program Counter

A register that specifies the current execution address.

Program Memory

The memory area in a PICmicro microcontroller where instructions are stored.
Memory in the emulator or simulator containing the downloaded target
application firmware.

Programmer

A device used to program electrically programmable semiconductor devices
such as microcontrollers.

Project

A set of source files and instructions to build the object and executable code
for an application.

PRO MATE

A device programmer from Microchip. Programs all PICmicro microcontrollers
and most memory and Keeloq devices. Can be used with MPLAB IDE or
stand-alone.

Prototype System

A term referring to a user’s target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PICmicro devices have a PWM
peripheral.

Qualifier

An address or an address range used by the Pass Counter or as an event
before another operation in a complex trigger.

Radix

The number base, hex, or decimal, used in specifying an address and for
entering data in the Window > Modify command.

RAM

Random Access Memory (Data Memory).

Raw Data

The binary representation of code or data associated with a section.
 2000 Microchip Technology Inc. DS51224B-page 251

MPLAB®-CXX Reference Guide
Real-Time

When released from the halt state in the emulator or MPLAB-ICD mode, the
processor runs in real-time mode and behaves exactly as the normal chip
would behave. In real-time mode, the real-time trace buffer of MPLAB-ICE is
enabled and constantly captures all selected cycles, and all break logic is
enabled. In the emulator or MPLAB-ICD, the processor executes in real-time
until a valid break point causes a halt, or until the user halts the emulator.

In the simulator real-time simply means execution of the microcontroller
instructions as fast as they can be simulated by the host CPU.

Recursion

The concept that a function or macro, having been defined, can call itself.
Great care should be taken when writing recursive macros; it is easy to get
caught in an infinite loop where there will be no exit from the recursion.

Relocatable Section

A section whose address is not fixed (absolute). The linker assigns addresses
to relocatable sections through a process called relocation.

Relocation

A process performed by the linker in which absolute addresses are assigned
to relocatable sections and all identifier symbol definitions within the
relocatable sections are updated to their new addresses.

ROM

Read Only Memory (Program Memory).

Run

The command that releases the emulator from halt, allowing it to run the
application code and change or respond to I/O in real time.

Section

An portion of code or data which has a name, size, and address.

SFR

Special Function Registers of a PICmicro.

Shared Section

A section which resides in a shared (non-banked) region of data RAM.

Shell

The MPASM shell is a prompted input interface to the macro assembler.
There are two MPASM shells: one for the DOS version and one for the
Windows version.

Simulator

A software program that models the operation of the PICmicro
microprocessor.
DS51224B-page 252  2000 Microchip Technology Inc.

Glossary
Single Step

This command steps though code, one instruction at a time. After each
instruction, MPLAB IDE updates register windows, watch variables, and
status displays so you can analyze and debug instruction execution.

You can also single step C compiler source code, but instead of executing
single instructions, MPLAB IDE will execute all assembly level instructions
generated by the line of the high level C statement.

Skew

The information associated with the execution of an instruction appears on
the processor bus at different times. For example, the executed opcode
appears on the bus as a fetch during the execution of the previous instruction,
the source data address and value and the destination data address appear
when the opcode is actually executed, and the destination data value appears
when the next instruction is executed. The trace buffer captures the
information that is on the bus at one instance. Therefore, one trace buffer
entry will contain execution information for three instructions. The number of
captured cycles from one piece of information to another for a single
instruction execution is referred to as the skew.

Skid

When a hardware break point is used to halt the processor, one or more
additional instructions may be executed before the processor halts. The
number of extra instructions executed after the intended break point is
referred to as the skid.

Source Code - Assembly

Source code consists of PICmicro instructions and MPASM directives and
macros that will be translated into machine code by an assembler.

Source Code - C

A program written in the high level language called “C” which will be converted
into PICmicro machine code by a compiler. Machine code is suitable for use
by a PICmicro MCU or Microchip development system product like MPLAB
IDE.

