
MPLAB®-CXX
COMPILER USER’S GUIDE
Information contained in this publication regarding device applications and the like is intended by way of suggestion
only. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with
respect to the accuracy or use of such information. Use of Microchip’s products as critical components in life support
systems is not authorized except with express written approval by Microchip.

 2000 Microchip Technology Incorporated. All rights reserved.

The Microchip logo, name, MPLAB, PIC, PICSTART, PRO MATE, and PICmicro are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

Microsoft, the Microsoft Internet Explorer, Windows, and MS-DOS are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Netscape is a registered trademark of Netscape Corporation in the United States and/or other countries.

Microwire is a registered trademark of National Semiconductor Corporation.

I2C is a trademark of Philips Corporation.

SPI is a registered trademark of Motorola Corporation

All product/company trademarks mentioned herein are the property of their respective companies.
 2000 Microchip Technology Inc. DS51217B

MPLAB®-CXX Compiler User’s Guide
DS51217B  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Table of Contents
General Information
Introduction .. 1

Highlights ... 1

About This Guide ... 1

Warranty Registration .. 4

Recommended Reading .. 4

Troubleshooting ... 5

The Microchip Internet Web Site ... 6

Development Systems Customer Notification Service 7

Customer Support ... 9
 2000 Microchip Technology Inc. DS51217B-page i

MPLAB®-CXX Compiler User’s Guide
Part 1 – Getting Started with MPLAB-CXX

Chapter 1. MPLAB-CXX Preview
1.1 Introduction ...13

1.2 Highlights ..13

1.3 What MPLAB-CXX Is ..13

1.4 What MPLAB-CXX Does ..14

1.5 ANSI Compatibility ..14

1.6 Tool Compatibility ...14

Chapter 2. MPLAB-CXX Installation
2.1 Introduction ...15

2.2 Highlights ..15

2.3 Host Computer System Requirements15

2.4 Compiler Versions ..15

2.5 Installation ..16

Chapter 3. MPLAB-CXX Overview

3.1 Introduction ...19

3.2 Highlights ..19

3.3 Overview of Compilers ...19

3.4 Compiler Input/Output Files ..21

3.5 Compiler Resource Requirements ...22

Chapter 4. Using MPLAB-CXX without MPLAB IDE
4.1 Introduction ...23

4.2 Highlights ..23

4.3 MPLAB-CXX – Command Line Overview23

4.4 Using MPLAB-C17 on the Command Line26

4.5 Using MPLAB-C18 on the Command Line31

4.6 Going Forward ..36
DS51217B-page ii  2000 Microchip Technology Inc.

Table Of Contents
Chapter 5. Using MPLAB-CXX with MPLAB IDE
5.1 Introduction .. 37

5.2 Highlights ... 37

5.3 MPLAB-CXX – MPLAB Projects Overview 37

5.4 Using MPLAB-C17 with MPLAB IDE – A Tutorial 40

5.5 Using MPLAB-C18 with MPLAB IDE – A Tutorial 54

5.6 Going Forward ... 68
 2000 Microchip Technology Inc. DS51217B-page iii

MPLAB®-CXX Compiler User’s Guide
Part 2 – Using MPLAB-CXX

Chapter 6. MPLAB-CXX and C
6.1 Introduction ...71

6.2 Highlights ..71

6.3 C vs. MPLAB-CXX ..71

6.4 Components of a Basic MPLAB-CXX Program72

6.5 C Keywords ..73

Chapter 7. MPLAB-CXX Fundamentals

7.1 Introduction ...75

7.2 Highlights ..75

7.3 Preprocessor Directives ...76

7.4 Comments ..85

7.5 Constants ...86

7.6 Variables ...88

7.7 Functions ..96

7.8 Operators ..99

7.9 Program Control Statements ..106

7.10 Arrays and Strings ..112

7.11 Pointers ..115

7.12 Structures and Unions ..118

Chapter 8. MPLAB-CXX and PICmicro MCU Programming

8.1 Introduction ...123

8.2 Highlights ..123

8.3 PICmicro MCU Programming Specifics123

8.4 MPLAB-C17 and PICmicro MCU Programming126

8.5 MPLAB-C18 and PICmicro MCU Programming135
DS51217B-page iv  2000 Microchip Technology Inc.

Table Of Contents
Chapter 9. Mixing Assembly Language and C Modules
9.1 Introduction .. 139

9.2 Highlights ... 139

9.3 Calling Conventions ... 139

9.4 Mixing Assembly Language and C Variables and Functions ... 140

9.5 Calling an Assembly Function in C – MPLAB-C17 141

9.6 Using the File Selection Registers (FSR’s) 142

Chapter 10. ANSI Implementation Issues
10.1 Introduction .. 145

10.2 Highlights ... 145

10.3 Identifiers .. 145

10.4 Characters .. 146

10.5 Integers .. 146

10.6 Floating Point ... 147

10.7 Arrays and Pointers .. 148

10.8 Registers .. 148

10.9 Structures and Unions .. 148

10.10Bit-Fields ... 149

10.11Enumerations .. 149

10.12Switch Statement .. 149

10.13Preprocessing Directives .. 149

Chapter 11. Examples
11.1 Introduction .. 151

11.2 Highlights ... 151

11.3 Overview of Example Files ... 151

11.4 Example Details ... 152
 2000 Microchip Technology Inc. DS51217B-page v

MPLAB®-CXX Compiler User’s Guide
Appendices

Appendix A. ASCII Character Set
A.1 Introduction ...155

A.2 ASCII Character Set ...155

Appendix B. PIC17CXXX Instruction Set

B.1 Introduction ...157

B.2 Highlights ..157

B.3 Key to PICmicro MCU Family Instruction Sets157

B.4 PIC17CXXX Instruction Set ..158

Appendix C. PIC18CXXX Instruction Set
C.1 Introduction ...163

C.2 Highlights ..163

C.3 Key to Enhanced 16-Bit Core Instruction Set163

C.4 PIC18CXXX Instruction Set ..164

Appendix D. MPLAB-C17 Errors
D.1 Introduction ...169

D.2 Highlights ..169

D.3 Errors ..169

D.4 Warnings ..173

Appendix E. MPLAB-C18 Errors

E.1 Introduction ...175

E.2 Highlights ..175

E.3 Errors ..175

E.4 Warnings ..182

Appendix F. References
F.1 Introduction ...185

F.2 Highlights ..185

F.3 C Standards Information ...185

F.4 General C Information ..185
DS51217B-page vi  2000 Microchip Technology Inc.

Table Of Contents
Glossary ..187
Introduction .. 187

Highlights ... 187

Terms .. 187

Index ..203

Worldwide Sales and Service..210
 2000 Microchip Technology Inc. DS51217B-page vii

MPLAB®-CXX Compiler User’s Guide
DS51217B-page viii  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE

G
en

eral
In

fo
rm

atio
n

General Information
Introduction
This first chapter contains general information that will be useful to know
before using MPLAB-C17 or MPLAB-C18.

Highlights
The information you will garner from this chapter:

• About this Guide

• Recommended Reading

• Warranty Registration

• Troubleshooting

• The Microchip Internet Web Site

• Development Systems Customer Notification Service

• Customer Support

About This Guide

Document Layout
This document describes how to use MPLAB-CXX to write C code for
PICmicro microcontroller applications. For a detailed discussion about basic
MPLAB IDE functions, refer to the MPLAB IDE User’s Guide (DS51025).

The User’s Guide layout is as follows:

Part 1 - Getting Started with MPLAB-CXX

• Chapter 1: MPLAB-CXX Preview – describes what MPLAB-C17 and
MPLAB-C18 are and what they can do.

• Chapter 2: MPLAB-CXX Installation – discusses compiler versions,
PC requirements, and installation procedures.

• Chapter 3: MPLAB-CXX Overview – gives an overview of compiler
operation, input/output files, and resource requirements.

• Chapter 4: Using MPLAB-CXX without MPLAB IDE – describes how
to use MPLAB-C17 or MPLAB-C18 as stand-alone compilers.

• Chapter 5: Using MPLAB-CXX with MPLAB IDE – describes how to
use MPLAB-C17 or MPLAB-C18 with MPLAB IDE.
 2000 Microchip Technology Inc. DS51217B-page 1

MPLAB®-CXX Compiler User’s Guide
Part 2 - Using MPLAB-CXX

• Chapter 6: MPLAB-CXX and C – compares MPLAB-CXX and C.

• Chapter 7: MPLAB-CXX Fundamentals – describes the MPLAB-CXX
programming language including functions, statements, operators, vari-
ables, and other elements.

• Chapter 8: MPLAB-CXX and PICmicro® MCU Programming –
describes how to use MPLAB-CXX in conjunction with device program-
ming.

• Chapter 9: Mixing C with Assembly Language Modules – provides
guidelines to using C with MPASM assembly language modules.

• Chapter 10: ANSI Implementation Issues – details MPLAB-CXX spe-
cific parameters described as implementation defined in the ANSI stan-
dard.

• Chapter 11: Examples – discusses the MPLAB-C17 examples
included in the examples directory.

Appendices

• Appendix A: ASCII Character Set – contains the ASCII character set.

• Appendix B: PIC17CXXX Instruction Set – gives the instruction set
for the PIC17CXXX device family.

• Appendix C: PIC18CXXX Instruction Set – gives the instruction set
for the PIC18CXXX device family.

• Appendix D: MPLAB-C17 Errors – lists errors generated by
MPLAB-C17.

• Appendix E: MPLAB-C18 Errors – lists errors generated by
MPLAB-C18.

• Appendix F: References – gives references that may be helpful in pro-
gramming with MPLAB-CXX.

• Glossary – A glossary of terms used in this guide.

• Index – Cross-reference listing of terms, features and sections of this
document.

• Worldwide Sales and Service – gives the address, telephone and fax
number for Microchip Technology Inc. sales and service locations
throughout the world.
DS51217B-page 2  2000 Microchip Technology Inc.

General Information

G
en

eral
In

fo
rm

atio
n

Conventions Used in this Guide
This manual uses the following documentation conventions:

Updates
All documentation becomes dated, and this user’s guide is no exception.
Since MPLAB IDE, MPLAB-C17, MPLAB-C18 and other Microchip tools are
constantly evolving to meet customer needs, some MPLAB IDE dialogs and/
or tool descriptions may differ from those in this document. Please refer to our
web site to obtain the latest documentation available.

Table: Documentation Conventions

Description Represents Examples

Code (Courier font):

Plain characters Sample code
Filenames and paths

#define START
c:\autoexec.bat

Angle brackets: < > Variables <label>, <exp>

Square brackets [] Optional arguments MPASMWIN
[main.asm]

Curly brackets and
pipe character: { | }

Choice of mutually exclusive
arguments
An OR selection

errorlevel {0|1}

Lower case charac-
ters in quotes

Type of data “filename”

Ellipses... Used to imply (but not show)
additional text that is not rele-
vant to the example

list
[“list_option...
, “list_option”]

0xnnn A hexadecimal number where
n is a hexadecimal digit

0xFFFF, 0x007A

Italic characters A variable argument; it can be
either a type of data (in lower
case characters) or a specific
example (in uppercase charac-
ters).

char isascii
(char, ch);

Interface (Helvetica font):

Underlined, italic
text with right arrow

A menu selection from the
menu bar

File > Save

Bold characters A window or dialog button to
click

OK, Cancel

Characters in angle
brackets < >

A key on the keyboard <Tab>, <Ctrl-C>

Documents (Helvetica font):

Italic characters Referenced books MPLAB User’s Guide
 2000 Microchip Technology Inc. DS51217B-page 3

MPLAB®-CXX Compiler User’s Guide
Warranty Registration
Please complete the enclosed Warranty Registration Card and mail it
promptly. Sending in your Warranty Registration Card entitles you to receive
new product updates. Interim software releases are available at the Microchip
web site.

Recommended Reading
This user’s guide describes how to use MPLAB-C17 and MPLAB-C18. For
more information on included libraries and precompiled object files for the
compilers, the operation of MPLAB IDE and the use of other tools, the
following are recommended reading.

MPLAB-CXX Reference Guide – Libraries and Precompiled Object Files
(DS51224)

Reference guide for MPLAB-CXX libraries and precompiled object files. Lists
all library functions with a detailed description of their use.

README.C17, README.C18

For the latest information on using MPLAB-C17 or MPLAB-C18, read the
README.C17 or README.C18 file (ASCII text) included with the software.
These README files contain update information that may not be included in
this document.

README.XXX

For the latest information on other Microchip tools (MPLAB, MPLINK, etc.),
read the associated README files (ASCII text file) included with the MPLAB
IDE software.

MPLAB IDE User’s Guide (DS51025)

Comprehensive guide that describes installation and features of Microchip’s
MPLAB Integrated Development Environment (IDE), as well as the editor and
simulator functions in the MPLAB IDE environment.

MPASM User’s Guide with MPLINK and MPLIB (DS33014)

This user’s guide describes how to use the Microchip PICmicro MCU
assembler (MPASM), the linker (MPLINK) and the librarian (MPLIB).

Technical Library CD-ROM (DS00161)

This CD-ROM contains comprehensive application notes, data sheets, and
technical briefs for all Microchip products. To obtain this CD-ROM, contact the
nearest Microchip Sales and Service location (see back page).
DS51217B-page 4  2000 Microchip Technology Inc.

General Information

G
en

eral
In

fo
rm

atio
n

Microchip Web Site

Our web site (http://www.microchip.com) contains a wealth of documentation.
Individual data sheets, application notes, tutorials and user’s guides are all
available for easy download. All documentation is in Adobe Acrobat (pdf)
format.

Microsoft® Windows® Manuals

This manual assumes that users are familiar with the Microsoft Windows
operating system. Many excellent references exist for this software program,
and should be consulted for general operation of Windows.

Troubleshooting
See the README files for information on common problems not addressed in
this user’s guide.
 2000 Microchip Technology Inc. DS51217B-page 5

MPLAB®-CXX Compiler User’s Guide
The Microchip Internet Web Site
Microchip provides on-line support on the Microchip World Wide Web (WWW)
site.

The web site is used by Microchip as a means to make files and information
easily available to customers. To view the site, the user must have access to
the Internet and a web browser, such as Netscape® Communicator or
Microsoft® Internet Explorer®. Files are also available for FTP download from
our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser
to attach to:

http://www.microchip.com

The file transfer site is available by using an FTP program/client to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may
download files for the latest Development Tools, Data Sheets, Application
Notes, User’s Guides, Articles, and Sample Programs. A variety of Microchip
specific business information is also available, including listings of Microchip
sales offices, distributors and factory representatives. Other data available for
consideration is:

• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to Microchip Products
• Conferences for products, Development Systems, technical information

and more
• Listing of seminars and events
DS51217B-page 6  2000 Microchip Technology Inc.

General Information

G
en

eral
In

fo
rm

atio
n

Development Systems Customer Notification Service
Microchip provides a customer notification service to help our customers keep
current on Microchip products with the least amount of effort. Once you
subscribe to one of our list servers, you will receive email notification
whenever we change, update, revise or have errata related to that product
family or development tool. See the Microchip WWW page for other Microchip
list servers.

The Development Systems list names are:

• Compilers

• Emulators

• Programmers

• MPLAB IDE

• Otools (Other Tools)

Once you have determined the names of the lists that you are interested in,
you can subscribe by sending a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe <listname> yourname

Here is an example:

subscribe mplab John Doe

To UNSUBSCRIBE from these lists, send a message to:

listserv@mail.microchip.com

with the following as the body:

unsubscribe <listname> yourname

Here is an example:

unsubscribe mplab John Doe

The following sections provide descriptions of the available Development
Systems lists.

Compilers
The latest information on Microchip C compilers, Linkers and Assemblers.
These include MPLAB-C17, MPLAB-C18, MPLINK, MPASM as well as the
Librarian, MPLIB for MPLINK.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe compilers yourname
 2000 Microchip Technology Inc. DS51217B-page 7

MPLAB®-CXX Compiler User’s Guide
Emulators
The latest information on Microchip In-Circuit Emulators. These include
MPLAB-ICE and PICMASTER.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe emulators yourname

Programmers
The latest information on Microchip PICmicro MCU device programmers.
These include PRO MATE® II and PICSTART® Plus.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe programmers yourname

MPLAB IDE
The latest information on Microchip MPLAB IDE, the Windows Integrated
Development Environment for development systems tools. This list is focused
on MPLAB IDE, MPLAB-SIM, MPLAB Project Manager and general editing
and debugging features. For specific information on MPLAB IDE compilers,
linkers and assemblers, subscribe to the COMPILERS list. For specific
information on MPLAB IDE emulators, subscribe to the EMULATORS list. For
specific information on MPLAB IDE device programmers, please subscribe to
the PROGRAMMERS list.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe mplab yourname

Otools (Other Tools)
The latest information on other development system tools provided by
Microchip. For specific information on MPLAB IDE and its integrated tools
refer to the other mail lists.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe otools yourname
DS51217B-page 8  2000 Microchip Technology Inc.

General Information

G
en

eral
In

fo
rm

atio
n

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Corporate Applications Engineer (CAE)

• Hot line

Customers should call their distributor, representative, or field application
engineer (FAE) for support. Local sales offices are also available to help
customers. See the back cover for a listing of sales offices and locations.

Corporate applications engineers (CAEs) may be contacted at
(480) 786-7627.

In addition, there is a Systems Information and Upgrade Line. This line
provides system users a listing of the latest versions of all of Microchip's
development systems software products. Plus, this line provides information
on how customers can receive any currently available upgrade kits.

The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-786-7302 for the rest of the world.
 2000 Microchip Technology Inc. DS51217B-page 9

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 10  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Part 1 – Getting Started with MPLAB-CXX
G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

Chapter 1. MPLAB-CXX Preview ...13

Chapter 2. MPLAB-CXX Installation..15

Chapter 3. MPLAB-CXX Overview...19

Chapter 4. Using MPLAB-CXX without MPLAB IDE23

Chapter 5. Using MPLAB-CXX with MPLAB IDE....................................37
 2000 Microchip Technology Inc. DS51217B-page 11

MPLAB®-CXX Compiler User’s Guide
DS51217B-page 12  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 1. MPLAB-CXX Preview
G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

1.1 Introduction
This chapter will give you a preview of MPLAB-C17 and MPLAB-C18.

1.2 Highlights
This chapter covers the following topics:

• What MPLAB-CXX Is

• What MPLAB-CXX Does

• ANSI Compatibility

• Tool Compatibility

1.3 What MPLAB-CXX Is
MPLAB-CXX is a term used to refer to both the MPLAB-C17 and MPLAB-C18
compilers. The MPLAB-C17 and MPLAB-C18 compilers are full-featured
ANSI C compilers for the Microchip Technology PIC17CXXX and PIC18CXXX
PICmicro 8-bit microcontrollers, respectively. The compilers are fully
compatible with Microchip’s MPLAB Integrated Development Environment
(IDE), allowing source-level debugging with both the MPLAB-ICE in-circuit
emulator and the MPLAB-SIM simulator. MPLAB IDE provides a convenient,
project-oriented development environment that reduces development time.

MPLAB-C17 and MPLAB-C18 have implemented extensions to the C
language to provide specific support for Microchip’s PICmicro MCU
peripherals. The C libraries include: A/D converter, Input Capture, Interrupt
Support Macros, SPI®, Timers, USART, I2C®, I/O Port, Pulse Width
Modulation, Reset, External LCD, Software SPI, Software I2C, Software
USART, Character Classification, Relay, Memory/String Manipulation, and
Number/Text Conversion.
 2000 Microchip Technology Inc. DS51217B-page 13

MPLAB®-CXX Compiler User’s Guide
1.4 What MPLAB-CXX Does
The MPLAB-C17 and MPLAB-C18 compilers provide a solution for
developing C code for the PIC17CXXX and PIC18CXXX microcontrollers.
These compilers have the following features:

• ANSI compatibility

• Integration with MPLAB IDE for easy-to-use project management and
source-level debugging

• Generation of relocatable object modules for enhanced code reuse

• Compatibility with object modules generated with MPASM, allowing
complete freedom in mixing assembly and C in a single project

• Transparent read/write access to external memory

• Strong support for inline assembly when total control is absolutely nec-
essary

• Efficient code generator engine with multi-level optimization

• Extensive library support, including PWM, SPI, I2C, USART, UART,
string manipulation, and math libraries

• Full user-level control over data and code memory allocation

1.5 ANSI Compatibility
MPLAB-C17 and MPLAB-C18 are free-standing ANSI C implementations
except where specifically noted in this user’s guide. These compilers deviate
from the ANSI standard only where the standard conflicts with efficient
PICmicro MCU support. See Chapter 10 and the README files for details.

1.6 Tool Compatibility
MPLAB-C17 and MPLAB-C18 are compatible with all Microchip development
systems currently in production. This includes MPLAB-SIM (PICmicro MCU
discrete-event simulator), MPLAB-ICE (PICmicro MCU Universal In-Circuit
Emulator), PRO MATE II (the Microchip Universal Programmer), and
PICSTART Plus (the Microchip low-cost development programmer).
DS51217B-page 14  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 2. MPLAB-CXX Installation
G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

2.1 Introduction
This chapter discusses how to install MPLAB-C17 or MPLAB-C18 on your
PC.

If you are going to use MPLAB-CXX with MPLAB, install MPLAB IDE first.

2.2 Highlights
This chapter includes:

• Host Computer System Requirements

• Compiler Versions

• Installation

2.3 Host Computer System Requirements
MPLAB-C17 requires:

• PC compatible 386 or better class system

• MS-DOS®/PC-DOS version 5.0 or greater, or Windows® 3.x,
or Windows 95/98, or Windows NT®

• 16 MB memory (32 MB recommended)

MPLAB-C18 requires:

• PC compatible 486 or better class system

• Windows 95/98 or Windows NT

• 16 MB memory (32 MB recommended)

2.4 Compiler Versions
There are two versions of MPLAB-C17:

• a DOS-extended version, mcc17d.exe

• a Windows 32-bit version (Windows 9x/NT native), mcc17.exe

and one version of MPLAB-C18:

• a Windows 32-bit version (Windows 9x/NT native), mcc18.exe

All compilers are command line programs. mcc17d.exe is used with DOS or
Windows 3.x. mcc17.exe and mcc18.exe are used with Windows 95/98 or
Windows NT. You can use all versions with MPLAB IDE, though the
Windows 9x/Windows NT native versions are recommended.
 2000 Microchip Technology Inc. DS51217B-page 15

MPLAB®-CXX Compiler User’s Guide
2.5 Installation
If you are going to use MPLAB-CXX with MPLAB, install MPLAB IDE first.

To install MPLAB-CXX, enter Windows, run the file SETUP.EXE on the
CD-ROM, and follow the prompts. For illustration, the setup for MPLAB-C17
v2.30 is described here.

The first dialog you should see is the Welcome dialog. This dialog displays the
version of MPLAB-C17 it will install and give you the opportunity to close any
open programs before installing. When you are ready to proceed, click Next.

The next dialog is a display of the latest README.C17. Check out any new
features and information here. When you are ready to proceed, click Next.

The Choose Destination Location dialog will appear next. The default
destination directory for installing the files is c:\mcc, where c: is your master
hard drive. If you wish to install in a different directory, click Browse... and find
or make another directory for installation. Click OK to return to the Choose
Destination Location dialog. Then click Next to continue.

Figure 2.1: Choose Destination Location

The next dialog is Select Components. It is recommended that you install all
components. Not doing so may cause certain MPLAB-C17 items not to
function properly. Once you are more familiar with the compiler, you may go
back and re-install it with fewer components, but for people new to
MPLAB-C17, it is best to have all components installed. Click Next to
proceed.
DS51217B-page 16  2000 Microchip Technology Inc.

MPLAB-CXX Installation

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

Figure 2.2: Select Components

The Select Program Manager dialog should now be visible. Choose the
default group of Microchip MPLAB-C17 or pick another group from the list.
Click Next to continue.

Figure 2.3: Select Program Manager Group

The next dialog is the Start Installation dialog. To complete the installation,
click Next. To quit the installation at this point, click Cancel.
 2000 Microchip Technology Inc. DS51217B-page 17

MPLAB®-CXX Compiler User’s Guide
The install program will use or create the directory you chose in the Choose
Destination Location dialog. Then it will install MPLAB-C17 components into
seven subdirectories:

In addition, MPLAB-C17 install will create an environment variable,
MCC_INCLUDE, in your AUTOEXEC.BAT file. The MCC_INCLUDE environment
variable specifies the directories to search for included files. For more
information, refer to the #include directive. The install program will also add
the compiler bin directory to your PATH so you can run the compiler from any
other directory.

• bin – executable versions

• doc – help files

• examples – source code examples, with example-specific header,
linker and batch files

• h – general header files

• lib – library and pre-compiled object files

• lkr – linker script files

• src – source code for files found in lib directory
DS51217B-page 18  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 3. MPLAB-CXX Overview
G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

3.1 Introduction
This chapter presents an overview of the compiler operation.

3.2 Highlights
This chapter includes:

• Overview of Compilers

• Compiler Input/Output Files

• Compiler Resource Requirements

3.3 Overview of Compilers
MPLAB-C17 and MPLAB-C18 generate object code from C source code. This
object code is then input into Microchip’s MPLINK linker to form the final
executable code. A single C source file may be compiled into a single
executable as shown in Figure 3.1, or it can be linked with other separately
assembled or compiled modules as shown in Figure 3.2. Related modules
can also be grouped and stored together in a library using Microchip’s MPLIB
Librarian (Figure 3.3). Required libraries can be specified at link time, and
only the modules which are needed will be included in the final executable.

For more information on MPLINK and MPLIB operation, please refer to the
MPASM User’s Guide with MPLINK and MPLIB (DS33014).

Figure 3.1: Generating Executable Code From One Object Module

MPLINK

MAIN.O

MAIN.HEX
Programmer MCU

MPLAB-CXX
MAIN.C
 2000 Microchip Technology Inc. DS51217B-page 19

MPLAB®-CXX Compiler User’s Guide
Figure 3.2: Generating Executable Code From Object Modules

Figure 3.3: Creating a Reusable Object Library

MPLINK

MAIN.O

MORE.O

MAIN.HEX
Programmer MCU

UNITS.LIB

MPLAB-CXX

MPLAB-CXX

MAIN.C

MORE.C

UNITS.LIB

MPLAB-CXX
UNIT1.C MPLIB

UNIT1.O

MPLIB

UNIT2.O

MPLIB

UNIT3.O

MPLAB-CXX

MPLAB-CXX

UNIT2.C

UNIT3.C
DS51217B-page 20  2000 Microchip Technology Inc.

MPLAB-CXX Overview

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

3.4 Compiler Input/Output Files
These are the default file extensions used by MPLAB-CXX.

Table 3.1: MPLAB-CXX Default Extensions

3.4.1 Source Code Format (.c)
The source code file may be created using any ASCII text file editor. It should
conform to C language programming guidelines. For information on how to
program using C, please refer to Appendix F.

3.4.2 Error File Format (.err)
MPLAB-CXX by default generates an error file. This file can be useful when
debugging your code. The MPLAB Source Level Debugger will automatically
open this file in the case of an error. The format of the messages in the error
file is:

<type>[<number>] <file> <line> <description>

For example:

Error[113] C:\prog.c 7 : Symbol not previously defined (start)

See the appendices for descriptions of error messages generated.

3.4.3 Object File Format (.o)
Object files are the relocatable code produced from source files.

Extension Purpose

.c Default source file extension input to MPLAB-C17/C18:
<source_name>.c

.err Output extension from MPLAB-C17/C18 for error files:
<source_name>.err

.o Output extension from MPLAB-C17/C18 for object files:
<source_name>.o
 2000 Microchip Technology Inc. DS51217B-page 21

MPLAB®-CXX Compiler User’s Guide
3.5 Compiler Resource Requirements
The following are PICmicro MCU resource impacts from the compiler:

• FSR0: Can be used, but compiler may use also. Don’t expect value to
stay the same.

• FSR1, FSR2: Reserved for compiler use.

• PRODH, PRODL: Can be used, but compiler may use also. Don’t
expect value to stay the same.

• TBLPTRH, TBLPTRL, TBLAT: Can be used, but compiler may use
also. Don’t expect value to stay the same.
DS51217B-page 22  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 4. Using MPLAB-CXX without MPLAB IDE
G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

4.1 Introduction
This chapter discusses how to use MPLAB-CXX from the command line
(without MPLAB IDE).

4.2 Highlights
This chapter includes:

• MPLAB-CXX – Command Line Overview

• Using MPLAB-C17 on the Command Line

• Using MPLAB-C18 on the Command Line

• Going Forward

4.3 MPLAB-CXX – Command Line Overview
MPLAB-C17 can be invoked directly on the command line in DOS or a DOS
shell window of Windows 3.x (mcc17d.exe), or console mode in Windows
95/98 or Windows NT (mcc17.exe). To use MPLAB-C17 with MPLAB IDE,
see Chapter 5.

MPLAB-C18 (mcc18.exe) can be invoked directly on the command line in
console mode in Windows 95/98 or Windows NT. To use MPLAB-C18 with
MPLAB IDE, see the next chapter.

MPLAB-CXX may be used alone to compile individual C source files into
object files. Or, it may be used in conjunction with MPLINK to create hex files.

Figure 4.1 shows a generic use of the MPLAB-CXX compiler tool.
 2000 Microchip Technology Inc. DS51217B-page 23

MPLAB®-CXX Compiler User’s Guide
Figure 4.1: MPLAB-CXX – Used Alone and With MPLINK

MPLINK

MPLAB-CXX MPASM

source
files

object
files

linker script
library &

output
files

main.c prog.asm

main.o prog.o

math.lib device.lkr

prog.hex prog.mapprog.lstprog.codprog.out

files

PRO MATE® II
PICSTART® Plus

ASSEMBLER/
COMPILER

LINKER

PROGRAMMERS

precomp.o

MPLAB-CXX Alone

MPLAB-CXX used with MPLINK
DS51217B-page 24  2000 Microchip Technology Inc.

Using MPLAB-CXX without MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

In this diagram, MPLAB-CXX is used alone to compile the source file main.c
into the object file (main.o). However, this object file may be used for input
into the linker (MPLINK) with other object files to produce a hex file
(prog.hex) for use with programmers.

An assembly source file (prog.asm) is shown also with its associated
assembler (MPASM), producing the object file prog.o for input into MPLINK.
See the MPASM User’s Guide with MPLINK and MPLIB for more information
on using the assembler.

In addition, precompiled object files (precomp.o) may be included. Types of
precompiled object files that are generally required for the successful build of
a hex file are listed below.

Precompiled object files are often device and/or memory model dependent.
For more information on available precompiled object files, see the
MPLAB-CXX Reference Guide.

Some library files are available with the compiler. Others may be built outside
the project using the librarian tool (MPLIB). See the MPASM User’s Guide
with MPLINK and MPLIB for more information on using the librarian. For more
information on available libraries, see the MPLAB-CXX Reference Guide.

The object files, along with library files and a linker script file (device.lkr)
are used by MPLINK to generate output files. See the MPASM User’s Guide
with MPLINK and MPLIB for more information on linker script files and using
the linker.

The main output file generated by MPLINK is the Hex file (prog.hex). The
other output files are:

• COFF file (.out). Intermediate file used by MPLINK to generate Code
file, Hex file, and Listing file.

• Code file (.cod). Debug file used by MPLAB IDE.

• Listing file (.lst). Original source code, side-by-side with final binary
code.

• Map file (.map). Shows the memory layout after linking. Indicates used
and unused memory regions.

The tools shown here are all Microchip development tools. However, many
third party tools are available. Please refer to the Third Party Guide
(DS00104) for more information.

MPLAB-C17: MPLAB-C18:

• Start up code

• Initialization code

• Interrupt service routines

• Register definitions

• Standard C libraries

• Processor-specific libraries
(peripheral and SFR defini-
tions)
 2000 Microchip Technology Inc. DS51217B-page 25

MPLAB®-CXX Compiler User’s Guide
4.4 Using MPLAB-C17 on the Command Line
In this section, the following is discussed:

• Command Line Interface

• How to Compile a Single File on the Command Line

• How to Compile Multiple Files on the Command Line

4.4.1 Command Line Interface
The command line interface of MPLAB-C17 is as follows:

mcc17 [options] filename

where:

filename is the name of the file being compiled, and

options is zero or more command line options.

For example, if the file test.c exists in the current directory, it can be
compiled with the following command:

mcc17 -p=17c756a test.c

When no command line parameters are specified, or with ‘-?’ or ‘-h’, a help
screen is displayed describing the command line usage and options.

Options to MPLAB-C17 can be specified with either ‘/’ or ‘-’, though the ‘-’ is
shown in the table.

Table 4.1: Command Line Option Descriptions-MPLAB-C17

Option Default Description

-?,-h — Help screen.

-ipath — Add the semicolon delimited path, path, to the
search path for include files.

-fo=filename — Use filename as the name of the output
object file.

-fe=filename — Use filename as the name of the output error
file.

-O — Optimize for smallest code. Equivalent to:
-Or -Oc -Op

-Oc[+|-] Enabled With this optimization on, the compiler will
intelligently determine the level of stack sup-
port to include for each function.

-Or[+|-] Enabled With this optimization on, the compiler will run
an optimization pass to remove extraneous
bank select and MOVLW instructions.
DS51217B-page 26  2000 Microchip Technology Inc.

Using MPLAB-CXX without MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

4.4.2 Compiling a Single File on the Command Line
This section demonstrates how to compile and link a single file. For the
purpose of this discussion it is assumed the compiler is installed on your c:
drive in a directory called mcc. Therefore the following will apply:

Include directory: c:\mcc\h
The include directory is where the compiler stores all its system header files.
The MCC_INCLUDE environment variable should point to that directory (From
the DOS command prompt, type “set” to check this.)

Library directory: c:\mcc\lib
The library directory is where the libraries and precompiled object files reside.

Linker directory: c:\mcc\lkr
The linker directory is where device-specific linker script files may be found.

Executable directory:c:\mcc\bin
The executable directory is where the compiler programs are located. Your
PATH variable should include this directory.

-Ol[+|-] Enabled When this optimization is on, the default stor-
age class for local variables and function
parameters is ‘static’ .

-Op[+|-] Disable When this optimization in on, far pointers to
RAM are assumed to not point to SFRs. This
simplifies setting the bank for access.

-m{s|m|c|l} s Select the memory model (see Section 8.3.1).
s : small model (near ram, near rom)
m: medium model (near ram, far rom)
c : compact model (far ram, near rom)
l : large model (far ram, far rom)

-p=processor 17C44 Select to compile for the designated processor.

-dmacro[=text] — Define a macro. Equivalent to placing the fol-
lowing at the head of the file:
#define macro text

-w{1|2|3} 2 Set compiler message level.
1 display errors only
2 display errors and warnings
3 display errors, warnings, and messages

-nw# — Suppress message number #. Error messages
cannot be suppressed.

-q — Suppress the sign-on banner (Quiet mode).

Table 4.1: Command Line Option Descriptions-MPLAB-C17 (Continued)

Option Default Description

Example Files
There are a number of
examples in the folder
c:\mcc\examples.
Execution of the batch file
should compile each
example after MPLAB-C17
is set up. You can use
these files as “cookbooks”
to begin development of
your application.
 2000 Microchip Technology Inc. DS51217B-page 27

MPLAB®-CXX Compiler User’s Guide
The following is a very simple program that adds two numbers.

1. Create the following program with any text editor and save it as ex1.c
in a directory called, for example, c:\proj0.
#include <p17c756a.h>
void main(void);
unsigned char Add(unsigned char a, unsigned char b);
unsigned char x, y, z;
void main()
{
 x = 2;
 y = 5;
 z = Add(x,y);
}
unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

The first line of the program includes the header file p17c756a.h which
provides definitions for all special function registers on that part. For more
information on header files see Chapter 8.

2. Compile the program by typing the following at a DOS prompt:

mcc17 ex1.c -p=17c756a

This tells the compiler to compile the program ex1.c for the PIC17C756A.
The compiler generates two files by default. The first file is ex1.o, which
is the object file that the linker will use to generate (among other files) the
executable (.hex) file to program your PICmicro MCU. The second file is
ex1.err, which is the error file containing any error messages and/or
warnings that the compiler generates during compilation. These messages
are also displayed on the screen.

3. The C object file now must be linked with other object files and a linker
script to create the final executable file, ex1.hex.

In general, several precompiled object files will be necessary. These files
are the start-up code file, c0l17.o, the data initialization file, idata17.o,
an interrupt handler file, int756al.o, and the processor definition file,
p17c756a.o, to reference any special function registers. See the
MPLAB-XX Reference Guide for more information on these precompiled
object files.

For a simple program like ex1.c, the small memory model startup file is
used (c0s17.o) with no initialized data. There are no interrupts, so no
interrupt service routines are needed. But processor-specific register def-
initions are included.
DS51217B-page 28  2000 Microchip Technology Inc.

Using MPLAB-CXX without MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

Here is the linker command to produce the executable (Although shown on
multiple lines here, this should be on one line when executed.):

mplink ex1.o -l c:\mcc\lib c0s17.o p17c756a.o -k
c:\mcc\lkr p17c756s.lkr -m exl.map -o exl.out

The file ex1.o is linked with the precompiled object files c0s17.o and
p17c756a.o, found in the c:\mcc\lib directory specified by the -l
directive. Specific linker information is provided by the linker script file,
p17c756s.lkr, found in the c:\mcc\lkr directory, specified by the
-k directive. A map file called ex1.map is generated with the -m directive.
The -o directive tells the linker to generate a COFF file called ex1.out,
used to generate other output files.

The linker produces the file ex1.hex, as well as several other files used
for debugging. The hex file is used by device programmers such as
PRO MATE II and PICSTART Plus to program a PICmicro MCU device. For
more information on the other debugging files produced by the linker, see
the MPASM User’ Guide with MPLINK and MPLIB.

Summary:

• Create the source code program, ex1.c.

• Compile ex1.c:

mcc17 ex1.c -p=17c756a

• Link to generate ex1.hex:

mplink ex1.o -l c:\mcc\lib c0s17.o p17c756a.o -k
c:\mcc\lkr p17c756s.lkr -m exl.map -o exl.out
 2000 Microchip Technology Inc. DS51217B-page 29

MPLAB®-CXX Compiler User’s Guide
4.4.3 Compiling Multiple Files on the Command Line
Move the Add() function into a file called add.c to demonstrate the use of
multiple files in a project. That is:

1. File 1
/* ex1.c */
#include <p17c756a.h>
void main(void);
unsigned char Add(unsigned char a, unsigned char b);
unsigned char x, y, z;
void main()
{
 x = 2;
 y = 5;
 z = Add(x,y);
}

File 2

/* add.c */
#include <p17c756a.h>
unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

2. To compile these two files, the command lines would be:
mcc17 ex1.c -p=17c756a
mcc17 add.c -p=17c756a

3. Then link the resulting object files with the precompiled object files as fol-
lows (This should be entered on one line):
mplink ex1.o add.o -l c:\mcc\lib c0s17.o p17c756a.o -k
c:\mcc\lkr p17c756s.lkr -m exl.map -o exl.out

This will produce a hex file and other output files described in the previous
section.
DS51217B-page 30  2000 Microchip Technology Inc.