Source File - Assembly

The ASCII text file of PICmicro instructions and MPASM directives and
macros (source code) that will be translated into machine code by an
assembler. It is an ASCII file that can be created using any ASCII text editor.

Source File - C

The ASCII text file containing C source code that will be translated into
machine code by a compiler. It is an ASCII file that can be created using any
ASCII text editor.

Special Function Registers

Registers that control I/O processor functions, I/O status, timers, or other
modes or peripherals.
 2000 Microchip Technology Inc. DS51224B-page 253

MPLAB®-CXX Reference Guide
Stack - Hardware

An area in PICmicro MCU memory where function arguments, return values,
local variables, and return addresses are stored; i.e., a “Push-Down” list of
calling routines. Each time a PICmicro MCU executes a CALL or responds to
an interrupt, the software pushes the return address to the stack. A return
command pops the address from the stack and puts it in the program counter.

The PIC18CXXX family also has a hardware stack to store register values for
“fast” interrupts.

Stack - Software

The compiler uses a software stack for storing local variables and for passing
arguments to and returning values from functions.

Static RAM or SRAM

Static Random Access Memory. Program memory you can Read/Write on the
target board that does not need refreshing frequently.

Status Bar

The Status Bar is located on the bottom of the MPLAB IDE window and
indicates such current information as cursor position, development mode and
device, and active tool bar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step
Over) follows a CALL instruction into a subroutine.

Step Over

Step Over allows you to debug code without stepping into subroutines. When
stepping over a CALL instruction, the next break point will be set at the
instruction after the CALL. If for some reason the subroutine gets into an
endless loop or does not return properly, the next break point will never be
reached.

The Step Over command is the same as Single Step except for its handling of
CALL instructions.

Stimulus

Data generated to exercise the response of simulation to external signals.
Often the data is put into the form of a list of actions in a text file. Stimulus may
be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.

Symbol

A symbol is a general purpose mechanism for describing the various pieces
which comprise a program. These pieces include function names, variable
names, section names, file names, struct/enum/union tag names, etc.

Symbols in MPLAB IDE refer mainly to variable names, function names and
assembly labels.
DS51224B-page 254  2000 Microchip Technology Inc.

Glossary
System Button

The system button is another name for the system window control. Clicking on
the system button pops up the system menu.

System Window Control

The system window control is located in the upper left corner of windows and
some dialogs. Clicking on this control usually pops up a menu that has the
items “Minimize,” “Maximize,” and “Close.” In some MPLAB IDE windows,
additional modes or functions can be found.

Figure G1: System Window Control Menu - Watch Window

Target

Refers to user hardware.

Target Application

Firmware residing on the target board.

Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board that is being
emulated.

Template

Lines of text that you build for inserting into your files at a later time. The
MPLAB Editor stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB IDE
functions.

system window control
 2000 Microchip Technology Inc. DS51224B-page 255

MPLAB®-CXX Reference Guide
Trace

An emulator or simulator function that logs program execution. The emulator
logs program execution into its trace buffer which is uploaded to MPLAB IDE’s
trace window.

Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes
called the trace buffer.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any
address or address range, and is independent of the trace and break point
settings. Any number of trigger output points can be set.

Unassigned Section

A section which has not been assigned to a specific target memory block in
the linker command file. The linker must find a target memory block in which
to allocate an unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C, int myVar; defines a
variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or
programmer, to the host PC or from the target board to the emulator.

Warning

An alert that is provided to warn you of a situation that would cause physical
damage to a device, software file, or equipment.

WatchDog Timer (WDT)

A timer on a PICmicro microcontroller that resets the processor after a
selectable length of time. The WDT is enabled or disabled and set up using
configuration bits.

Watch Variable

A variable that you may monitor during a debugging session in a watch
window.

Watch Window

Watch windows contain a list of watch variables that are updated at each
break point.
DS51224B-page 256  2000 Microchip Technology Inc.