Using MPLAB-CXX without MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

4.5 Using MPLAB-C18 on the Command Line
In this section, the following is discussed:

• Command Line Interface

• How to Compile a Single File on the Command Line

• How to Compile Multiple Files on the Command Line

4.5.1 Command Line Interface
The command line interface of MPLAB-C18 is as follows:

mcc18 [options] filename

where:

filename is the name of the file being compiled, and

options is zero or more command line options.

For example, if the file test.c exists in the current directory, it can be
compiled with the following command:

mcc18 -p=18c452 test.c

When no command line parameters are specified, or with ‘-?’ or ‘-h’, a help
screen is displayed describing the command line usage and options.

Options to MPLAB-C18 can be specified with either ‘/’ or ‘-’, though the ‘-’ is
shown in the table.

Table 4.2: Command Line Option Descriptions-MPLAB-C18

Option Default Description

-?,-h — Help screen.

-ipath — Add the semicolon delimited path,
path, to the search path for include
files.

-fo=filename — Use filename as the name of the out-
put object file.

-fe=filename — Use filename as the name of the out-
put error file.

-k — Set plain char type to unsigned
char.

-ls — Large stack (can span multiple banks).

-O — Optimize for smallest code. Equivalent
to:
-Oi -Om -Ob
 2000 Microchip Technology Inc. DS51217B-page 31

MPLAB®-CXX Compiler User’s Guide
-Oi[-|+] Disabled Disable/Enable integer promotions.

-Om[-|+] Enabled Disable/Enable duplicate string merg-
ing.

-On[0|1|2] 2 Set banking optimizer level.

-m{s|l} s Select the memory model (see
Section 8.3.1).
s: small model (near rom)
l: large model (far rom)

-Ou[-|+] Enabled Disable/Enable unreachable code
removal

-Ob[-|+] Enabled Disable/Enable branch optimizations

-p=processor or
family

18C452 Select to compile for the designated
processor or family (PIC18CXX)

-dmacro [=text] — Define a macro. Equivalent to placing
the following at the head of the file:
#define macro text

-w{1|2|3} 2 Set compiler message level.
1 display errors only
2 display errors and warnings
3 display errors, warnings, and mes-
sages

-nw# — Suppress message number #. Error
messages cannot be suppressed.

-q — Suppress the sign-on banner (Quiet
mode).

-lfsr — Enables LFSR workaround.

--help-message-list — Display a list of all diagnostic mes-
sages.

--help-message-all — Display help for all diagnostic mes-
sages.

--help-message n — Display help on diagnostic number n.

Table 4.2: Command Line Option Descriptions-MPLAB-C18 (Continued)

Option Default Description
DS51217B-page 32  2000 Microchip Technology Inc.

Using MPLAB-CXX without MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

4.5.2 Compiling a Single File on the Command Line
This section demonstrates how to compile and link a single file. For the
purpose of this discussion it is assumed the compiler is installed on your c:
drive in a directory called mcc. Therefore the following will apply:

Include directory: c:\mcc\h
The include directory is where the compiler stores all its system header files.
The MCC_INCLUDE environment variable should point to that directory (From
the DOS command prompt, type “set” to check this.)

Library directory: c:\mcc\lib
The library directory is where the libraries and precompiled object files reside.

Linker directory: c:\mcc\lkr
The linker directory is where device-specific linker script files may be found.

Executable directory:c:\mcc\bin
The executable directory is where the compiler programs are located. Your
PATH variable should include this directory.

The following is a very simple program that adds two numbers.

1. Create the following program with any text editor and save it as ex1.c
in a directory called, for example, c:\proj0.
#include <p18c452.h>
void main(void);
unsigned char Add(unsigned char a, unsigned char b);
unsigned char x, y, z;
void main()
{
 x = 2;
 y = 5;
 z = Add(x,y);
}
unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

The first line of the program includes the header file p18c452.h which
provides definitions for all special function registers on that part. For more
information on header files see Chapter 8.

2. Compile the program by typing the following at a DOS prompt:

mcc18 ex1.c -p=18c452

This tells the compiler to compile the program ex1.c for the PIC18C452.
The compiler generates two files by default. The first file is ex1.o, which
is the object file that the linker will use to generate (among other files) the
executable (.hex) file to program your PICmicro MCU. The second file is
ex1.err, which is the error file containing any error messages and/or
warnings that the compiler generates during compilation. These messages
are also displayed on the screen.
 2000 Microchip Technology Inc. DS51217B-page 33

MPLAB®-CXX Compiler User’s Guide
3. The C object file now must be linked with other object files and a linker
script to create the final executable file, ex1.hex.

In general, two library files will be necessary. These files are general C
libraries, clib.lib, and the processor-specific libraries, p18c???.lib,
where ‘???’ is the target processor specific number. See the MPLAB-XX
Reference Guide for more information on these precompiled library files.

For MPLAB-C18, these library files are listed in the included linker scripts,
so there is no need to specifically call them out when linking. However, the
path to these files still needs to be specified (c:\mcc\lib) for the linker.

Here is the linker command to produce the executable (Although shown on
multiple lines here, this should be on one line when executed.):

mplink ex1.o -l c:\mcc\lib -k c:\mcc\lkr 18c452.lkr -m
exl.map -o exl.out

The file ex1.o is linked with the library files found in the c:\mcc\lib
directory specified by the -l directive. Specific linker information (including
the names of library files) is provided by the linker script file, 18c452.lkr,
found in the c:\mcc\lkr directory, specified by the -k directive. A map
file called ex1.map is generated with the
-m directive. The -o directive tells the linker to generate a COFF file called
ex1.out, used to generate other output files.

The linker produces the file ex1.hex, as well as several other files used
for debugging. The hex file is used by device programmers such as
PRO MATE and PICSTART Plus to program a PICmicro MCU device. For
more information on the other debugging files produced by the linker, see
the MPASM User’ Guide with MPLINK and MPLIB.

Summary:

• Create the source code program, ex1.c.

• Compile ex1.c:

mcc18 ex1.c -p=18c452

• Link to generate ex1.hex:

mplink ex1.o -l c:\mcc\lib -k c:\mcc\lkr 18c452.lkr -m
exl.map -o exl.out
DS51217B-page 34  2000 Microchip Technology Inc.

Using MPLAB-CXX without MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

4.5.3 Compiling Multiple Files on the Command Line
Move the Add() function into a file called add.c to demonstrate the use of
multiple files in a project. That is:

1. File 1
/* ex1.c */
#include <p18c452.h>
void main(void);
unsigned char Add(unsigned char a, unsigned char b);
unsigned char x, y, z;
void main()
{
 x = 2;
 y = 5;
 z = Add(x,y);
}

File 2

/* add.c */
#include <p18c452.h>
unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

2. To compile these two files, the command lines would be:
mcc18 ex1.c -p=18c452
mcc18 add.c -p=18c452

3. Then link the resulting object files with the start-up code as follows (This
should be entered on one line):
mplink ex1.o add.o -l c:\mcc\lib -k c:\mcc\lkr
18c452.lkr -m exl.map -o exl.out

This will produce a hex file and other output files described in the previous
section.
 2000 Microchip Technology Inc. DS51217B-page 35

MPLAB®-CXX Compiler User’s Guide
4.6 Going Forward
Once you have created an executable (hex) file, you can go on to
programming the resulting code into the target device. If you make changes to
any source code, you must recompile and relink to create a new executable.

You should now know what MPLAB-CXX is and does, how to install it and how
to use it on a command line (For information on how to use MPLAB-CXX with
MPLAB IDE, see Chapter 5.) In Part 2, you will learn about C programming in
general and specifically for PICmicro MCUs, and mixing assembly and C
modules in your project. The appendices contain information useful for
debugging, such as PICmicro MCU instruction sets and compiler error
message definitions.

For a description of libraries and precompiled object functions, as well as
library files, available for inclusion in your project, please refer to the
MPLAB-CXX Reference Guide.
DS51217B-page 36  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 5. Using MPLAB-CXX with MPLAB IDE
G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.1 Introduction
This chapter discusses how to use MPLAB-CXX with MPLAB IDE.

5.2 Highlights
This chapter includes:

• MPLAB-CXX - MPLAB Projects Overview

• Using MPLAB-C17 with MPLAB – A Tutorial

• Using MPLAB-C18 with MPLAB – A Tutorial

• Going Forward

5.3 MPLAB-CXX – MPLAB Projects Overview
MPLAB-CXX may be used with MPLAB IDE running under Windows 3.x
(mcc17d.exe), or with MPLAB IDE running under Windows 9x or Windows
NT (mcc17.exe or mcc18.exe).

MPLAB-CXX is one of several tools that work with MPLAB IDE. These tools
are used as part of an MPLAB Project. A project in MPLAB IDE is the group of
files needed to build an application, along with their associations to various
build tools. See the MPLAB IDE User’s Guide for more information on MPLAB
IDE and MPLAB IDE Projects.

Figure 5.1 shows a generic MPLAB Project using the MPLAB-CXX compiler
tool.
 2000 Microchip Technology Inc. DS51217B-page 37

MPLAB®-CXX Compiler User’s Guide
Figure 5.1: An MPLAB Project with MPLAB-CXX – Files and Associated Tools

MPLINK

MPLAB-CXX MPASM

source
files

object
files

linker script
library &

output
files

main.c prog.asm

main.o prog.o

math.lib device.lkr

prog.hex prog.mapprog.lstprog.codprog.out

files

MPLAB-SIM MPLAB-ICE
PICMASTER

PRO MATE II
PICSTART Plus

ASSEMBLER/
COMPILER

LINKER

SIMULATOR/
EMULATORS/
PROGRAMMERS

MPLAB Project

precomp.o
DS51217B-page 38  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

In this MPLAB Project, the source file main.c is associated with the
MPLAB-CXX compiler. MPLAB IDE will use this information to generate an
object file (main.o) for input into the linker (MPLINK).

An assembly source file (prog.asm) is shown also with its associated
assembler (MPASM). MPLAB IDE will use this information to generate the
object file prog.o for input into MPLINK. See the MPASM User’s Guide with
MPLINK and MPLIB for more information on using the assembler.

In addition, precompiled object files (precomp.o) may be included in a
project, with no associated tool required. Types of precompiled object files
that are generally required in a project are listed below.

Precompiled object files are often device and/or memory model dependent.
For more information on available precompiled object files, see the MPLAB-
CXX Reference Guide.

Some library files are available with the compiler. Others may be built outside
the project using the librarian tool (MPLIB). See the MPASM User’s Guide
with MPLINK and MPLIB for more information on using the librarian. For more
information on available libraries, see the MPLAB-CXX Reference Guide.

The object files, along with library files and a linker script file (device.lkr)
are used to generate the project output files via the linker (MPLINK). See the
MPASM User’s Guide with MPLINK and MPLIB for more information on linker
script files and using the linker.

The main output file generated by MPLINK is the Hex file (prog.hex), used
by simulators (MPLAB-SIM), emulators (MPLAB-ICE and PICMASTER) and
programmers (PRO MATE II and PICSTART Plus). The other output files are:

• COFF file (.out). Intermediate file used by MPLINK to generate Code
file, Hex file, and Listing file.

• Code file (.cod). Debug file used by MPLAB IDE.

• Listing file (.lst). Original source code, side-by-side with final binary
code.

• Map file (.map). Shows the memory layout after linking. Indicates used
and unused memory regions.

The tools shown here are all Microchip development tools. However, many
third party tools are available to work with MPLAB Projects. Please refer to
the Third Party Guide (DS00104) for more information.

MPLAB-C17: MPLAB-C18:

• Start up code

• Initialization code

• Interrupt service routines

• Register definitions

• Standard C libraries

• Processor-specific libraries
(peripheral and SFR defini-
tions)
 2000 Microchip Technology Inc. DS51217B-page 39

MPLAB®-CXX Compiler User’s Guide
5.4 Using MPLAB-C17 with MPLAB IDE – A Tutorial
This section will guide you, step by step, in using MPLAB IDE and MPLAB
Projects with MPLAB-C17.

In this tutorial, you will learn how to:

• Create the source file

• Set the MPLAB IDE development mode

• Create a new project with Project > New Project

• Set project Node Properties to MPLINK

• Add the source file, setting the language tool to MPLAB-C17

• Add precompiled nodes (object files)

• Add a linker script node

• Build the project

5.4.1 Overview
Figure 5.2 gives a graphical overview of the MPLAB Project using MPLAB-
C17. The source file ex1.c is associated with the compiler (MPLAB-C17) to
produce the object file ex1.o. This file and other precompiled object files are
linked via MPLINK according to directions in the linker script file
(p17c756s.lkr) to produce the main output file, ex1.hex.

Figure 5.2: An MPLAB Project with MPLAB-C17

MPLINK

MPLAB-C17

p17c756s.lkr

p17c756a.oc0s17.o

ex1.c

ex1.o

ex1.hex

source
file

object
files

linker script
file

COMPILER

main output
file

LINKER

precompiled object files
DS51217B-page 40  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.4.2 Create Source File
Select File > New to open a blank editor window. Type the following into the
window and save it as ex1.c in a directory called, for example, c:\proj0.
This is a very simple program that adds two numbers.

#include <p17c756a.h>
void main(void);
unsigned char Add(unsigned char a, unsigned char b);
unsigned char x, y, z;
void main()
{
 x = 2;
 y = 5;
 z = Add(x,y);
}
unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

5.4.3 Set Development Mode
Set Options > Development Mode to MPLAB-SIM simulator and select the
PIC17C756A PICmicro MCU for this example. Click OK.

Figure 5.3: Development Mode – PIC17C756A
 2000 Microchip Technology Inc. DS51217B-page 41

MPLAB®-CXX Compiler User’s Guide
5.4.4 New Project
In Project > New Project select the directory c:\proj0. Enter ex1.pjt as
the File Name for the new project.

Figure 5.4: New Project – ex1.pjt

After setting the project name, click OK and the Edit Project dialog will be
shown.
DS51217B-page 42  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.4.5 Edit Project
In the Project section of the Edit Project window, enter c:\mcc\h under
Include Path.

Click on ex1 [.hex] in the Project Files section of the Edit Project dialog to
highlight the hex file name and activate the Node Properties button. Then
click on Node Properties.

Figure 5.5: Edit Project – ex1.pjt
 2000 Microchip Technology Inc. DS51217B-page 43

MPLAB®-CXX Compiler User’s Guide
5.4.6 Set Node Properties
In the Node Properties dialog, set the Language Tool to MPLINK.

Figure 5.6: Node Properties – ex1.hex

The Node Properties dialog shows the command line switches for the tool, in
this case MPLINK. When you first open this dialog, the checked boxes
represent the default values for the tool. For this tutorial, these do not need to
be changed. Refer to the MPASM with MPLINK and MPLIB User’s Guide
(DS33014) for more information on these command line switches.

Click OK to set these default values to ex1.hex.

5.4.7 Add Files to the Project
Several files (nodes) will need to be added to this project. Begin by adding
ex1.c, the main source file, to the project. Click on Add Node on the Edit
Project dialog.
DS51217B-page 44  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

Figure 5.7: Edit Project – Add Node ex1.c

5.4.8 Add Source File
In the Add Node dialog, click on the source file, ex1.c, from the c:\proj0
directory. Make sure “List files of type:” specifies “Source files (*.c;*.asm)”.
Click OK.

Figure 5.8: Add Node – ex1.c
 2000 Microchip Technology Inc. DS51217B-page 45

MPLAB®-CXX Compiler User’s Guide
The Edit Project dialog should now look like Figure 5.9. Click on ex1 [.c] in
the Project Files section of the dialog and then click on Node Properties.

Figure 5.9: Edit Project – ex1.c Added
DS51217B-page 46  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

In the Node Properties dialog, verify that the language tool is set to
MPLAB-C17.

The default for Memory Model is Small, for optimization reasons. The default
selection will be used for the example. However, while learning how to use the
compiler, it is generally suggested that the large memory model be used, to
ensure proper page and bank selection.

Figure 5.10: Node Properties - ex1.o

The “Object filename” is set to ex1.o automatically. Nothing else needs to be
changed in this dialog.

Click OK to apply these values to ex1.o.

5.4.9 Add Precompiled Object Files
In general, several precompiled object files are required for compiling a
project. These files are in c:\mcc\lib, where c:\mcc is the compiler install
directory.

• c0l17.o – Start Up Code
(source in c:\mcc\src\startup)

• idata17.o – Code to Initialize Data
(source in c:\mcc\src\startup)

• int756al.o – Interrupt Service Routines
(source in c:\mcc\src\startup)

• p17c756a.o – PIC17C756A Register Definitions
(source in c:\mcc\src\proc)
 2000 Microchip Technology Inc. DS51217B-page 47

MPLAB®-CXX Compiler User’s Guide
Examination of the source code for each file is recommended to help
determine if that file should be included for a specific project.

For a simple program like ex1.c, the small memory model startup file is used
(c0s17.o) with no initialized data (idata17.o). There are no interrupts, so
no interrupt service routines are needed (int756al.o). But processor-
specific register definitions are included (p17c756a.o).

Use the Add Node button from the Edit Project dialog to add the necessary
precompiled object files. Make sure ‘List files of type:’ specifies ‘Object files
(*.o)’.

• c0s17.o

• p17c756a.o

To select more than one file at a time, hold down the Ctrl key on your
keyboard while selecting the files with your mouse. Click OK when done.

Figure 5.11: Add Node – Object Files

Node Properties can not be set on precompiled object files, as they are
already compiled.

Although there are no library files used in this tutorial project, a library file
(.lib) may be added by following the same procedure as shown above.

For more information on libraries and precompiled object files, please refer to
the MPLAB-CXX Reference Guide – Libraries and Precompiled Object Files.
DS51217B-page 48  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.4.10 Select Linker Script
Use the Add Node button from the Edit Project dialog to add the linker script
file p17c756s.lkr from the c:\mcc\lkr directory. Make sure “List files of
type:” specifies ‘Linker Scripts (*.lkr)’.

Click OK when done. Node Properties can not be set on a linker script.

Figure 5.12: Add Node – p17c756s.lkr
 2000 Microchip Technology Inc. DS51217B-page 49

MPLAB®-CXX Compiler User’s Guide
5.4.11 Finish Project Edit
The Edit Project window should now look like this:

Figure 5.13: Edit Project – ex1.hex

Press OK on the Edit Project dialog to finish editing the project.
DS51217B-page 50  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.4.12 Make Project
Select Project > Make Project from the menu to compile the application using
MPLAB-C17 and MPLINK. A Build Results window is created that shows the
command lines sent to each tool. It should look like this:

Figure 5.14: Build Results – ex1.hex

5.4.13 Troubleshooting
If the build did not complete successfully, check these items:

1. Select Project > Install Language Tool... and check that MPLAB-C17 ref-
erences the mcc17.exe executable (Figure 5.15). Your executable path
may be different from the figure.

When using MPLAB IDE in the Windows 3.x environment, the
mcc17d.exe executable should be used instead.

The Command-line option should be selected.
 2000 Microchip Technology Inc. DS51217B-page 51

MPLAB®-CXX Compiler User’s Guide
Figure 5.15: Install Language Tool – MPLAB-C17

2. Select Project > Install Language Tool... and check that MPLINK is point-
ing to the mplink.exe executable (Figure 5.16). Your executable path
may be different from the figure.

The Command-line option should be selected.

Figure 5.16: Install Language Tool – MPLINK

3. Check the Node Properties for the Project Files ex1.hex and ex1.c.
They should be mapped to the Language Tools MPLINK and
MPLAB-C17 respectively.

4. Check the names of the files added to the project against the ones listed
in Figure 5.13. If any are different, click on them individually, click Delete
Node , and then follow the procedure in the relevant previous section for
adding the correct node.

5. Check each step of this tutorial to see if you completed it correctly.
6. Compile the project in a DOS window. Cut-and-paste commend-line

information into a DOS window to run. Check the autoexec.bat file to
ensure that PATH includes the executable directory (c:\mcc\bin) and
that MCC_INCLUDE is present and represents the include directory
(c:\mcc\h).
DS51217B-page 52  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.4.14 Project Window
Open the Window > Project window. It should look like this:

Figure 5.17: Project Window – ex1.pjt

The project window contains a good deal of useful information about the
project. For more information on its contents, see the MPLAB IDE User’s
Guide.
 2000 Microchip Technology Inc. DS51217B-page 53

MPLAB®-CXX Compiler User’s Guide
5.5 Using MPLAB-C18 with MPLAB IDE – A Tutorial
This section will guide you, step by step, in using MPLAB IDE and MPLAB
Projects with MPLAB-C18.

In this tutorial, you will learn how to:

• Create the source file

• Set the MPLAB IDE development mode

• Create a new project with Project > New Project

• Set project Node Properties to MPLINK

• Add the source file, setting the language tool to MPLAB-C18

• Add precompiled nodes and library files

• Add a linker script node

• Build the project

5.5.1 Overview
Figure 5.2 gives a graphical overview of the MPLAB Project using MPLAB-
C18. The source file ex1.c is associated with the compiler (MPLAB-C18) to
produce the object file ex1.o. This file and other precompiled object files are
linked via MPLINK according to directions in the linker script file
(18c452.lkr) to produce the main output file, ex1.hex.

Figure 5.18: An MPLAB Project with MPLAB-C18

MPLINK

MPLAB-C18

18c452.lkr

p18c452.libclib.lib

ex1.c

ex1.o

ex1.hex

source
file

object
files

linker script
file

COMPILER

main output
file

LINKER

library files
DS51217B-page 54  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.5.2 Create Source File
Select File > New to open a blank editor window. Type the following into the
window and save it as ex1.c in a directory called, for example, c:\proj0.
This is a very simple program that adds two numbers.

#include <p18c452.h>
void main(void);
unsigned char Add(unsigned char a, unsigned char b);
unsigned char x, y, z;
void main()
{
 x = 2;
 y = 5;
 z = Add(x,y);
}
unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

5.5.3 Set Development Mode
Set Options > Development Mode to MPLAB-SIM simulator and select the
PIC18C452 PICmicro MCU for this example. Click Reset.

Figure 5.19: Development Mode – PIC18C452
 2000 Microchip Technology Inc. DS51217B-page 55

MPLAB®-CXX Compiler User’s Guide
5.5.4 New Project
In Project > New Project select the directory c:\proj0. Enter ex1.pjt as
the File Name for the new project.

Figure 5.20: New Project – ex1.pjt

After setting the project name, click OK and the Edit Project dialog will be
shown.
DS51217B-page 56  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.5.5 Edit Project
In the Project section of the Edit Project window, enter c:\mcc\h under
Include Path.

Click on ex1 [.hex] in the Project Files section of the Edit Project dialog to
highlight the hex file name and activate the Node Properties button. Then
click on Node Properties.

Figure 5.21: Edit Project – ex1.pjt
 2000 Microchip Technology Inc. DS51217B-page 57

MPLAB®-CXX Compiler User’s Guide
5.5.6 Set Node Properties
In the Node Properties dialog, set the Language Tool to MPLINK.

Figure 5.22: Node Properties – ex1.hex

The Node Properties dialog shows the command line switches for the tool, in
this case MPLINK. When you first open this dialog, the checked boxes
represent the default values for the tool. For this tutorial, these do not need to
be changed. Refer to the MPASM with MPLINK and MPLIB User’s Guide
(DS33014) for more information on these command line switches.

Click OK to set these default values to ex1.hex.

5.5.7 Add Files to the Project
Several files (nodes) will need to be added to this project. Begin by adding
ex1.c, the main source file, to the project. Click on Add Node on the Edit
Project dialog.
DS51217B-page 58  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

Figure 5.23: Edit Project – Add Node ex1.c

5.5.8 Add Source File
In the Add Node dialog, click on the source file, ex1.c, from the c:\proj0
directory. Make sure “List files of type:” specifies “Source files (*.c;*.asm)”.
Click OK.

Figure 5.24: Add Node – ex1.c
 2000 Microchip Technology Inc. DS51217B-page 59

MPLAB®-CXX Compiler User’s Guide
The Edit Project dialog should now look like Figure 5.25. Click on ex1 [.c]
in the Project Files section of the dialog and then click on Node Properties.

Figure 5.25: Edit Project – ex1.c Added
DS51217B-page 60  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

In the Node Properties dialog, verify that the language tool is set to
MPLAB-C18.

The default for Memory Model is Small, for optimization reasons. The default
selection will be used for the example. However, while learning how to use the
compiler, it is generally suggested that the large memory model be used to
ensure proper bank selection.

Figure 5.26: Node Properties – ex1.o

The “Object filename” is set to ex1.o automatically. Nothing else needs to be
changed in this dialog.

Click OK to apply these values to ex1.o.

5.5.9 Add Precompiled Object Files
In general, two precompiled object files are required for compiling a project.
These files are in c:\mcc\lib, where c:\mcc is the compiler install
directory.

• clib.lib – Standard C Libraries, Start Up and Initialization Code

• p18c452.lib – PIC18C452 Processor-Specific Routines, including
peripheral access and special function register definitions

For MPLAB-C18, these precompiled object files are listed in the included
linker scripts, so there is no need to specifically call them out when linking.
However, the path to these files still needs to be specified for the linker.
 2000 Microchip Technology Inc. DS51217B-page 61

MPLAB®-CXX Compiler User’s Guide
In the Project section of the Edit Project window, enter c:\mcc\lib under
Library Path.

Figure 5.27: Edit Project – Library Path Added

Although there are no library files used in this tutorial project, a library file
(.lib) may be added by following this procedure:

• In the Edit Project window, click Add Node.

• In the Add Node dialog, select the Folder c:\mcc\lib.

• Select the desired library from the “File name” list. Make sure ‘List files
of type:’ specifies ‘Libraries (*.lib)’.

• Click OK.

Library files do not have node properties as they are already compiled.

For more information on libraries and precompiled object files, please refer to
the MPLAB-CXX Reference Guide – Libraries and Precompiled Object Files.
DS51217B-page 62  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.5.10 Select Linker Script
Use the Add Node button from the Edit Project dialog to add the linker script
file 18c452.lkr from the c:\mcc\lkr directory. Make sure “List files of
type:” specifies ‘Linker Scripts (*.lkr)’.

Click OK when done. Node Properties can not be set on a linker script.

Figure 5.28: Add Node – p18c452.lkr
 2000 Microchip Technology Inc. DS51217B-page 63

MPLAB®-CXX Compiler User’s Guide
5.5.11 Finish Project Edit
The Edit Project window should now look like this:

Figure 5.29: Edit Project – ex1.hex

Press OK on the Edit Project dialog to finish editing the project.
DS51217B-page 64  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.5.12 Make Project
Select Project > Make Project from the menu to compile the application using
MPLAB-C18 and MPLINK. A Build Results window is created that shows the
command lines sent to each tool. It should look like this:

Figure 5.30: Build Results – ex1.hex

5.5.13 Troubleshooting
If the build did not complete successfully, check these items:

1. Select Project > Install Language Tool... and check that MPLAB-C18 ref-
erences the mcc18.exe executable (Figure 5.15). Your executable path
may be different from the figure.

The Command-line option should be selected.
 2000 Microchip Technology Inc. DS51217B-page 65

MPLAB®-CXX Compiler User’s Guide
Figure 5.31: Install Language Tool – MPLAB-C18

2. Select Project > Install Language Tool… and check that MPLINK is
pointing to the mplink.exe executable (Figure 5.32). Your executable
path may be different from the figure.

The Command-line option should be selected.

Figure 5.32: Install Language Tool – MPLINK

3. Check the Node Properties for the Project Files ex1.hex and ex1.c.
They should be mapped to the Language Tools MPLINK and MPLAB-
C18 respectively.

4. Check the names of the files added to the project against the ones listed
in Figure 5.29. If any are different, click on them individually, click Delete
Node , and then follow the procedure in the relevant previous section for
adding the correct node.

5. Check each step of this tutorial to see if you completed it correctly.
6. Compile the project in a DOS window. Cut-and-paste commend-line

information into a DOS window to run. Check the autoexec.bat file to
ensure that PATH includes the executable directory (c:\mcc\bin) and
that MCC_INCLUDE is present and represents the include directory
(c:\mcc\h).
DS51217B-page 66  2000 Microchip Technology Inc.

Using MPLAB-CXX with MPLAB IDE

G
ettin

g
 S

tarted
w

ith
 M

P
L

A
B

-C
X

X

Part
1

5.5.14 Project Window
Open the Window > Project window. It should look like this:

Figure 5.33: Project Window – ex1.pjt

The project window contains a good deal of useful information about the
project. For more information on its contents, see the MPLAB IDE User’s
Guide.
 2000 Microchip Technology Inc. DS51217B-page 67

MPLAB®-CXX Compiler User’s Guide
5.6 Going Forward
Once a project has been built successfully, you can go on to simulating,
emulating or programming the resulting code into the target device. If you
make changes to any source code, you must rebuild the project before
debugging or programming again. For more information on simulating, or
using MPLAB IDE to debug your code, please refer to the MPLAB IDE User’s
Guide.

You should now know what MPLAB-CXX is and does, how to install it and how
to use it with MPLAB Projects (For information on using MPLAB-CXX on a
command line, see the previous chapter.) In Part 2, you will learn about C
programming in general and specifically for PICmicro MCUs, and mixing
assembly and C modules in your project. The appendices contain information
useful for debugging, such as PICmicro MCU instruction sets and compiler
error message definitions.

For a description of libraries and library functions, as well as precompiled
object files, available for inclusion in your project, please refer to the MPLAB-
CXX Reference Guide.
DS51217B-page 68  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Part 2 – Using MPLAB-CXX
U
sin

g

M
P

L
A

B
-C

X
X

Part
2

Chapter 6. MPLAB-CXX and C...71

Chapter 7. MPLAB-CXX Fundamentals ..75

Chapter 8. MPLAB-CXX and PICmicro MCU Programming................123

Chapter 9. Mixing Assembly Language and C Modules139

Chapter 10. ANSI Implementation Issues...145

Chapter 11. Examples ..151
 2000 Microchip Technology Inc. DS51217B-page 69

MPLAB®-CXX Compiler User’s Guide
DS51217B-page 70  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 6. MPLAB-CXX and C
U
sin

g

M
P

L
A

B
-C

X
X

Part
2

6.1 Introduction
This chapter compares MPLAB-CXX with C programming. A basic
understanding of C programming is assumed. Programmers who are
unfamiliar with the C language can refer to Appendix F for a list of C
programming references.

For those familiar with C but not experienced with programming
microcontrollers, various points are highlighted and deviations from ANSI C
are described. Also, device data sheets describing the operation of various
PICmicro MCU devices are available from any sales office listed on the last
page of this document, or from our web site (http:\\www.microchip.com).

6.2 Highlights
This chapter covers the following topics:

• MPLAB-CXX vs. C

• Components of a Basic MPLAB-CXX Program

• C Keywords

6.3 C vs. MPLAB-CXX
Most C programmers have gained their experience programming C on
computers where there was an operating system to handle such things as
memory management, input/output, interdevice communications, etc.
Microcontrollers, by their very nature, do not have the memory overhead for
an operating system. Therefore, it is left up to the programmer to determine
memory allocation, I/O operation through a peripheral, etc. Libraries and
precompiled object files are available with MPLAB-CXX to aid the
programmer in this endeavor.

An MPLAB-CXX program is a collection of declarations, statements,
comments, and preprocessor directives that typically do the following:

• Declare data structures

• Allocate data space

• Evaluate expressions

• Perform program control operations

• Control PICmicro MCU peripherals
 2000 Microchip Technology Inc. DS51217B-page 71

MPLAB®-CXX Compiler User’s Guide
Additionally, after source code is compiled, it must be programmed into a
device. In the device environment, RAM is in an undefined state on power-up.
The program must take care of initializing any variables that are set in the
code. This is accomplished by storing the variable values in program memory
and then moving them to RAM before the main() function executes. There
are other main() pre-execution items that may be necessary, such as setting
up a software stack. These specialized items may be written in C or assembly
code. In either case, the programmer must decide what is needed.

6.4 Components of a Basic MPLAB-CXX Program
The following is the shell for a basic MPLAB-CXX source file, highlighting the
elements of the program:

The first line is a preprocessor directive (Section 7.3) that includes the
processor definition file. This file defines processor-specific information such
as special function registers.

The next line is a declaration of a function that will be used in the main routine
(function1). Functions are discussed further in Section 7.7. Placing the
function declaration here is called prototyping. The function itself may then be
defined after the main routine. Another option is to place the entire function
definition in the prototype location.

Finally, the main routine is defined, with the appropriate source code between
the braces. Note that the main routine is itself a function.

#include <p17cxx.h>
void function1(void);
void main(void)
{
 /* User source code here */
}
void function1(void)
{
 /* User function code here */
}

preprocessor directive
prototyped function
main routine

function definition

p17cxx.h includes proper
processor-specific header
file based on the processor
selected on the command
line.
DS51217B-page 72  2000 Microchip Technology Inc.

MPLAB-CXX and C

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

6.5 C Keywords
The ANSI C standard defines 32 keywords for use in the C language.
Typically, C compilers add keywords that take advantage of the processor’s
architecture. The following table shows the ANSI C and the MPLAB-CXX
keywords, where MPLAB-CXX keywords are shown in bold.

Table 6.1: ANSI C and MPLAB-CXX Keywords

Keywords Defined Keywords Defined

_asm Section 8.3.7 int Section 7.6.1

_endasm Section 8.3.7 long* Section 7.6.1

auto Section 7.6.1 near Section 7.6.1

break Section 7.9.7 ram Section 7.6.1

case Section 7.9.6 register** Section 7.6.1

char Section 7.6.1 return Section 7.7.4

const Section 7.6.1 rom Section 7.6.1

continue Section 7.9.8 short Section 7.6.1

default Section 7.9.6 signed Section 7.6.1

do Section 7.9.5 sizeof Section 7.8.8

double* Section 7.6.1 static Section 7.6.3

else Section 7.9.2 struct Section 7.12.2

enum Section 7.6.4 switch Section 7.9.6

extern Section 7.6.3 typedef Section 7.6.5

far Section 7.6.1 union Section 7.12.3

float* Section 7.6.1 unsigned Section 7.6.1

for Section 7.9.3 void Section 7.6.1

goto Section 7.9.9 volatile Section 7.6.3

if Section 7.9.1 while Section 7.9.4

* double, float and long are not supported by MPLAB-C17.
double and float are the same in MPLAB-C18.

** has no effect in MPLAB-CXX
 2000 Microchip Technology Inc. DS51217B-page 73

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 74  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 7. MPLAB-CXX Fundamentals
U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.1 Introduction
MPLAB-CXX Fundamentals describes the C programming language as used
with PICmicro MCU devices.A basic understanding of C programming is
assumed. Programmers who are unfamiliar with the C language can refer to
Appendix F for a list of C programming references.

For those familiar with C but not experienced with programming
microcontrollers, various points are highlighted and deviations from ANSI C
are described. Also, device data sheets describing the operation of various
PICmicro MCU devices are available from any sales office listed on the last
page of this document, or from our website (http:\\www.microchip.com).

7.2 Highlights
This chapter covers the following topics:

• Preprocessor Directives

• Comments

• Constants

• Variables

• Functions

• Operators

• Program Control Statements

• Arrays and Strings

• Pointers

• Structures and Unions
 2000 Microchip Technology Inc. DS51217B-page 75

MPLAB®-CXX Compiler User’s Guide
7.3 Preprocessor Directives
Preprocessor directives give instructions on how to compile the source code.
Preprocessor directives generally do not translate directly into executable
code.

Preprocessor directives begin with the ‘#’ character. This section discusses
the following preprocessor directives:

• #define

• #else

• #elif

• #endif

• #error

• #if

• #ifdef

• #ifndef

• #include

• #line

• #pragma text

• #undef

7.3.1 #define

7.3.1.1 Description

The #define directive defines string constants that are substituted into a
source line before the source line is evaluated. These can improve source
code readability and maintainability. Common uses are to define constants
that are used in many places and provide short cuts to more complex
expressions.

7.3.1.2 Syntax

define-directive :
 #define identifier pp-token-list new-line
 #define identifier lparen parameter-list)
 pp-token-list new-line
 #define identifier lparen) pp-token-list new-line

lparen:
 (1

1. No whitespace may separate1paren and the macro name.
DS51217B-page 76  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

parameter-list:
 identifier
 parameter-list , identifier

7.3.1.3 Example

#define MAX_COUNT 100
#define VERSION "v1.0"
#define PERIMETER(x, y) 2*x + 2*y

7.3.2 #else

7.3.2.1 Description

Refer to #if, #ifdef, and #ifndef for a description of the #else directive.

7.3.3 #elif

7.3.3.1 Description

Refer to #if, #ifdef, and #ifndef for a description of the #elif directive.

7.3.4 #endif

7.3.4.1 Description

Refer to #if, #ifdef, and #ifndef for a description of the #endif
directive.

7.3.5 #error

7.3.5.1 Description

The #error directive generates a user-defined error message at compile
time. One use of #error is to detect cases where the source code generates
constants that are out of range. No code is generated as a result of using this
directive.

7.3.5.2 Syntax

error-directive:
 #error pp-token-list new-line
 2000 Microchip Technology Inc. DS51217B-page 77

MPLAB®-CXX Compiler User’s Guide
7.3.5.3 Example

#define MAX_COUNT 100
#define ELEMENT_SIZE 3
#if (MAX_COUNT * ELEMENT_SIZE) > 256
 #error "Data size too large."
#endif

7.3.6 #if

7.3.6.1 Description

The #if directive is useful for conditionally compiling code based on the
evaluation of an expression. #if must be terminated by #endif. The #elif
is used to test a new expression. The directive #else is also available to
provide an alternative compilation. The defined() operator acts similarly to
#ifdef when combined with #if.

7.3.6.2 Syntax

if-directive:
 #if constant-expression new-line

7.3.6.3 Example

#define MAX_COUNT 100
#define ELEMENT_SIZE 3
#if defined(MAX_COUNT) && defined(ELEMENT_SIZE)
#if (MAX_COUNT * ELEMENT_SIZE) > 256
 #error "Data size too large."
#else
 #define DATA_SIZE MAX_COUNT * ELEMENT_SIZE
#endif
#endif

7.3.7 #ifdef

7.3.7.1 Description

The #ifdef directive is similar to the #if directive, except that instead of
evaluating an expression, it checks to see if the specified symbol has been
defined. Like the #if directive, #ifdef must be terminated by #endif, and
can optionally be used with #else.