MPLAB®-CXX REFERENCE GUIDE

Index
Symbols
.lib ... 12
.o .. 13, 14

A
A/D Converter ... 16, 132

Buzy ... 16, 132
Close .. 16, 132
Convert .. 16, 132
Example of Use 19, 136
Open .. 17, 133
Read .. 18, 135
Set Channel 19, 135

Absolute Section .. 241
Access RAM ... 241
AckI2C .. 25, 140
Alphabetical character 100, 210
Alphanumeric character 100, 210
Arrays ... 35, 150
ASCII .. 100, 104
Assembler .. 241
Assigned Section .. 242
Asynchronous Mode 70, 180
atob .. 103, 215
atoi 103, 215, 216, 217, 218, 219
atoub .. 104
atoui .. 104

B
Break Point, Hardware 242
Break Point, Software 242
Brown-out Reset 50, 161
btoa .. 105, 216
BusyADC .. 16, 132
BusyUSART ... 67, 178
BusyXLCD .. 76, 186

C
Calibration Memory 242
Calling the Math Functions 119
Capture 20, 22, 137, 138

Close .. 20, 137
Example of Use 24, 139
Open .. 21, 137
Read .. 23, 138

Character Classification 100, 210
Alphabetic 100, 210
Alphanumeric 100, 210
ASCII .. 100
Control .. 101, 210
Convert to lower case 214
Convert to upper case 214
Decimal .. 101, 211
Graphical .. 211
Hexadecimal 102, 213
Lower Case Alphabetic 211
Lower-case Alphabetic 102
Printable ... 212
Punctuation .. 212
Upper Case Alphabetic 212
Upper-case Alphabetic 102
White Space ... 213

Characters
Control .. 101, 210

ClearSWCSSPI 92, 201
Clock_test ... 84, 194
CloseADC ... 16, 132
CloseCapture .. 20, 137
CloseI2C ... 25, 140
CloseMwire ... 42, 154
ClosePORT ... 151
ClosePORTB .. 38
ClosePWM .. 47, 159
CloseRA0INT .. 36
CloseSPI ... 55, 166
CloseTimer ... 62, 173
CloseUSART .. 68, 178
Code

Start Up .. 13
Command Line Interface 242
Compiler ... 242
Configuration Bits ... 243
Control Character 101, 210
ConvertADC .. 16, 132
Converting Decimal to Microchip Floating Point .

120, .. 237
Converting Microchip Floating-Point to Decimal .

122, .. 239
Customer Notification Service 5
Customer Support ... 7
 2000 Microchip Technology Inc. DS51224B-page 257

MPLAB®-CXX Reference Guide
D
Data Memory ..243
DataRdyI2C ..25, 140
DataRdyMwire ..42, 154
DataRdySPI ..55, 166
DataRdyUSART68, 179
Delay ...109, 220

1 Tcy ...109, 220
10 Tcy ...109
10 Tcy Mult.109, 220
100 Tcy Mult.110, 220
10K Tcy Mult.110, 221
1K Tcy Mult.110, 221

Delay100TCYx110, 220
Delay10KTCYx110, 221
Delay10TCY ...109
Delay10TCYx ..109, 220
Delay1KTCYx110, 221
Delay1TCY ...109, 220
Directives ..243

Control ..243
Data ..243
Listing ...246
Macro ...247
Object File ..249

Disable ..36
DisablePullups ..38, 152
Document Conventions2
Document Layout ..1

E
EEAckPolling ..31, 146
EEByteWrite ...31, 147
EECurrentAddRead32, 147
EEPageWrite ..33, 148
EEPROM ..243
EERandomRead33, 148
EESequentialRead34, 149
Emulator ...243
Enable ...36
EnablePullups ...39, 152
Executable Code ..244
Export ...244
Expressions ..244
Extended Microcontroller Mode244
External RAM ..244

F
File

Listing ...246
Floating Point Representation118, 236

G
General Functions ...128
getcI2C ..26, 141
getcMwire ..42, 154
getcSPI ..55, 167
getcUART ..95, 204
getcUSART ...69, 179
getsI2C ..26, 141
getsMwire ..43, 155
getsSPI ..56, 167
getsUART ..95, 204
getsUSART ...69, 179
Glossary ..241
Graphical character211