7.3.7.2 Syntax

ifdef-directive:
 #ifdef identifier new-line
DS51217B-page 78  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.3.7.3 Example

#ifdef DEBUG
 Count = MAX_COUNT;
#endif

7.3.8 #ifndef

7.3.8.1 Description

The #ifndef directive is similar to the #ifdef directive, except that it checks
to see if the specified symbol has not been defined. Like the #if directive,
#ifndef must be terminated by #endif, and can optionally be used with
#else.

7.3.8.2 Syntax

ifndef-directive:
 #ifndef identifier new-line

7.3.8.3 Example

#ifndef DEBUG
#define Debug(x)
#else
#define Debug(x) x
#endif

7.3.9 #include

7.3.9.1 Description

#include inserts the full text from another file at this point in the source
code. The inserted file may contain any number of valid C statements.

7.3.9.2 Syntax

include-directive:
 #include " filename " new-line
 #include < filename > new-line
 #include pp-token-list new-line

When “filename” is used, MPLAB-CXX looks for the file in the current
directory and then in the directories specified by the current include search
path, which refers to the environment variable MCC_INCLUDE and command-
line option ‘-i’.
 2000 Microchip Technology Inc. DS51217B-page 79

MPLAB®-CXX Compiler User’s Guide
When <filename> is used, MPLAB-CXX looks for the file in the directories
specified by the current include search path.

7.3.9.3 Example

#include <p17cxx.h>
#include "header.h"

7.3.10 #line

7.3.10.1 Description

The line directive causes the compiler to renumber the source text so that the
following line has the specified line number.

7.3.10.2 Syntax

line-directive:
 #line digit-sequence new-line
 #line digit-sequence " filename " new-line
 #line pp-token-list new-line

7.3.10.3 Example

#line 34 /* This line is line 34 */
#line 55 "main.c" /* This line is line 55 of main.c */

7.3.11 #pragma interrupt fname – MPLAB-C17

7.3.11.1 Description

Declare a function to be an interrupt function. This pragma must come before
the function definition, but may come after a prototype. The compiler will
generate a separate temporary storage section dedicated to the function.

7.3.11.2 Syntax

interrupt-directive:
 #pragma interrupt function-name [section-name]
 save=symbol-list new-line
symbol-list:
 symbol-name
 symbol-list , symbol-name
DS51217B-page 80  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.3.12 #pragma interrupt fname – MPLAB-C18
#pragma interruptlow fname – MPLAB-C18

7.3.12.1 Description

The interrupt pragma declares a function to be an interrupt function.
MPLAB-CXX will save and restore a basic context of W, BSR, and STATUS by
default, and the save= clause allows additional arbitrary symbols to be saved
and restored by the function. The function will terminate with a RETFIE
instruction.

Any temporary locations required during the evaluation of expressions in the
function will be allocated from a private memory section and will not be
overlaid with the temporary locations of any other function, including other
interrupt functions. Optionally, a name can be specified for the section into
which temporary locations are allocated.

Both high and low priority interrupts are supported. The interrupt pragma
declares a high priority interrupt, and the interruptlow pragma declares a
low priority interrupt. A high priority interrupt uses the shadow registers to
save and restore W, BSR, and STATUS, while a low priority interrupt uses the
software stack to save and restore W, BSR, and STATUS. As a consequence of
this, A high priority interrupt terminates with a fast RETFIE, while a low priority
interrupt terminates with a slow RETFIE.

Two MOVFF instructions are required for each byte of context to be saved and
restored via the software stack; therefore, in order to save and restore the W,
BSR, and STATUS registers, a low priority interrupt has an additional 12-word
overhead beyond the requirements of a high priority interrupt.

MPLAB-CXX does not automatically place an interrupt function at the
interrupt vector. An absolute code section may be used to locate the interrupt
function. More commonly, a GOTO instruction is placed at the interrupt vector
for transferring control to the interrupt function proper.

7.3.12.2 Syntax

interrupt-directive:
 #pragma interrupt function-name [section-name]
 save=symbol-list new-line
 #pragma interruptlow function-name [section-name]
 save=symbol-list new-line
symbol-list:
 symbol-name
 symbol-list , symbol-name

7.3.12.3 Example

Declare a low-priority interrupt function myInterrupt not located at the interrupt
vector. Save several additional symbols of context.

void myInterrupt (void);
 2000 Microchip Technology Inc. DS51217B-page 81

MPLAB®-CXX Compiler User’s Guide
#pragma code lowVector=0x18
void atLowVector (void)
{
 _asm GOTO myInterrupt _endasm
}
#prama code /* return to default code section */

#pragma interruptlow myInterrupt save=FSR0, PROD
void myInterrupt (void)
{
 *globalCharPointer += PORTB;
}

7.3.13 #pragma list / #pragma nolist

7.3.13.1 Description

The #pragma list directive turns on list file generation for all code following
the directive. The #pragma nolist directive turns off list file generation for
all code following the directive.

7.3.13.2 Syntax

list-directive:
 #pragma list new-line
 #pragma nolist new-line

7.3.14 #pragma sectiontype

7.3.14.1 Description

The section declaration family of pragmas changes the section into which
MPLAB-CXX will allocate data of the associated type. Optionally, the section
may be allocated at an absolute address.

A section declaration with no name resets the allocation of data of the
associated type to the default section for the current module.

A data section qualified as shared will be located in a SHAREBANK by the
linker. Similarly, a data section qualified as access will be located in an
ACCESSBANK by the linker.

Specifying a section name which has been previously declared causes
MPLAB-CXX to resume allocating data of the associated type into the
specified section. The section qualifiers must match the previous declaration.

For udata and idata sections in MPLAB-C17, the data section type, SFR or
GPR, and a bank number may be optionally specified instead of an absolute
address. This is functionally equivalent to specifying a varlocate pragma

Sections
Logical sections are used
to specify which of the
defined memory regions
should be used for a
portion of source code. For
more on sections, refer to
the MPLINK section of the
MPASM User’s Guide with
MPLINK and MPLIB.
DS51217B-page 82  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

with the same information for each symbol declared in the section. Like
varlocate, this qualifier provides information to the compiler only and is not
enforced by the linker; therefore, care should be exercised in its use.

For pragma optimization tips, see Section 8.5.7.

7.3.14.2 Syntax

section-directive:
 #pragma udata [data-qualifier-list] [section-name
 [location]] new-line
 #pragma idata [data-qualifier-list] [section-name
 [location]] new-line
 #pragma romdata [overlay] [section-name] new-line
 #pragma code [overlay] [section-name] new-line
data-qualifier:
 access1

 shared2

 overlay
location:
 = address
 gpr bank-number2

 sfr bank-number2

7.3.14.3 Example

Declare a section for udata allocation at address 0x120. The linker will
enforce that the section will be located at address 0x120.

 #pragma udata myNewDataSection = 0x120

Resume allocation of romdata into the default section.

 #pragma romdata

Declare a new udata section which will be located in access memory
(MPLAB-C18 only).

 #pragma udata access myAccessDataSection

Declare a new code section at address 0x8000.

 #pragma code myExternalCodeSection=0x8000

7.3.14.4 See also

 #pragma varlocate

1. MPLAB-C18 only
2. MPLAB-C17 only
 2000 Microchip Technology Inc. DS51217B-page 83

MPLAB®-CXX Compiler User’s Guide
7.3.15 #pragma varlocate n name
#pragma varlocate {gpr | sfr} name – C17 only

7.3.15.1 Description

The varlocate pragma tells the compiler where a variable will be located at
link time, enabling the compiler to perform more efficient bank switching. The
bank may be specified (n) or, in the case of MPLAB-C17, the GPR or SFR
address range may be specified.

varlocate specifications are not enforced by the compiler or linker. The
sections which contain the variables should be assigned explicitly in the linker
script, or via absolute sections in the module(s) where they are defined, into
the correct bank.

7.3.15.2 Syntax

variable-locate-directive:
 #pragma varlocate bank variable-name new-line
 #pragma varlocate [bank-reg] variable-name new-line

7.3.16 #undef

7.3.16.1 Description

The #undef directive undefines a string constant. After a string constant has
been undefined, any reference to it generates an error unless the string
constant is redefined.

7.3.16.2 Syntax

undef-directive:
 #undef identifier new-line

7.3.16.3 Example

#define MAX_COUNT 10
.
.
.
#undef MAX_COUNT
#define MAX_COUNT 20
DS51217B-page 84  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.4 Comments

7.4.1 Description
Comments are used to document the meaning and operation of the source
code. The compiler ignores all comments. A comment can be placed
anywhere in a program where white space can occur. Comments can be
many lines long and may also be used to temporarily remove a line of code.
ANSI C comments cannot be nested.

7.4.2 Syntax
ANSI C comment:

‘/*’ begins and ‘*/’ terminates a block comment.

C++ comment:

‘//’ comments to the end of the line.

7.4.3 Example
/* This is a block comment.
 It can have multiple lines
 between the comment delimiters.
*/
// This is a C++ style one-line comment.
 2000 Microchip Technology Inc. DS51217B-page 85

MPLAB®-CXX Compiler User’s Guide
7.5 Constants

7.5.1 Description
A constant in C is any literal number, single character, or character string.

7.5.2 Syntax

7.5.2.1 Numeric Constants

By default, literal numbers are evaluated in decimal. Hexadecimal values can
be specified by preceding the number by 0x. Octal values can be specified by
preceding the number by 0 (zero). Binary values can be specified by
preceding the number by 0b.

7.5.2.2 Character Constants

Character constants are denoted by a single character enclosed by single
quotes. ANSI C escape sequences, as shown by the following table, are
treated as a single character.

Table 7.1: ANSI C Escape Sequences

Escape
Character

Description
Hex

Value

\a Bell (alert) character 07

\b Backspace character 08

\f Form feed character 0C

\n New line character 0A

\r Carriage return character 0D

\t Horizontal tab character 09

\v Vertical tab character 0B

\\ Backslash 5C

\? Question mark character 3F

\’ Single quote (apostrophe) 27

\" Double quote character 22

\0OO Octal number (zero, Octal digit, Octal digit)

\xHH Hexadecimal number
DS51217B-page 86  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.5.2.3 String Constants

String constants are denoted by zero or more characters (including ANSI C
escape sequences) enclosed in double quotes. A string constant has an
implied null (zero) value after the last character.

7.5.3 Example

7.5.3.1 Numeric Constants

Each of the following evaluates to a decimal twelve:

• 12 Decimal

• 0x0C Hexadecimal

• 014 Octal

• 0b1100 Binary

7.5.3.2 Character Constants

Each of the following is a character constant:

• ‘a’ Lowercase ’a’

• ‘\n’ New Line

• ‘\0’ Zero or null character

7.5.3.3 String Constants

The following is an example of a string constant:

"Hello World"
 2000 Microchip Technology Inc. DS51217B-page 87

MPLAB®-CXX Compiler User’s Guide
7.6 Variables
This section examines how C uses variables to store data.

The topics discussed in this section are:

• Basic Data Types

• Variable Declaration

• Enumeration

• typedef

7.6.1 Basic Data Types

7.6.1.1 Description

Basic data types are listed in Table 7.2, and allowed modifiers are shown in
Table 7.3. Table 7.4 shows the size and range of common data types as
implemented by MPLAB-CXX.

C represents all negative numbers in the two's complement format.
Integral data types are char, int, and long.

Table 7.2: Basic Data Types

MPLAB-C17 MPLAB-C18 Use

void void no type

char char single character

int int integer value

— float floating point value

— double floating point value

Table 7.3: Data Type Modifiers

Modifier Applicable Data Type Use

auto any Variable exists only during the
execution of the block in which it was
defined.

const any Declares data that will not be
modified.**

far any Paging/banking of data required

extern any Declares data that is allocated
elsewhere.

long int MPLAB-C18: Extended accuracy
integer value.

* Not supported by MPLAB-C17
** Does not imply program memory
DS51217B-page 88  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

near any MPLAB-C17: No paging/banking of
data required.
MPLAB-C18: Data Memory (RAM):
Denotes access RAM.
MPLAB-C18: Program Memory (ROM):
Denotes that the object is located at an
address < 64K.

register any No effect in MPLAB-CXX

short int Declares a short integer.

signed char, int, long* Declares a signed variable.

static any If the variable is declared outside a
function, it can be referenced only
within the current file.
If the variable is declared inside a
function/block, then it can be
referenced only within the function/
block.
The variable can be initialized only with
a constant expression which is
evaluted at the start of program
execution. Values are retained through
function calls, and the default initial
value is 0.

unsigned char, int, long* Declares an unsigned variable.

rom, ram any Locate object in program/data memory.

Table 7.4: Data Type Ranges

 Type Bit Width Range

void N/A none

char 8 -128 to 127

unsigned char 8 0 to 255

int 16 -32,768 to 32,767

unsigned int 16 0 to 65,535

short 16 -32,768 to 32,767

unsigned short 16 0 to 65,535

short long* 24 -8,388,608 to 8,388,607

unsigned short long* 24 0 to 16,777,215

long* 32 -2,147,483,648 to 2,147,483,647

* Not supported by MPLAB-C17.

Table 7.3: Data Type Modifiers (Continued)

Modifier Applicable Data Type Use

* Not supported by MPLAB-C17
** Does not imply program memory

MPLAB-C18 Only:
A plain char may be
unsigned by default via
the -k command line
option.
 2000 Microchip Technology Inc. DS51217B-page 89

MPLAB®-CXX Compiler User’s Guide
7.6.2 Variable Declaration

7.6.2.1 Description

A variable is a name for a specific memory location. In C, all variables must be
declared before they are used. A variable’s declaration defines its storage
class.

Variables can be declared in two places: at the start of a compound statement
or outside all functions. The variables are called local and global, respectively.

7.6.2.2 Syntax

declaration:
 declaration-specifiers declarator-list ;
declarator-list:
 declarator
 declarator-list , declarator
declaration-specifiers:
 declaration-specifier
 declaration-specifiers declaration-specifier
declaration-specifier:
 type-name
 extern
 static
 ram
 rom
 const
 volatile
 near
 far
type-name:
 basic-type-name
 tag-type-name
basic-type-name:
 int
 short
 char
 unsigned

unsigned long* 32 0 to 4,294,967,295

float* 32 1.7549435E-38 to 6.80564693E+38

double* 32 1.7549435E-38 to 6.80564693E+38

Table 7.4: Data Type Ranges

 Type Bit Width Range

* Not supported by MPLAB-C17.
DS51217B-page 90  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

 long
 float
 double
tag-type-name:
 enumerated-type-name
 struct-or-union-type-name

Local variables (declared inside a compound statement) can only be used by
statements within the block where they are declared. The value of a local
variable cannot be accessed by functions or statements outside of the
function. The most important thing to remember about local variables is that
they are created upon entry into the block and destroyed when the block is
exited. Local variables must be declared before executable statements.

Global variables can be used by all of the functions in the program. Global
variables must be declared before any functions that use them. Most
importantly, global variables are not destroyed until the execution of the
program is complete.

7.6.2.3 Example

unsigned char GlobalCount;
void f2(void)
{
 unsigned char count;
 for(count=0;count<10;count++)
 GlobalCount++;
}
void f1(void)
{
 unsigned char count;
 for(count=0;count<10;count++)
 {
 unsigned char temp;
 f2();
 temp = count *2;
 }
}
void main(void)
{
 GlobalCount = 0;
 f1();
}

This program increments GlobalCount to 100. The operation of the program is
not affected adversely by the variable named count located in both functions.
The variable temp is allocated inside the for() loop and deallocated once
the loop exits.
 2000 Microchip Technology Inc. DS51217B-page 91

MPLAB®-CXX Compiler User’s Guide
7.6.3 Storage Class (extern, static, volatile)

7.6.3.1 extern/static

static and extern behave in the ANSI specified manner. static used
with a local variable declaration inside of a block causes the variable to
maintain its value between entrances to the block. static used for a global
object (variable or function) declaration outside of all functions limits the
scope of the object to the file containing the definition.

extern does not allocate space for its object. The compiler assumes the
definition appears in an external file. This external reference is resolved at link
time.

A global object has external linkage by default.

7.6.3.2 Example1

In file1.c:

static unsigned char a;
 unsigned char b;
void main(void)
{
 a = 1;
 b = 2;
 a = new_function();
 return a;
}

In file2.c:

extern int b;
int new_function(void)
{
 int c;
 c = b; /* this will not produce an error,
 because b is extern by default
 in file1.c and declared extern
 in file2.c */
 return a; /* this will produce an undefined
 variable error because ’a’ is
 only valid within file1.c */
}

7.6.3.3 Example2

unsigned char hello(void)
{
 static unsigned char i = 0;
 i++;
 return i;
DS51217B-page 92  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

}
void main(void)
{
 unsigned char count;
 for(count = 0; count < 10; count++)
 {
 unsigned char a;
 a = hello();
 }
}
/* For each call of the function hello, i will be incre-
mented. i is static and will maintain its value between
calls to hello. hello is called 10 times, so i will be
’10’ after the last call. */

7.6.3.4 volatile

A volatile variable has a value that can be changed by something other
than user code. A typical example is an input port or a timer register. These
variables must be declared as ‘volatile' so the compiler makes no
assumptions on their values while performing optimizations.

7.6.3.5 Example3

unsigned char x, y;
volatile unsigned char TMR0;
x = 0x55; /* Compiler’s temporary registers
 contain 0x55 */
y = x; /* and those values can be written to ’y’ since
 x is unchanged. */
TMR0 = 0x00;
y = TMR0; /* The compiler must read TMR0 and cannot use
 the 0x00 in its temporary variables since
 TMR0 increments with execution. */

7.6.4 Enumeration

7.6.4.1 Description

An enumeration defines a list of named integer constants. The constants
defined by an enumeration can be used in the place of any integral value.

7.6.4.2 Syntax

enumerated-type-name:
 enum identifier new-line
 enum identifier { enumeration-list } new-line
 enum { enumeration-list } new-line
enumeration-list:
 2000 Microchip Technology Inc. DS51217B-page 93

MPLAB®-CXX Compiler User’s Guide
 enumerated-value
 enumeration-list , enumerated-value
enumerated-value:
 identifier
 identifier = constant-expression

All enumeration identifiers (such as VALUE_1 in the example) must be unique
across all defined enumerations.

Enumerated values can be specified for each enumerated member.

7.6.4.3 Example1

enum tag_1 { VALUE_1, VALUE_2, VALUE_3 } enum_1;
/* VALUE_1 is equal to 0 *
 * VALUE_2 is equal to 1 *
 * VALUE_3 is equal to 2 */

char char_1;
enum_1 = 42; /* this will not produce an error */
char_1 = VALUE_3;/* this will assign char_1 value to 2 */

7.6.4.4 Example2

enum tag_2 { VALUE_3, VALUE_4, VALUE_5 } enum_2;
/* this definition will cause an error because VALUE_3
already has a value of 2, and cannot also hold a value of
0 */
enum tag_3 { VALUE_6 =2, VALUE_7, VALUE_8=50, VALUE_9 }
enum_3;
/* VALUE_6 is equal to 2 *
 * VALUE_7 is equal to 3 *
 * VALUE_8 is equal to 50 *
 * VALUE_9 is equal to 51 */
enum color_type {red,green,yellow} color;

The entries in the enumeration list are assigned constant integer values,
starting with zero for the first entry. Each entry is one greater than the
previous one. Therefore, in the above example, red is 0, green is 1, and yellow
is 2.

The default integer values assigned to the enumeration list can be overridden
by specifying a value for a constant. The following example illustrates
specifying a value for a constant.

enum color_type {red,green=9,yellow} color;

This statement assigns 0 to red, 9 to green, and 10 to yellow.