H
Hardware Functions129
Hardware Libraries12, 15, 131
Hex Code ..245
Hexadecimal ...2

I
I/O Port ..151
I2C, Hardware ...24, 140

Acknowledge25, 140
Close ..25, 140
Data Ready25, 140
EEPROM Acknowledge Polling31, 146
EEPROM Byte Write31, 147
EEPROM Current Address Read32, 147
EEPROM Page Write33, 148
EEPROM Random Read33, 148
EEPROM Sequential Read34, 149
Example of Use35, 150
Get Character26, 141
Get String ...26, 141
Idle ..27, 142
No Acknowledge27, 142
Open ...27, 142
Put Character28, 143
Put String ..28, 143
Read ...29, 144
Restart ..29, 145
Start ..30, 145
Stop ..30, 145
Write ...30, 146

I2C, Software ...84, 194
Acknowledge84, 194
Clock Test ...84, 194
Example of Use89, 199
Get Character85, 195
DS51224B-page 258  2000 Microchip Technology Inc.

Index
Get String ... 85, 195
No Acknowledge 86, 196
Put Character 86, 196
Put String ... 86, 196
Read .. 87, 197
Restart ... 87, 197
Start ... 88, 197
Stop ... 88, 198
Write .. 88, 198

ICD ... 245
ICE ... 245
IDE ... 245
IdleI2C .. 27, 142
Import ... 246
Initialization

Data ... 13
Initialized Data .. 246
Internet Address ... 4
Interrupts .. 36

Disable ... 36
Disable RA0/INT 36
Enable .. 36
Enable RA0/INT 37
Example of Use 37
Handler Code ... 14

isalnum ... 100, 210
isalpha .. 100, 210
isascii .. 100
isBOR ... 50, 161
iscntrl .. 101, 210
isdigit .. 101, 211
isgraph .. 211
islower .. 102, 211
isLVD .. 162
isMCLR ... 51, 162
isPOR ... 51, 163
isprint .. 212
ispunct .. 212
isspace ... 213
isupper .. 102, 212
isWDTTO .. 52, 164
isWDTWU ... 53, 164
isWU ... 53, 165
isxdigit .. 102, 213
itoa .. 105, 217

L
LCD, External ... 76, 186

Busy ... 76, 186
Example of Use 82, 192
Open .. 76, 186

Put Character 78, 188
Put ROM String .. 78
Put String ... 78, 188
Read Address 79, 188
Read Data .. 79, 189
Set Character Generator Address 80, 189
Set Display Data Address 80, 190
Write Command 81, 190
Write Data .. 81, 191

lib directory 11, 13, 127
Librarian .. 246
Libraries

Hardware 12, 15, 131
Precompiled Math 12, 117, 235
Software 12, 75, 185
Standard 12, 99, 209
Standard C ... 128

Library ... 246
Files .. 12

Linker .. 246
Linker Script Files ... 246
Listing File .. 246
Local Label ... 247
Logic Probes ... 247
Lower-Case Characters 114, 228

M
Math Functions ... 128
Math Libraries 117, 235

Integer and Floating Point 117, 235
MCLR ... 51, 162
MCU ... 247
memchr ... 222
memcmp ... 111, 222
memcpy .. 111, 223
memmove ... 224
Memory ... 111, 222

Calibration .. 242
Character ... 222
Compare .. 111, 222
Copy ... 111, 223
Data .. 243
Devices 31, 58, 146, 170
Move .. 224
Program ... 251
Set .. 112, 224
Trace .. 256

Memory Models .. 247
memset ... 112, 224
Microchip Internet Web Site 4
Microcontroller Mode 247
 2000 Microchip Technology Inc. DS51224B-page 259