Once an enumeration is defined, the name can be used to create additional
variables at other points in the program. For example, the variable mycolor
can be created with the color_type enumeration by:

enum color_type mycolor;
DS51217B-page 94  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

Essentially, enumerations help to document code. Instead of assigning a
value to a variable, use an enumeration to clarify the meaning of the value.

7.6.5 typedef

7.6.5.1 Description

The typedef statement creates a new name for an existing type. The new
name can then be used to declare variables.

7.6.5.2 Syntax

The ’typedef’ keyword may be used anywhere the storage class specifiers
’extern’ and ’static’ may be used.

7.6.5.3 Example

typedef char string;
typedef unsigned int uint;
void main(void)
{
 string j[10];
 uint i;
 for(i=0;i<10;i++)
 j[i]=i;
}

When using a typedef statement, remember these two key points:

• A typedef does not deactivate the original name or type.

• Several typedef statements can be used to create many new names
for the same original type.

The typedef typically has two purposes:

• Create portable programs

• Document source code

Note: Using typedef to Create Portable Programs:
When writing portable code, it is important that the data size be
consistent. For example, suppose that 16-bit integers are required.
Rather than declaring integers as int, declare them as a type-
def name, such as myint. Near the top of the program, declare
the typedef based on the target machine. When compiling with a
tool that uses 16-bit integers, the typedef statement should read:

typedef int myint;

to make all integers declared as myint 16-bits.
 2000 Microchip Technology Inc. DS51217B-page 95

MPLAB®-CXX Compiler User’s Guide
7.7 Functions
Functions are the basic building blocks of the C language. All executable
statements must reside within a function.

The topics discussed in this section are:

• Function Declarations

• Function Prototyping

• Passing Arguments to Functions

• Returning Values from Functions

7.7.1 Function Declarations

7.7.1.1 Description

Functions must be declared before they are used. The compiler supports the
modern ANSI form of function declarations.

7.7.1.2 Syntax

function-definition:
 function-declarator compound-statement new-line
function-declarator:
 declaration-specifiers identifier (parameter-list)
parameter-list:
 parameter
 parameter parameter-list
parameter:
 type-specifier
 declarator

7.7.1.3 Example

unsigned char AddOne(unsigned char x)
{
 return(x + 1);
}

7.7.2 Function Prototyping

7.7.2.1 Description

A function prototype should be declared before the function is called. A
function prototype declares the return type, name, and types of parameters
for a function, but no other statements.
DS51217B-page 96  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.7.2.2 Syntax

function-prototype:
 function-declarator new-line

7.7.2.3 Example

unsigned char AddOne(unsigned char x);

7.7.3 Passing Arguments to Functions

7.7.3.1 Description

A function argument is a value that is passed to the function when the function
is called. C allows zero or more arguments to be passed to a function.

When a function is defined, formal parameters are declared between the
parentheses that follow the function name.

Function parameters can have storage class auto or static (MPLAB-C17
only). auto parameters are placed on the software stack, enabling
reentrancy, and static parameters are allocated globally, enabling direct
access and, therefore, smaller code.

For MPLAB-C17 only, if the first parameter to a function is static and is 8
bits wide, the argument will be passed to the function in PRODL. If it is static
and 16-bits wide, the argument will be passed in PROD.

7.7.3.2 Example

The function below calculates the sum of two values that are passed to the
function when it is called. When sum() is called, the value of each argument
is copied into the corresponding parameter variable.

void sum(unsigned char a, unsigned char b)
{
 int c;
 c = a+b;
}
void main(void)
{
 sum(1,10);

Note: Overhead of Passing Variables:
MPLAB-CXX uses a software stack for passing variables into func-
tions and for returning values from functions. This makes it possible
to support quite complex functions and allows recursive functions,
but there is some overhead in managing the software stack. When
compiling, the compiler will examine the function and only include
the appropriate level of stack support code.
 2000 Microchip Technology Inc. DS51217B-page 97

MPLAB®-CXX Compiler User’s Guide
 sum(15,6);
 sum(100,25);
}

Functions pass arguments by value. Any changes made to the formal
parameter do not affect the original value in the calling routine.

7.7.4 Returning Values from Functions

7.7.4.1 Description

A function in C can return a value to the calling routine by using the return
statement.

For MPLAB-C17, if the value being returned is 8-bits wide, it is returned in
WREG. If it is 16-bits wide, it is returned in the WREG/FSR1 pair. Otherwise, it is
returned on the software stack.

For MPLAB-C18, the value is always returned on the software stack. On
return, FSR0 points to the return value.

7.7.4.2 Syntax

return-statement:
 return expression new-line
 return new-line

7.7.4.3 Example

unsigned char sum(unsigned char a, unsigned char b)
{
 return(a + b);
}
void main(void)
{
 unsigned char c;
 c = sum(1, 10);
 c = sum(15, 6);
 c = sum(100, 25);
}

When a return statement is encountered, the function returns immediately to
the calling routine. Any statements after the return are not executed. The
return value of a function is not required to be assigned to a variable or to be
used in an expression; however, if it is not used, then the value is lost.
DS51217B-page 98  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.8 Operators
A C expression is a combination of operators and operands. For the most
part, C expressions follow the rules of algebra.

This section discusses many different types of operators including:

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Assignment Operators

• Increment and Decrement Operators

• Conditional Operator

• sizeof Operator

• Precedence of Operators

7.8.1 Arithmetic Operators

7.8.1.1 Description

The C language defines five arithmetic operators: addition, subtraction,
multiplication, division, and modulus.

7.8.1.2 Syntax

arithmetic-expression:
 postfix-expression
 arithmetic-expression arithmetic-operator
 postfix-expression
arithmetic-operator:
 + addition
 - subtraction
 * multiplication
 / division
 % modulus

The +, -, *, and / operators may be used with any basic data type.

The modulus operator, %, can only be used with integer data types.

7.8.1.3 Example

-b /* negative b */
count - 163 /* variable count minus 163 */
 2000 Microchip Technology Inc. DS51217B-page 99

MPLAB®-CXX Compiler User’s Guide
7.8.2 Relational Operators

7.8.2.1 Description

The relational operators in C compare two values and return ‘1’ or ‘0’ based
on the comparison.

7.8.2.2 Syntax

relational-expression:
 arithmetic-expression
 relational-expression relational-operator
 arithmetic-expression
relational-operator:
 > greater than
 >= greater than or equal to
 < less than
 <= less than or equal to
 == equal to
 != not equal to

7.8.2.3 Example

count > 0
value <= MAX
input != BADVAL

7.8.3 Logical Operators

7.8.3.1 Description

The logical operators support the basic logical operations AND, OR, and NOT.

7.8.3.2 Syntax

logical-or-expression:
 logical-and-expression
 logical-or-expression || logical-and-expression
logical-and-expression:
 relational-expression
 logical-and-expression || relational-expression
logical-not-expression:
 ! unary-expression
 && Logical AND
 || Logical OR
 ! Logical NOT
DS51217B-page 100  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.8.3.3 Example

NotFound && (i <= MAX)
!(Value <= LIMIT)
((’a’ <= ch) && (ch <= ’z’)) || ((’A’ <= ch) && (ch <=
’Z’))

7.8.4 Bitwise Operators

7.8.4.1 Description

C contains six special operators which perform bit-by-bit operations on
numbers. These bitwise operators can only be used on integral data types.
The result of using any of these operators is a bitwise operation of the
operands.

7.8.4.2 Syntax

bitwise-expression:
 postfix-expression
 bitwise-expression bitwise-operator
 postfix-expression
bitwise-not-expression:
 ~ unary-expression
bitwise-operator:
 & bitwise AND
 | bitwise OR
 ^ bitwise XOR
 ~ 1’s complement
 >> right shift
 << left shift

7.8.4.3 Example

 Flags & MASK; /* Zero unwanted bits */
 Flags ^ 0x07; /* Flip bits 0, 1, and 2 */
 Val << 2; /* Multiply Val by 4 */

7.8.5 Assignment Operators

7.8.5.1 Description

The most common operation in a program is to assign a value to a variable. C
also provides shortcut assignment operators for modifying a variable by
performing an operation on itself.
 2000 Microchip Technology Inc. DS51217B-page 101

MPLAB®-CXX Compiler User’s Guide
7.8.5.2 Syntax

assignment-expression:
 unary-expression assignment-op expression
assignment-operator:
 =
 +=
 -=
 *=
 /=
 %=
 |=
 ^=
 >>=
 <<=

7.8.5.3 Example

a += b + c; /* Same as a = a + b + c; */
a *= b + c; /* Same as a = a * (b + c); */
a *= (b + c); /* Same as a = a * (b + c); */
r /= s; /* Same as r = r / s; */
m *= 5; /* Same as m = m * 5; */
Flags |= SETBITS; /* Set bits in Flags */
Div2 >>= 1; /* Divide Div2 by 2 */

7.8.6 Increment and Decrement Operators

7.8.6.1 Description

C provides shortcuts for the common operation of incrementing or
decrementing a variable. The increment and decrement operators are
extremely flexible. They can be used in a statement by themselves, or they
can be embedded within a statement with other operators. The position of the
operator indicates whether the increment or decrement is to be performed
before or after the evaluation of the statement in which it is embedded.

7.8.6.2 Syntax

pre-increment-expression:
 ++ unary-expression
pre-decrement-expression:
 -- unary-expression
post-increment-expression:
 postfix-expression ++
post-decrement-expression:
 postfix-expression --
DS51217B-page 102  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.8.6.3 Example

void main(void)
{
 unsigned char a = 0, b, c;
 a++; /* same as ++a; */
 /* a = 1 */
 b = 5 + a++; /* b = 6, a = 2 */
 c = 6 + --a; /* c = 7, a = 1 */
}

7.8.7 Conditional Operator

7.8.7.1 Description

The conditional operator is a shortcut for executing code based on the
evaluation of an expression.

7.8.7.2 Syntax

conditional-expression:
 logical-OR-expression ? comma-expression :
 conditional-expression

7.8.7.3 Example

c = (a>b) ? a : b; /* c is set to the larger of
 a and b */
 2000 Microchip Technology Inc. DS51217B-page 103

MPLAB®-CXX Compiler User’s Guide
7.8.8 sizeof Operator

7.8.8.1 Description

The sizeof operator returns the size of the specified item in bytes. The
argument to the sizeof operator can be a variable, an array name, the name
of a basic data type, the name of a derived data type, or an expression.

7.8.8.2 Syntax

sizeof-expression:
 sizeof (type)
 sizeof a

7.8.8.3 Example

sizeof (int); /* number of bytes to store an integer
 value = 2 */
sizeof (v); /* number of bytes to store variable v
 v is int, value = 2 */
sizeof (x); /* number of bytes to store all variables
 of array x
 x is int, 10 elements, value = 20 */

sizeof (struct data); /* number of bytes to store
 expression
 struct has 3 int members,
 value = 6 */
DS51217B-page 104  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.8.9 Precedence of Operators

7.8.9.1 Description

Precedence refers to the order in which operators are processed. The C
language maintains a precedence for all operators. The following shows the
precedence from highest to lowest. Operators at the same level are evaluated
from left to right.

7.8.9.2 Example

Precedence Operator

Highest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
↓

Lowest

() [] -> .

! ~ ++ -- - (type cast) * & sizeof

* / %

+ -

<< >>

< <= > >=

== !=

&

^

|

&&

||

?

= += -= *= /=

,

Expression Result Note

10 - 2 * 5 0 * has higher precedence than +

(10 - 2) * 5 40

0x20 | 0x01 != 0x01 0x20 != has higher precedence than |

(0x20 | 0x01) != 0x01 1

1 << 2 + 1 8 + has higher precedence than <<

(1 << 2) + 1 5
 2000 Microchip Technology Inc. DS51217B-page 105

MPLAB®-CXX Compiler User’s Guide
7.9 Program Control Statements
This section describes the statements that C uses to control the flow of
execution in a program, explains how relational and logical operators are used
with these control statements, and covers how to execute loops.

Topics discussed in this section include:

• if Statement

• if-else Statements

• for Loop

• while Loop

• do-while Loop

• switch Statement

• break Statement

• continue Statement

• goto Statement

7.9.1 if Statement

7.9.1.1 Description

The if statement is a conditional statement. The statement associated with
the if statement is executed based upon the outcome of a condition. If the
condition evaluates to nonzero, the statement is executed. Otherwise, it is
skipped.

7.9.1.2 Syntax

if-statement:
 if (expression) statement new-line

7.9.1.3 Example

if(num > 0) Adjust(num);
if(count<0)
{
 count=0;
 EndFound = TRUE;
}

DS51217B-page 106  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.9.2 if-else Statements

7.9.2.1 Description

The if-else statement handles conditions where a program requires one
statement to be executed if a condition is nonzero and a different statement if
the condition is zero.

7.9.2.2 Syntax

if-else-statement:
 if (expression) statement else statement new-line

7.9.2.3 Example

if(num < 0)
{
 num = 0;
 Valid = 0;
}
else
 Valid = 1;
if(num == 1)
 DoCase1();
else if(num == 2)
 DoCase2();
else if(num == 3)
 DoCase3();
else
 DoInvalid();

7.9.3 for Statement

7.9.3.1 Description

One of the three loop statements that C provides is the for loop. The other
two are the if and the do-while statements.

Use a for loop to repeat a statement or set of statements. In general, the first
expression is the initialization expression, the second is the loop condition,
and the third is the loop expression.

7.9.3.2 Syntax

for-statement:
 for (expression ; expression ; expression) statement
 new-line
 2000 Microchip Technology Inc. DS51217B-page 107

MPLAB®-CXX Compiler User’s Guide
7.9.3.3 Example

unsigned char i;
for(i=0;i<10;i++)
 DoFunc();
for(num=100;num>0;num=num-1)
 { . . . }
for(count=0;count<50;count+=5)
 { . . . }
/* Find Target */
for(i=0; (i<MAX) && (Array[i]<>Target); i++);

7.9.4 while Statement

7.9.4.1 Description

Another of the loops in C is the while loop. While an expression is nonzero,
the while loop repeats a statement or block of code. The value of the
expression is checked prior to each execution of the statement.

7.9.4.2 Syntax

while-statement:
 while (expression) statement new-line

7.9.4.3 Example

X = GetValue()
while (1); /* Loop Forever */
{
 HandleValue(X);
 X = GetValue();
}

7.9.5 do-while Statement

7.9.5.1 Description

The final loop in C is the do loop. In the do loop, the statement is always
executed before the expression is evaluated. Thus, the do statement always
executes at least once. If the while expression evaluates to nonzero, control
is transferred back to the beginning of the loop.

7.9.5.2 Syntax

if-statement:
 do statement while (expression) new-line
DS51217B-page 108  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.9.5.3 Example

do
{
 x = GetValue();
 HandleValue(x);
} while (x != 0);

7.9.6 switch Statement

7.9.6.1 Description

A switch statement is functionally equivalent to multiple if-else
statements.

The switch statement has two limitations:

• The switch expression must be an 8-bit integer data type
(MPLAB-C17 only).

• The case labels must be constant values.

7.9.6.2 Syntax

switch-statement:
 switch (expression) statement new-line
case-statement:
 case constant-expression : statement new-line
default-statement:
 default : statement new-line

The switch expression is successively tested against a list of constants.
When a match is found, execution continues at the labeled case statement. If
no match is found, the statements associated with the default case are
executed if a default label exists.

7.9.6.3 Example

switch(i)
{
 case 1:
 DoCase1();
 break;
 case 2:
 DoCase2();
 break;
 case 3:
 DoCase3();
 break;
 case 4:

The use of the default
label is good programming
practice. It can catch out-
of-range data that is not
expected.
 2000 Microchip Technology Inc. DS51217B-page 109

MPLAB®-CXX Compiler User’s Guide
 DoCase4();
 break;
 default:
 DoDefault();
 break;
}
x = 0;
switch(ch)
{
 case ’c’: /* Ignoring case, set x to: */
 case ’C’: x++; /* 1 if ch is A */
 case ’b’: /* 2 if ch is B */
 case ’B’: x++; /* 3 if ch is C */
 case ’a’: /* otherwise, ch is invalid */
 case ’A’: x++
 break;
 default :
 BadChar(ch);
 break;
}

7.9.7 break Statement

7.9.7.1 Description

The break statement exits the innermost enclosing control statement (for,
while, do, switch) from any point within the body. The break statement
bypasses normal termination from an expression. If the break occurs in a
nested loop, control returns to the previous nesting level.

7.9.7.2 Syntax

break-statement:
 break new-line

7.9.7.3 Example

/* Get 100 values. Stop immediately if the value is 0. */
unsigned char i;
for(i = 0; i < 100; i++)
{
 x = GetValue();
 if(x == 0)
 break;
 HandleValue(x);
}

DS51217B-page 110  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.9.8 continue Statement

7.9.8.1 Description

The continue statement allows a program to skip to the end of a for,
while, or do statement without exiting the loop.

7.9.8.2 Syntax

continue-statement:
 continue new-line

7.9.8.3 Example

/* Get 100 values. If the value is 0,
 ignore it and go on. */
unsigned char i;
for (i = 0; i < 100; i++)
{
 x = GetValue;
 if (x == 0)
 continue;
 HandleValue(x);
}

7.9.9 goto Statement

7.9.9.1 Description

Execution of a goto causes control to be sent directly to the labeled
statement. This statement must be located in the same function as the goto.

Use of goto’s interrupts the normal sequential flow of a program and thus
makes it harder to follow and decipher. For this reason, the use of goto’s is
not considered good programming style, i.e., it is recommended that you do
not use them in your program.

7.9.9.2 Syntax

goto-statement:
 goto label new-line

7.9.9.3 Example

/* Branch on error */
goto fatal_error;
 :
fatal_error: error_fn (“fatal error”);
 :
 2000 Microchip Technology Inc. DS51217B-page 111

MPLAB®-CXX Compiler User’s Guide
Instead of jumping to the error function, call the function where the error
occurred to avoid using a goto.

7.10 Arrays and Strings
An array is a list of related variables of the same data type. Strings are arrays
of characters with some special rules.

Topics discussed in this section include:

• Arrays

• Strings

• Initializing Arrays

7.10.1 Arrays

7.10.1.1 Description

An array is a list of elements which are all of the same type and can be
referenced through the same name. When an array is declared, C defines the
first element to be at an index of 0; therefore, if the array has 50 elements, the
last element is at an index of 49.

C stores arrays in contiguous memory locations. The first element is at the
lowest address.

7.10.1.2 Syntax

declarator:
 declarator array-declarator
array-declarator:
 [constant-expression]
 array-declarator [constant-expression]

7.10.1.3 Example

#define SIZE 10
unsigned char i, num[SIZE];
for(i = 0; i < SIZE; i++)
 num[i] = i;

To copy the contents of one array into another, copy each individual element
from the first array into the second array. The following example shows one
method of copying the array a[] into b[] assuming that each array has 10
elements.

for(i=0;i<10;i++)
 b[i] = a[i];
DS51217B-page 112  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.10.2 Strings

7.10.2.1 Description

A common one-dimensional array is the string. C does not have a built-in
string data type. Instead, a string is defined as a null (0) terminated character
array. The size of the character array must include the terminating null. All
string constants are automatically null terminated.

7.10.2.2 Example

char String[80];
int i;
 .
 .
 .
for(i = 0; (i < 80) && String[i]; i++)
 HandleChar(String[i]);

7.10.3 Initializing Arrays

7.10.3.1 Description

C allows initialization of arrays. Standard data type arrays may be initialized in
a straight-forward manor. Initializing arrays using the PICmicro MCU ram and
rom qualifiers may require more than a single-line initialization statement.

7.10.3.2 Syntax

initialized-declarator:
 declarator = { value-list }
value-list:
 { value-list }
 constant-expression-list
constant-expression-list:
 constant-expression
 constant-expression-list , constant-expression

7.10.3.3 Example1

The following example shows a 5 element integer array initialization.

int i[5] = {1,2,3,4,5};

The element i[0] has a value of 1 and the element i[4] has a value of 5.

A string (character array) can be initialized in two ways. One method is to
make a list of each individual character:

char str[4]={’a’,’b’,’c’, 0};
 2000 Microchip Technology Inc. DS51217B-page 113

MPLAB®-CXX Compiler User’s Guide
The second method is to use a string constant:

char name[5]="John";

A null is automatically appended at the end of “John” . When initializing an
entire array, the array size may be omitted:

char Version[] = "V1.0";

7.10.3.4 Example2

Because the PICmicro MCU family of microcontrollers uses separate program
memory and data memory address busses in their design, MPLAB-CXX
requires ANSI extensions to distinguish between data located in ROM and
data located in RAM. The ANSI/ISO C standard allows for code and data to
be in separate address spaces, but this is not sufficient to locate data in the
code space as well. To this purpose, MPLAB-CXX introduces the rom and
ram qualifiers. Syntactically, these qualifiers bind to identifiers just as the
const and volatile qualifiers do in strict ANSI C.

The primary use of ROM data is for static strings. In keeping with this,
MPLAB-CXX automatically places all string literals in ROM. This type of a
string literal is “array of char located in ROM.”

For example, when using MPLAB-C18, a string table in ROM can be declared
as:

 rom const char table[][20] = { "string 1",
 "string 2", "string 3", "string 4" };
 rom const char *rom table2[] = { "string 1",
 "string 2", "string 3", "string 4" };

The declaration of table declares an array of four strings that are each 20
characters long, and so takes 40 words of program memory. table2 is
declared as an array of pointers to ROM. The rom qualifier after the * places
the array of pointers in ROM as well. All of the strings in table2 are 9 bytes
long, and the array is four elements long, so table2 takes (9*4+4*2)/2 = 22
words of program memory. Accesses to table2 may be less efficient than
accesses to table, however, because of the additional level of indirection
required by the pointer.

An important consequence of the separate ROM and RAM address spaces
for MPLAB-CXX is that pointers to data in ROM and pointers to data in RAM
are not compatible. That is, two pointer types are not compatible unless they
point to objects of compatible types and the objects they point to are located
in the same address space. For example, a pointer to a string in ROM and a
pointer to a string in RAM are not compatible because they refer to different
address spaces. To copy data from ROM to RAM, an explicit copy is required.
For simple types, this entails only a simple assignment, but for arrays and
other complex data-types it may require more.

Note: At this time, for MPLAB-C17, you should use manual pointer arith-
matic. See the file README.C17 for more information.
DS51217B-page 114  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

For example, a function to copy a string from ROM to RAM could be written as
follows.

void str2ram(static char *dest, static char rom *src)
{
 while((*dest++ = *src++) != ’\0’)
 ;
} /* end str2ram */

As an example, the following code will send a ROM string to USART1 on a
PICXXC756 using the PICmicro MCU C libraries. The library function to send
a string to the USART, putsUSART1(const char *str), takes a pointer to
a string as its argument, but that string must be in RAM.

Method 1: Copy the ROM string to a RAM buffer before sending

rom char mystring[] = "Send me to the USART";
void foo(void)
{
 char strbuffer[21];
 str2ram(strbuffer, mystring);
 putsUSART1(strbuffer);
}

Method 2: Modify the library routine to read from a ROM string.

/* The only changes required to the library routine is to
change the name so the new routine does not conflict with
the original routine and to add the rom qualifier to the
parameter.
*/
void putrsUSART1_rom(static const rom char *data)
{
 do /* Send characters up to the null */
 { /* Write a byte to the UASRT */
 while(BusyUSART1());
 putcUSART1(*data);
 } while(*data++);
} /* end putrsUSART1_rom */

7.11 Pointers
This section covers one of the most important and powerful features of C,
pointers. A pointer is a variable that contains the location of an object.

The topics covered in this section are:

• Introduction to Pointers

• Pointers and Arrays

• Pointer Arithmetic

• Passing Pointers to Functions
 2000 Microchip Technology Inc. DS51217B-page 115

MPLAB®-CXX Compiler User’s Guide
7.11.1 Introduction to Pointers

7.11.1.1 Description

A pointer is an object that holds the location of another object or a NULL
constant.

For example, if a pointer variable called Var1 contains the address of a
variable called Var2, then Var1 points to Var2. If Var2 is a variable at address
100 in memory, then Var1 would contain the value 100.

For MPLAB-C17:

RAM pointers are 16-bit values. ROM pointers are 24-bit values if they point to
8-bit objects. ROM pointers are 16-bit values if they point to objects 16-bits or
greater.

For MPLAB-C18:

RAM pointers are either 8-bit (near) or 16-bit (far) values. ROM pointers are
either 16-bit (near) or 24-bit (far) values.

7.11.1.2 Syntax

declarator:
 * type-qualifier-list declarator

The two special operators that are associated with pointers are the asterisk (*)
and the ampersand (&). The address of a variable can be accessed by
preceding the variable with the & operator. The * operator returns the value
stored at the address pointed to by the variable.

7.11.1.3 Example

void main(void)
{
 unsigned char *Var1, Var2, Var3;
 Var2 = 6;
 Var1 = &Var2;
 Var3 = Var2; /* These two do */
 Var3 = *Var1; /* the same thing. */
}

The first statement declares three variables: Var1, which is an integer pointer,
and Var2 and Var3, which are integers. The next statement assigns the value
of 6 to Var2. Then the address of Var2 (&Var2) is assigned to the pointer
variable Var1. Finally, the value of Var2 is assigned to Var3 in two ways: first
by accessing Var2 directly, then by accessing Var2 through the pointer Var1.
DS51217B-page 116  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.11.2 Pointer Arithmetic

7.11.2.1 Description

In general, pointers may be treated like other variables. However, there are a
few rules and exceptions. In addition to the * and & operators, there are only
four other operators that can be applied to pointer variables: +, ++, -, --.

An important point to remember when performing pointer arithmetic is that the
value of the pointer is adjusted according to the size of the data type it is
pointing to. If a pointer’s data type requires five bytes, incrementing the
pointer actually increases the value of the pointer by five. Similarly, adding
three to the pointer increases the value of the pointer by fifteen (three times
five).

7.11.2.2 Example

unsigned char *p, *q, r[30] ;
.
.
p = r + 20; /* p points to element 20 of r */
q = p - 5 /* q points to element 15 of r */
p++; /* p points to element 21 of r */

It is possible to increment or decrement either the pointer itself or the object to
which it points. Pointers may also be used in relational operations.

7.11.3 Passing Pointers to Functions

7.11.3.1 Description

A pointer may be passed to a function just like any other value.

7.11.3.2 Example

void incby10(unsigned char *n)
{
 *n += 10;
}

Note: ROM and RAM pointers in MPLAB-CXX:
Pointer arithmetic is affected by the ROM paging and RAM banking
of the PICmicro MCU. Pointers are assumed to be RAM pointers
unless declared as ROM.

rom int *p; /* ROM pointer */
char *q; /* RAM pointer (default) */
ram char *r; /* RAM pointer */
 /* (explicitly declared) */
 2000 Microchip Technology Inc. DS51217B-page 117

MPLAB®-CXX Compiler User’s Guide
void main(void)
{
 unsigned char *p;
 unsigned char i = 0;
 p=&i;
 incby10(p); /* i equals 10 */
 incby10(&i); /* i equals 20 */
}

7.12 Structures and Unions
Structures are a group of related variables. Unions are a group of variables,
often of differing types, that share the same memory space.

This section covers:

• Introduction to Structures

• Introduction to Unions

• Nesting Structures

• Bit-fields

7.12.1 Syntax
struct-or-union-type-name:
 struct-or-union identifier
 struct-or-union identifier
 { member-declaration-list }
 struct-or-union { member-declaration-list }
member-declaration-list:
 member-declaration
 member-declaration-list member-declaration
member-declaration:
 member-declaration-specifiers declarator-list ;
member-declaration-specifiers:
 member-declaration-specifier
 member-declaration-specifiers member-declaration-
 specifier
member-declaration-specifier:
 type-name
 const
 volatile
 near
 far
DS51217B-page 118  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

7.12.2 Introduction to Structures
Structures and unions allow the storage and manipulation of related data
together rather than in separate variables.

For MPLAB-C17, structures located in program memory must have all
elements word aligned.

MPLAB-CXX supports anonymous structures.

7.12.2.1 Description

A structure is a group of related items that can be accessed through a
common name. Each item within a structure has its own data type, which can
be different from the other data types.

7.12.2.2 Example

The following example is for a card catalog in a library.

struct catalog_tag
{
 char author[40];
 char title[40];
 char pub[40];
 unsigned int date;
 unsigned char rev;
} card;

In this example, the tag of the structure is catalog. It is not the name of a
variable, only the name of the type of structure. The variable card is declared
as a structure of type catalog. The following shows what the structure catalog
looks like in memory.

To access any member of a structure, specify the name of the variable and
the name of the member separated by a period. For example, to change the
revision member of the structure catalog, use the following:

card.rev=’a’;

To access the third character in the title, use the following:

ThirdChar = card.title[2];

Structures and
Debugging in MPLAB
IDE
User-defined data
constructs are included in
the symbolic information
file from the linker, but
MPLAB IDE doesn’t use
them in debugging.

author 40 bytes

title 40 bytes

pub 40 bytes

date 2 bytes

rev 1 byte
 2000 Microchip Technology Inc. DS51217B-page 119

MPLAB®-CXX Compiler User’s Guide
7.12.3 Introduction to Unions

7.12.3.1 Description

A union is a memory block that is shared by two or more variables, which can
be of any data type. A union resembles a structure, but its memory usage is
fundamentally different. In a structure, the elements are arranged
sequentially. In a union, all of the elements begin at the same address,
making the size of the union equal to the size of the largest element.

7.12.3.2 Syntax

The <union-name> is the tag of the union, and the <variable-list>
contains the names of the variables that have a data type of <union-name>.

Accessing members of a union is the same as accessing members of a
structure.

7.12.3.3 Example

Because an int is two bytes and a char is one byte, the union below is
stored in memory as shown:

union u_tag
{
 int i;
 char c[4];
} temp;

where:

An example of saving space is shown below:

struct type_tag
{
 enum { VARIABLE, CONSTANT } type;
 union
 {
 char *variable_name;
 int constant_value;
 } value;
} variable_or_constant;
void function(struct type_tag var_or_const)
{
 int constant;
 char *variable;

<---------- i ---------->

<---c[0]---> <---c[1]---> <---c[2]---> <---c[3]--->

location 0 location 1 location 2 location 3
DS51217B-page 120  2000 Microchip Technology Inc.

MPLAB-CXX Fundamentals

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

 switch(var_or_const.type)
 {
 case VARIABLE:
 variable = var_or_const.value.variable_name;
 break;
 case CONSTANT:
 constant = var_or_const.value.constant_value;
 break;
 }
}

Based on the type of data stored in struct type_tag, the access of the
data is different. A union allows the data for the two types to share space.

7.12.4 Nesting Structures

7.12.4.1 Description

A structure member can have a data type that is another structure. This is
referred to as a nested structure.

7.12.4.2 Example1

struct Memory
{
 int RAMSize;
 int ROMSize;
};
struct PIC
{
 char Name[12];
 struct Memory MemSizes;
};

Members of a structure or union define a separate name space, Meaning that
two different structures can have the same names for their members.

7.12.4.3 Example2

struct struct_tag_1{
 int a;
 int b;
 char c;
} struct_1;
struct struct_tag_2
{
 char d;
 int a;
 int b;
} struct_2;
 2000 Microchip Technology Inc. DS51217B-page 121

MPLAB®-CXX Compiler User’s Guide
struct_1.a references the first two bytes of a structure of type struct
tag_1.

struct_2.a references the second and third bytes of a structure of type
struct tag_2.

struct_2.c and struct_1.d would produce an error because the
referenced member is not part of the structure’s definition.

7.12.5 Bit-fields

7.12.5.1 Description

Bit-fields allow the specification of integer-type members of a struction, which
are the specified number of bits in size. Bit-fields cannot cross byte
boundaries and, therefore, cannot be greater than 8 bits in size.

7.12.5.2 Syntax

struct <struct_name>
{
<int type> <member1> : <bit-width>;
<int type> <member2> : <bit-width>;
:
<int type> <membern> : <bit-width>;
}

7.12.5.3 Example

See Section 8.4.3.
DS51217B-page 122  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 8. MPLAB-CXX and PICmicro MCU Programming
U
sin

g

M
P

L
A

B
-C

X
X

Part
2

8.1 Introduction
This section discusses specific details for programming PICmicro
microcontrollers (MCUs) when using MPLAB-C17 and MPLAB-C18.

8.2 Highlights
Items discuss in this chapter are:

• PICmicro MCU Programming Specifics

• MPLAB-C17 and PICmicro MCU Programming

• MPLAB-C18 and PICmicro MCU Programming

8.3 PICmicro MCU Programming Specifics
When using C to program a PICmicro MCU device, the architecture and
operation of the device must be considered. That is, the following items
should be understood to write C code for a PICmicro MCU:

• Memory Models

• Processor Header File

• Register Definitions File

• Software Stack

• Startup and Initialization

• Interrupt Support

• Internal Assembler

8.3.1 Memory Models
Different devices access memory differently. Depending on your selected
device, you will need to use different memory model versions of libraries and/
or precompiled object files. See the MPLAB-CXX Reference Guide for a list of
libraries and precompiled object files available for different memory models.

8.3.2 Processor Header File
The processor header file is a C file that contains external declarations for the
special function registers. Register definitions are found in the Register
Definitions File (Section 8.3.3).

In addition to register declarations, the header file defines in-line assembly
macros (Table 8.1) and interrupt install macros (MPLAB-C17 only).
 2000 Microchip Technology Inc. DS51217B-page 123

MPLAB®-CXX Compiler User’s Guide
There are certain instructions on PICmicro MCUs that may need to execute
from the C code. They can be included as in-line assembler instructions but
for convenience they are also available as macros in C. They are listed in the
following table:

Header files are device (processor) specific, i.e., choose the header file
p17c756.h when coding for the PIC17C756. These files are contained in the
c:\mcc\h directory, where c:\mcc is the compiler install directory.

8.3.3 Register Definitions File
The register definitions file is an assembly file that contains declarations for all
the special function registers on the device. Every register definitions file is
associated with a C header file (Section 8.3.2) that contains, among other
things, external declarations for the special function registers.

The register definitions file, when compiled, will become an object file that will
need to be linked to the source file. As an example, p17c756.asm compiles
to p17c756.o, added to the tutorial project in Chapter 5. These files are
device (processor) specific.

Register definitions file source code is found in the c:\mcc\src\proc
directory and compiled object code is found in the c:\mcc\lib directory,
where c:\mcc is the compiler install directory.

Table 8.1: Instruction Macro Actions

Instruction Macro Action

Nop() Executes a no operation (NOP)

ClrWdt() Clears the watchdog timer (CLRWDT).

Sleep() Executes a SLEEP instruction

Reset() Executes a device reset (RESET)

Rlcf(var) Rotates ‘var' to the left through the carry bit

Rlncf(var) Rotates ‘var’ to the left without going through
the carry bit.

Rrcf(var) Rotates ‘var’ to the right through the carry bit.

Rlncf(var) Rotates ‘var’ to the right without going through
the carry bit.

Swapf(var) Swaps the upper and lower nibble of 'var'

Note: ‘var’ must be an 8-bit quantity (e.g., char) and not located on the
stack.
DS51217B-page 124  2000 Microchip Technology Inc.

MPLAB-CXX and PICmicro MCU Programming

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

8.3.4 Software Stack
The compiler uses a software stack for storing local variables and for passing
arguments to and returning values from functions. The software stack should
not be confused with the hardware stack that the PICmicro MCU uses for
storing return addresses during function calls and interrupts.

8.3.5 Startup and Initialization
A Startup file, written in either assembly or C, performs the following tasks:

1. Optionally calls the function _ _STARTUP() upon reset
(MPLAB-C17 Only).

2. Optionally calls the code which copies initialized data from program
memory to data memory.

3. Sets up the software stack used by the compiler.
4. Transfers control to the C function main() which is the entry point for C

programs.

8.3.6 Interrupt Support
Support for interrupts is provided differently for the different compilers. In
MPLAB-C17, interrupts are handled by interrupt support macros. In
MPLAB-C18, interrupts are handled by the #pragma interrupt directive.
 2000 Microchip Technology Inc. DS51217B-page 125

MPLAB®-CXX Compiler User’s Guide
8.3.7 Internal Assembler
MPLAB-CXX has an internal assembler using a syntax similar to MPASM.
The block of assembly code must begin with _asm and end with _endasm.
The syntax within the block is

 <instruction> [arg1][, arg2][, arg3]

Comments must be C or C++ type notation.

Example 8.1: In-Line Assembly Code
_asm:
/* User assembly code */
movlw 7 // Load 7 into WREG
movwf PORTB // and send it to PORTB
_endasm:

It is generally recommended to limit the use of in-line assembly to a minimum.
To write large fragments of assembly code, use the stand-alone assembler
and link the modules to the C modules using MPLINK.

The in-line assembler differs from the stand-alone assembler as follows:

• No directive support

• Full text mnemonics must be used for table reads/writes

• No default operators

8.4 MPLAB-C17 and PICmicro MCU Programming
This section discusses issues of using MPLAB-C17 for PICmicro MCU
programming.

8.4.1 Memory Models
For PIC17CXXX devices with program memory (ROM) over 8K, the memory
is broken up in to pages. For PIC17CXXX devices with data memory (RAM)
over 256, the memory is broken up into banks. Table 8.2 spells out the
memory models available for these devices via MPLAB-C17.

The usage of the keywords near, far, ram and rom is discussed in Chapter 6.

Table 8.2: Memory Model Usage –- MPLAB-C17

Memory Model Device Description

s small near rom - program memory ≤ 8K,
near ram - data memory ≤ 256

m medium far rom - program memory > 8K,
near ram - data memory ≤ 256

c compact near rom - program memory ≤ 8K,
far ram - data memory > 256

l large far rom - program memory > 8K,
far ram - data memory > 256
DS51217B-page 126  2000 Microchip Technology Inc.

MPLAB-CXX and PICmicro MCU Programming

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

8.4.2 Processor Header File
Processor header files for PIC17CXXX devices contain external declarations
for the special function registers, in-line assembly macros and interrupt install
macros.

PIC17CXXX header files have four macros for installing interrupt service
routines to the four interrupt vectors available. Call these macros as part of
setting up the interrupt handler functions. Specify which C function should act
as the interrupt handling function for a particular interrupt vector. For more
information on how interrupts are handled by MPLAB-C17, please refer to the
Section 8.4.6. Interrupt support macros are listed in the following table:

8.4.3 Register Definitions File
The register definitions file is an assembly file that contains declarations for all
the special function registers on the device. Every register definitions file is
associated with a C header file (see previous section) that contains, among
other things, external declarations for the special function registers.

Example 8.2: PIC17C44 Port A Definition

Here Port A is defined in the register definitions file p17c44.asm as:

BANK0_SFR_SEC DATA H’010’
PORTAbits
PORTA RES 1 ; 010h
TRISB RES 1 ; 011h
.
.

and so on.