MPLAB®-CXX Reference Guide
Microprocessor Mode248
Microwire ..42, 154

Close ..42, 154
Data Ready42, 154
Example of Use45, 157
Get Character42, 154
Get String ...43, 155
Open ...43, 155
Put Character44, 156
Read ...44, 156
Write ...44, 156

Mnemonics ...248
MPASM ...241, 248
MPLAB IDE ...248
MPLAB-CXX ...248
MPLAB-ICD ..248
MPLAB-ICE ..248
MPLAB-SIM ..248
MPLIB ...246, 248
MPLINK ..246, 249

N
NotAckI2C ...27, 142
Number and Text Conversion103, 215

Byte to String (B to A)105, 216
Character to ASCII106
Character to Lower-case ASCII106, 218
Character to Upper-case ASCII107, 219
Integer to String (I to A)105, 217
String to Byte (A to B)103, 215
String to Integer (A to I) .103, 215, 216, 217,

218, ...219
String to Unsigned Byte (A to UB)104
String to Unsigned Integer (A to UI)104
Unsigned Byte to String (UB to A)107
Unsigned Integer to String (UI to A)108

Numeric character101, 211

O
Object Code ..249
Object Files, Precompiled13, 14
Off-Chip Memory ..250
Opcodes ...250
OpenADC ...17, 133
OpenCapture ..21, 137
OpenI2C ...27, 142
OpenMwire ...43, 155
OpenPORT ...152, 153
OpenPORTB ...39
OpenPWM ..47, 159
OpenRA0INT ..37

OpenSPI ..56, 167
OpenSWSPI ..92, 201
OpenTimer ..62, 173
OpenUART ..95, 205
OpenUSART ...70, 180
OpenXLCD ..76, 186
Operators ..250

P
Pass Counter ..250
PICMASTER ...250
PICmicro ...253
PICSTART Plus ..250
Pointers ...35, 150
Port

Close ..151
Open ...152, 153

Port B ..38
Close ..38
Disable Pullups38, 152
Enable Pullups39, 152
Open ...39

Precedence ...251
Precompiled Math Libraries12, 117, 235
PRO MATE ...251
PRODH ...11
PRODL ..11
Program Counter ...251
Program Memory ..251
Programmer ..251
Project ...251
Pulse Width Modulation Functions47, 159
putcI2C ..28, 143
putcMwire ..44, 156
putcSPI ..57, 168
putcSWSPI ..93, 202
putcUART ..96, 205
putcUSART ...71, 181
putcXLCD ..78, 188
putrsUSART ..71
putrsXLCD ...78
putsI2C ..28, 143
putsSPI ..57, 168
putsUART ..96, 205
putsUSART ...71, 181
putsXLCD ..78, 188
PWM ...47, 159

Close ..47, 159
Example of Use49, 161
Open ...47, 159
Set Duty Cycle49, 160
DS51224B-page 260  2000 Microchip Technology Inc.

Index
Q
Qualifier .. 251

R
Radix .. 251
ReadADC ... 18, 135
ReadAddrXLCD 79, 188
ReadCapture .. 23, 138
ReadDataXLCD 79, 189
ReadI2C ... 29, 144
README File ... 3
ReadMwire ... 44, 156
ReadSPI ... 58, 169
ReadTimer .. 64, 176
ReadUART ... 97, 206
ReadUSART ... 72, 181
Real-Time ... 252
References ... 2, 3
Register Definitions .. 14
Relocatable Section 252
Reset .. 50, 161

Brown-out .. 50, 161
Low Voltage Detect 162
Master Clear 51, 162
Power-on ... 51, 163
Status ... 54, 165
Wake-up .. 53, 165
Watchdog Timer Time-out 52, 164
Watchdog Timer Wake-up 53, 164

RestartI2C .. 29, 145

S
Section ... 252

Absolute ... 241
Assigned .. 242
Relocatable .. 252
Shared ... 252
Unassigned .. 256

SetCGRamAddr 80, 189
SetChanADC .. 19, 135
SetDCPWM .. 49, 160
SetDDRamAddr 80, 190
SetSWCSSPI ... 93, 202
Shared Section ... 252
Simulator .. 252
Single Step ... 253
Skew ... 253
Skid .. 253
Sleep .. 53, 165
Software Functions 129
Software Libraries 12, 75, 185

Source Code, Assembly 253
Source Code, C .. 253
SPI, Hardware .. 55, 166

Close .. 55, 166
Data Ready 55, 166
Example of Use 58, 170
Get Character 55, 167
Get String ... 56, 167
Open .. 56, 167
Put Character 57, 168
Put String ... 57, 168
Read ... 58, 169
Write ... 58, 169

SPI, Software .. 92, 201
Clear Chip Select 92, 201
Example of Use 94, 203
Open .. 92, 201
Put Character 93, 202
Set Chip Select 93, 202
Write ... 94, 203

src directory .. 11, 127
SSP .. 25, 140
Stack, Hardware ... 254
Stack, Software .. 254
Standard C Libraries 128
Standard Libraries 12, 99, 209
Start Up Code ... 13
StartI2C .. 30, 145
StatusReset .. 54, 165
Stimulus .. 254
StopI2C ... 30, 145
Stopwatch ... 254
stray cat .. 112, 225
strcat ... 112, 225
strchr ... 226
strcmp ... 112, 226
strcpy .. 113, 227
strcspn .. 227
String .. 111, 222, 232

Character 226, 227, 228, 231
Compare .. 112, 226
Compare n ... 229
Concatenate n .. 229
Concatenation 112, 225
Convert to Lower-case 114, 228
Convert to Upper-case 114, 233
Copy ... 113, 227
Copy n .. 230
Length .. 113, 228
Set .. 114
Tokens ... 232
 2000 Microchip Technology Inc. DS51224B-page 261

MPLAB®-CXX Reference Guide
Strings ...104
strlen ...113, 228
strlwr ...114, 228
strncat ...229
strncmp ...229
strncpy ..230
strpbrk ...228
strrchr ..231
strset ...114
strspn ..231
strstr ..232
strupr ...114, 233
SWAckI2C84, 86, 194, 196
SWGetsI2C ...85, 195
SWPutsI2C ...86, 196
SWReadI2C85, 86, 87, 195, 196, 197
SWRestartI2C ...87, 197
SWStartI2C ...88, 197
SWStopI2C ...88, 198
SWWriteI2C ..88, 198
Symbol ..254
Synchronous Mode70, 180
System Button ..255
System Window Control255

T
Target ...255
Timers ...62, 173

Close ..62, 173
Example of Use66, 177
Open ...62, 173
Read ...64, 176
Write ...65, 176

toascii ..106
tolower ..106, 214, 218
toupper ..107, 214, 219
Trace ...256
Trace Memory ...256
Troubleshooting ..4

U
UART, Software95, 204

Example of Use98, 207
Get Character95, 204
Get String ...95, 204
Open ...95, 205
Put Character96, 205
Put String ..96, 205
Read ...97, 206
Write ...97, 206

ubtoa ...107

uitoa ..108
Unassigned Section256
Uninitialized Data ..256
Updates ...2
Upper-Case Characters114, 228
USART, Hardware67, 178

Buzy ..67, 178
Close ..68, 178
Data Ready68, 179
Example of Use74, 183
Get Character69, 179
Get String ...69, 179
Open ...70, 180
Put Character71, 181
Put ROM String ..71
Put String ..71, 181
Read ...72, 181
Write ...73, 182

V
Variables Used by the Floating Point Libraries ...

118, ..236

W
Watch Dog Timer ..256
Watch Window ..256
Watchdog Timer (WDT)52, 53, 164
WDT ..256
WriteCmdXLCD81, 190
WriteDataXLCD81, 191
WriteI2C ..30, 146
WriteMwire ..44, 156
WriteSPI ..58, 169
WriteSWSPI ..94, 203
WriteTimer ...65, 176
WriteUART ..97, 206
WriteUSART ..73, 182
WWW Address ..4
DS51224B-page 262  2000 Microchip Technology Inc.

Index
NOTES:
 2000 Microchip Technology Inc. DS51224B-page 263

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights
arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written
approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property
rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other
trademarks mentioned herein are the property of their respective companies.

DS51224B-page 264  2000 Microchip Technology Inc.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 2/00 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75248
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Beijing
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing 100027 PRC
Tel: 86-10-85282100 Fax: 86-10-85282104
Hong Kong
Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Shanghai
Microchip Technology
Unit B701, Far East International Plaza,
No. 317, Xianxia Road
Shanghai, 200051 P.R.C
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

ASIA/PACIFIC (continued)
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5858 Fax: 44-118 921-5835

01/21/00

WORLDWIDE SALES AND SERVICE

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

	General Information
	Introduction
	Highlights
	About This Guide
	Warranty Registration
	Recommended Reading
	Troubleshooting
	The Microchip Internet Web Site
	Development Systems Customer Notification Service
	Customer Support

	Part 1 – MPLAB-C17 Libraries
	Chapter 1. Library/Precompiled Object Overview
	1.1 Introduction
	1.2 Highlights
	1.3 MPLAB-C17 Libraries
	1.4 MPLAB-CXX Precompiled Object Files

	Chapter 2. Hardware Peripheral Library
	2.1 Introduction
	2.2 Highlights
	2.3 A/D Converter Functions
	2.4 Input Capture Functions
	2.5 I·C® Functions
	2.6 Interrupt Functions
	2.7 Port B Functions
	2.8 Microwire® Functions
	2.9 Pulse Width Modulation Functions
	2.10 Reset Functions
	2.11 SPI™ Functions
	2.12 Timer Functions
	2.13 USART Functions

	Chapter 3. Software Peripheral Library
	3.1 Introduction
	3.2 Highlights
	3.3 External LCD Functions
	3.4 Software I·C Functions
	3.5 Software SPI Functions
	3.6 Software UART Functions

	Chapter 4. General Software Library
	4.1 Introduction
	4.2 Highlights
	4.3 Character Classification Functions
	4.4 Number and Text Conversion Functions
	4.5 Delay Functions
	4.6 Memory and String Manipulation Functions

	Chapter 5. Math Library
	5.1 Introduction
	5.2 Highlights
	5.3 32-Bit Integer and 32-Bit Floating Point Math Libraries
	5.4 Decimal/Floating Point and Floating Point/ Decimal Conversions

	Part 2 – MPLAB-C18 Libraries
	Chapter 6. Library Overview
	6.1 Introduction
	6.2 Highlights
	6.3 MPLAB-C18 Libraries Overview
	6.4 Standard C Libraries
	6.5 Processor-Specific Libraries
	6.6 Interrupt Handling

	Chapter 7. Hardware Peripheral Library
	7.1 Introduction
	7.2 Highlights
	7.3 A/D Converter Functions
	7.4 Input Capture Functions
	7.5 I·C® Functions
	7.6 I/O Port Functions
	7.7 Microwire® Functions
	7.8 Pulse Width Modulation Functions
	7.9 Reset Functions
	7.10 SPI™ Functions
	7.11 Timer Functions
	7.12 USART Functions

	Chapter 8. Software Peripheral Library
	8.1 Introduction
	8.2 Highlights
	8.3 External LCD Functions
	8.4 Software I·C Functions
	8.5 Software SPI Functions
	8.6 Software UART Functions

	Chapter 9. General Software Library
	9.1 Introduction
	9.2 Highlights
	9.3 Character Classification Functions
	9.4 Number and Text Conversion Functions
	9.5 Delay Functions
	9.6 Memory and String Manipulation Functions

	Chapter 10. Math Library
	10.1 Introduction
	10.2 Highlights
	10.3 32-Bit Integer and 32-Bit Floating Point Math Libraries
	10.4 Decimal/Floating Point and Floating Point/ Decimal Conversions
	Introduction
	Highlights
	Terms