The first line specifies the file register bank where Port A is located and the
starting address for that bank. Port A has two labels, PORTAbits and
PORTA, both referring to the same location (in this case 010h in bank 0). So
the above definition reserves 1 byte for PORTA and PORTAbits at location
010h.

In p17c44.h, Port A is declared as:

volatile extern far unsigned char PORTA;

Table 8.3: Macro Actions

Macro Action

Install_INT(func) Sets ’func’ as the handler for the INT interrupt.

Install_TMR0(func) Sets ’func’ as the handler for the TMR0 interrupt.

Install_T0CKI(func) Sets ’func’ as the handler for the T0CKI interrupt.

Install_PIV(func) Sets ’func’ as the handler for the PIV interrupt.
 2000 Microchip Technology Inc. DS51217B-page 127

MPLAB®-CXX Compiler User’s Guide
and as:

extern far volatile union
{
 struct
 {
 unsigned RA0:1; /* Bit 0 */
 unsigned RA1:1;
 unsigned RA2:1;
 unsigned RA3:1;
 unsigned RA4:1;
 unsigned RA5:1;
 unsigned :1;
 unsigned NOT_RBPU:1;
 };
 struct
 {
 unsigned INT:1; /* Alternate name for bit 0 */
 unsigned T0CKI:1; /* Alternate name for bit 1 */
 unsigned :6; /* pad next 6 locatons */
 };
} PORTAbits;

The first declaration specifies that PORTA is a byte (unsigned char), whereas
the second one declares PORTAbits as a union of bit-addressable
structures. Since individual bits in a special function register may have more
than one function (and hence more than one name), there are multiple
structure definitions inside the union all referring to the same register.
Respective bits in all structure definitions refer to the same bit in the register.
Where a bit has only one function for its position, it is simply padded in other
structure definitions. For example, bits 2 through 7 on Port A are simply
padded in the second structure definition using the statement unsigned :6.

When using a special function register such as Port A, write the following
statements:

PORTA = 0x34; /* Assigns the value 0x34 to the */
 /* whole port */
PORTAbits.INT = 1; /* Sets the INT pin high */
PORTAbits.RA0 = 1; /* Sets the RA0 pin high, same as */
 /* above statement */

The extern modifier is needed since the variables are declared in the
register definitions file. The volatile modifier tells the compile that it cannot
assume that Port A retains values assigned to it. The far modifier specifies
that the port needs a bank switching instruction prior to access.

8.4.4 Software Stack
Define a software stack in the linker script for the processor by using a
command similar to the following:

STACK SIZE = 0x20
DS51217B-page 128  2000 Microchip Technology Inc.

MPLAB-CXX and PICmicro MCU Programming

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

This reserves 32 bytes in the general purpose RAM area for the software
stack. The size of the software stack required by a program varies with the
complexity of the program. The following should be kept in mind:

• One RAM location will be reserved by the compiler for use as the Stack
Pointer.

• When nesting function calls, all arguments and local variables (auto
variables included) of the calling function will remain on the stack.
Therefore, the stack must be large enough to accommodate the
requirements by all functions in a tree.

8.4.5 Startup and Initialization
The Startup file for PIC17CXXX devices is an assembly file that is assembled
and linked with the C program files. This file performs these main tasks:

1. Optionally calls the function _ _STARTUP() upon reset.
2. Optionally calls the code which copies initialized data from program

memory to data memory (idata).
3. Sets up the software stack used by the compiler.
4. Transfers control to the C function main() which is the entry point for C

programs.

There are two startup files for the PIC17CXXX family. The first is c0s17.asm
which uses short GOTOs and CALLs. c0s17.asm should be assembled and
linked with the small model (code less than 8K). The other startup file is
c0l17.asm which uses long jumps and LCALLs. c0l17.asm should be
used with projects targeting memory larger than 8K. A data initialization file,
idata.asm, may be associated with either startup file.

8.4.5.1 _ _STARTUP()

To execute some code immediately after a device reset but before any other
code generated by the compiler is executed, optionally create a function by
the name _ _STARTUP(). This will be the first code executed upon a reset. To
use a _ _STARTUP() function in a program:

1. Define a _ _STARTUP() function in a C program as follows:
 void _ _STARTUP(void)
 {
 // Initialize some registers to 0
 TRISB = 0;
 TRISC = 0;
 }

2. In c0l17.asm or c0s17.asm, uncomment the line:
 #DEFINE USE_STARTUP

Stack Overflow
Avoidance: For MPSIM or
MPLAB-ICE 2000, use a
break statement at the
last location on the stack. If
the program breaks, then a
stack overflow would have
occurred in the next byte.

The space shown between
the two underlines
preceding STARTUP() is
for illustration and should
not be used in actual code
(i.e., there should be no
space.)
 2000 Microchip Technology Inc. DS51217B-page 129

MPLAB®-CXX Compiler User’s Guide
3. Compile the source file, assemble c0l17.asm or c0s17.asm and link.

8.4.5.2 Initialized Data Support

When declaring initialized data (such as: int x = 5;), the variable is
allocated in data memory but the value is stored in program memory. Before
the data is usable in any program, the values must be copied from program
memory into the variable in data memory.

The size of the MPLAB-C17 initialization code is approximately 50 words.
Therefore, to only initialize a few variables, do not use that feature and
initialize the variables manually in the code. If initializing many variables (10 or
more integers or 20 or more characters) as they are declared, then the
initialization code is the better option in terms of code size.

To use initialized data with c0s17.asm in a MPLAB-C17 program:

1. Uncomment the following line in c0s17.asm:
#DEFINE USE_INITDATA

2. Assemble c0s17.asm to produce c0s17.o.
3. Assemble idata17.asm to produce idata17.o, or use idata17.o

directly.
4. Link the above files with the C object code.

To use initialized data with c0l17.asm in a MPLAB-C17 program:

1. Assemble c0s17.asm to produce c0s17.o, or use c0s17.o directly.
2. Assemble idata17.asm to produce idata17.o, or use idata17.o

directly.
3. Link the above files with the C object code.

8.4.5.3 Stack Initialization

The stack initialization simply points the compiler stack pointer to the right
location in data memory.

8.4.5.4 Branching to main()

After the startup code optionally calls _ _STARTUP() and/or copies initialized
data, and sets up the stack, it calls the main() function of the C program.
There are no arguments passed to main().

MPLAB-C17 transfers control to main() via a goto, i.e.;

goto main

Note: Since _ _STARTUP() is executed before the stack is initialized,
auto variables may not be used.

c0s17.asm is assembled
with USE_INITDATA
undefined by default.
c0l17.asm is assembled
with USE_INITDATA
defined by default.
DS51217B-page 130  2000 Microchip Technology Inc.

MPLAB-CXX and PICmicro MCU Programming

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

8.4.6 Interrupt Support Macros
MPLAB-C17 provides interrupt support macros and code for saving and
restoring context during interrupt handling. The use of such macros and code
are optional. It is recommended that interrupt handling be done in the
assembler to reduce latency and minimize overhead.

Each PICmicro MCU processor has two interrupt support assembly files. One
is for the small model and the other for the large model as before. These files
contain code fragments that save critical special function registers, call the
interrupt handling function, and returns from the interrupt. The registers are
saved as follows:

• First ALUSTA is saved primarily to preserve the Z bit. The saved
ALUSTA can go in any bank (since BSR isn't known at that time) but
always at location 0xFF. The interrupt support code reserves location
0xFF in all banks for save_ALUSTA.

• Second, PCLATH is saved at location 0xFE or the equivalent location in
the same manner as with ALUSTA. The interrupt support code reserves
location 0xFE in all banks for save_PCLATH.

• Finally BSR and WREG are saved in bank 0 at locations 0xFD and
0xFC, respectively. The interrupt support code reserves locations 0xFD
and 0xFC in bank 0 for save_BSR and save_WREG.

Here is how the highest addresses in data memory would look if an interrupt
occurred while BSR was pointing to bank 2 on the PIC17C756. (For the
PIC17C44 only banks 0 and 1 are used.)

The ALUSTA, PCLATH, BSR, and WREG are the registers that absolutely
need to be saved before we branch to the interrupt service function. However,
there are other registers used by the compiler that are worth saving under
certain circumstances. The following is an example that uses the Timer 0
Overflow Interrupt.

#include <p17c44.h>
unsigned char x;
void _ _TMR0()
{

Table 8.4: Interrupt Example

Bank 0 Bank 1 Bank 2 Bank 3

0xFB <Available> <Available> <Available> <Available>

0xFC save_WREG <Available> <Available> <Available>

0xFD save_BSR <Available> <Available> <Available>

0xFE <Reserved> <Reserved> save_PCLATH <Reserved>

0xFF <Reserved> <Reserved> save_ALUSTA <Reserved>

Startup code supplied with
MPLAB-C17 does not
support nested interrupts.
 2000 Microchip Technology Inc. DS51217B-page 131

MPLAB®-CXX Compiler User’s Guide
 x++;
 PORTB = x;
}
void main()
{
 x = 1;
// Install interrupt handler for timer 0 interrupt
 Install_TMR0(_ _TMR0);
// Set prescale value for TMR0
 T0STA = 0b11100110;
// Unmask TMR0 overflow interrupt
 INTSTA = 0b00000010;
// Enable all unmasked interrupts
 CPUSTA = 0;
// Set Port B in o/p mode
 TRISB = 0;
 while(1)
 {
 // Loop and wait for an interrupt to take place!
 }
}

Install _TMR0 (_TMR0) sets the function _ _TMR0() as the interrupt handler
for Timer 0 overflow interrupts. Then the appropriate prescale value, interrupt
flag, and global interrupt enable flag are set. The program enters into an
infinite loop when it reaches the while(1) statement. When Timer 0
overflows, program control goes to the _ _TMR0() function where the value
of ‘x’ is sent to PORT B and possibly displayed on LEDs.

In this simple program the PICmicro MCU wasn't doing much at the time the
interrupt occurred. Therefore do not save any more registers in addition to
what the compiler interrupt code saved. However, in a more complex
application, the interrupt may occur at any point in the program. Therefore
other registers may need to be saved. The best way to find out is to look at the
generated code for the interrupt handling function. Find out which registers
are used by the compiler inside the function and make sure to save them at
the beginning and restore them at the end of the function. Looking at the
following example's generated code, determine that registers PRODL and
PRODH are used both inside and outside the interrupt function.

#include <p17c44.h>
#pragma udata intSave = 0xFa
 unsigned char save_PRODL; // 0xF9
 unsigned char save_1F; // 0xFA
 unsigned char save_1E; // 0xFB
#pragma udata anywhere
 unsigned char x, y;
void _ _TMR0()
{
_asm
 movpf PRODL, save_PRODL
DS51217B-page 132  2000 Microchip Technology Inc.

MPLAB-CXX and PICmicro MCU Programming

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

 movpf PRODH, save_1E
 movpf PRODL, save_1F
_endasm
 x++;
 PORTB = x;
 y = y * x;
_asm
 movlr 0 // Switch to bank 0
 movfp save_PRODL, PRODL
 movfp save_1E, PRODH
 movfp save_1F, PRODL
_endasm
}
void main()
{
 x = y = 1;
 Install_TMR0(_ _TMR0);
// Set prescale value for TMR0
 T0STA = 0b11100110;
// Unmask TMR0 overflow interrupt
 INTSTA = 0b00000010;
// Enable all unmasked interrupts
 CPUSTA = 0;
// Set Port B in o/p mode
 TRISB = 0;
 while(1)
 {
 x = x * 5;
 }
}

The registers PRODH and PRODL are saved in save_1F, save_1E, and
save_PRODL, respectively. These variables are declared globally and
allocated at locations 0xFa to 0xFB in bank 0 using the #pragma udata
directive. This places them at the end of the bank just before save_B and
guarantees they are in bank 0. Since BSR is cleared in the interrupt support
code, don’t do any bank switching to save those three registers. However,
clear the BSR (using MOVLR 00) before restoring them as the interrupt
function code could have switched banks.

The following are merely guidelines as to what the compiler might be using for
certain tasks. However, the best guarantee that the context is saved and
restored correctly is by looking at generated code.

1. WREG: This is necessary if the program is doing anything other than
looping when an interrupt occurs. It is best to save WREG at all times.

2. FSR0, FSR1: Save FSR0 if the interrupt handling function uses arrays
or pointers.

3. PRODL, PRODH: Save these registers if performing multiplication in the
interrupt function. The compiler potentially uses PRODL and PRODH if
it is evaluating a complex expression.
 2000 Microchip Technology Inc. DS51217B-page 133

MPLAB®-CXX Compiler User’s Guide
4. TBLPTRL, TBLPTRH: These two registers are used for table read and
write operations. However, the compiler rarely uses them for temporary
storage. In general, it is not recommended to do table reads or writes in
the interrupt functions if done elsewhere in the program. Table reads and
writes use the 16-bit TBLAT register for latching data transferred from
and to program memory. Since TBLAT is not an addressable register it
cannot be saved or restored during interrupts.

8.4.7 Optimization Tips
Because of the limited memory on microcontrollers, optimization becomes an
issue as code complexity increases. This section discusses some
optimization tips for your C code.

1. Choose the correct memory model for your libraries and precompiled
object files. Don’t just pick the large memory model versions for inclusion
in your project. Consult Section 8.4.1 for more information.

2. Use the linker script to group variables that are used together into the
same data memory bank to minimize bank switching. Intelligent use of
the varlocate pragma and the section directive can yield excellent
results.

Example 8.3: Minimizing Bank Switching – MPLAB-C17

In the linker script:

SECTION NAME=coeffs RAM=temperature

In the program:

#pragma varlocate coeff

3. Use of section pragma’s to effectively manage RAM and ROM. Refer to
Section 7.3 for information on the pragma directive. For examples of use,
see the MPLINK examples found in the MPASM User’s Guide with
MPLINK and MPLIB.
DS51217B-page 134  2000 Microchip Technology Inc.

MPLAB-CXX and PICmicro MCU Programming

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

8.5 MPLAB-C18 and PICmicro MCU Programming
This section discusses issues of using MPLAB-C18 for PICmicro MCU
programming.

8.5.1 Memory Models
PIC18CXXX devices using more than 32K program memory (ROM), i.e.,
external ROM or future devices with more ROM, will need to use the large
memory model. Table 8.5 spells out the memory models available for these
devices via MPLAB-C18.

The usage of the keywords near, far, ram and rom is discussed in Chapter 6.

8.5.2 Processor Header File
Processor header files for PIC18CXXX devices contain external declarations
for the special function registers and in-line assembly macros, but no interrupt
install macros. In MPLAB-C18, interrupts are handled by the #pragma
interrupt directive. Please see Section 7.3.12 for more information.

8.5.3 Register Definitions File
The register definitions file is an assembly file that contains declarations for all
the special function registers on the device. Every register definitions file is
associated with a C header file (see previous section) that contains, among
other things, external declarations for the special function registers.

8.5.4 Software Stack
Define a software stack in the linker script for the processor by using a
command similar to the following:

STACK SIZE = 0x100

This reserves 256 bytes in the general purpose RAM area for the software
stack. The size of the software stack required by a program varies with the
complexity of the program. The following should be kept in mind:

• When nesting function calls, all arguments and local variables (auto
variables included) of the calling function will remain on the stack.
Therefore, the stack must be large enough to accommodate the
requirements by all functions in a tree.

Table 8.5: Memory Model Usage - MPLAB-C18

Memory
Model

Device Description

s small near rom – program memory ≤ 64KB (16-Bit pointer used)

l large far rom – program memory > 64KB (24-Bit pointer used)

Stack Overflow
Avoidance: For MPSIM or
MPLAB-ICE 2000, use a
break statement at the
last location on the stack. If
the program breaks, then a
stack overflow would have
occurred in the next byte.
 2000 Microchip Technology Inc. DS51217B-page 135

MPLAB®-CXX Compiler User’s Guide
Example 8.4: Stack Operation – MPLAB-C18

The first instruction saves the current frame pointer onto the stack. The next
instructions sets up the stack frame by copying the stack pointer (FSR1) to the
frame pointer (FSR2). By default, the compiler assumes that the stack is
contained within a single bank, and so only copies the low byte. Thus positive
offsets from the frame pointer reference local variables and negative offsets
reference parameter values.

000128 cfd9 MOVFF 0xfd9,0xfe6 void main(void)
00012a ffe6
00012c cfe1 MOVFF 0xfe1,0xfd9
00012e ffd9

The next instructions add to the stack pointer the number of bytes of local
variable storage required by the function which is, in this case, two bytes.

000130 0e02 MOVLW 0x2
000132 26e1 ADDWF 0xe1,0x1,0x0
 {
 unsigned char a, b;

Here’s some code in the middle just so there is a function body.

 do{
000134 cfd9 MOVFF 0xfd9,0xfe9 a=0;
000136 ffe9
000138 cfda MOVFF 0xfda,0xfea
00013a ffea
00013c 6aef CLRF 0xef,0x0
 }while(0);

The epilogue code subtracts from the stack pointer the number of bytes which
were allocated by the prologue, plus one for the frame pointer. Then it uses
INDF1 to retrieve the prior value of the frame pointer back into FSR2.

00013e 0e03 MOVLW 0x3 }
000140 5ee1 SUBWF 0xe1,0x1,0x0
000142 cfe7 MOVFF 0xfe7,0xfd9
000144 ffd9
000146 0012 RETURN 0x0

8.5.5 Startup and Initialization Code
The Startup file for PIC18CXXX devices is a C file that is included in the
default standard C library, clib.lib. This file performs these main tasks:

1. Optionally calls the code which copies initialized data from program
memory to data memory.

2. Sets up the software stack used by the compiler.
3. Transfers control to the C function main() which is the entry point for C

programs.
DS51217B-page 136  2000 Microchip Technology Inc.

MPLAB-CXX and PICmicro MCU Programming

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

There are two startup code files for the PIC18CXXX family. The first is
c018i.c which is used with initialized data (idata). The other is c018.c,
which is used without idata. There is no extra idata file for PIC18CXXX
devices.

8.5.5.1 Startup Customization

To execute some code immediately after a device reset but before any other
code generated by the compiler is executed, edit the desired startup file and
add the code before the _entry() function.

To customize the startup files:

1. Go to the c:\mcc\src\startup directory, where c:\mcc is the com-
piler install directory.

2. Edit either c018.asm or c018i.asm to add any customized startup
code desired.

3. Compile the updated startup file to generate either c018.o or c018i.o.

8.5.5.2 Initialized Data Support

When declaring initialized data (such as: int x = 5;), the variable is
allocated in data memory but the value is stored in program memory. Before
the data is usable in any program, the values must be copied from program
memory into the variable in data memory.

To use initialized data in a MPLAB-C18 program:

1. Use the standard C library clib.lib instead of c_noinit.lib.
2. Link the above file with the C object code.

8.5.5.3 Stack Initialization

The stack initialization simply points the compiler stack pointer to the right
location in data memory.

8.5.5.4 Branching to main()

After the startup code optionally copies initialized data and sets up the stack,
it calls the main() function of the C program. There are no arguments
passed to main().

MPLAB-C18 transfers control to main() via a looped call, i.e.;

loop:

 // Call the user’s main routine
 main();

 goto loop;
 2000 Microchip Technology Inc. DS51217B-page 137

MPLAB®-CXX Compiler User’s Guide
8.5.6 Interrupt Support
In MPLAB-C18, interrupts are handled by the #pragma interrupt
directive. Please see Section 7.3.12 for more information.

8.5.7 Optimization Tips
Because of the limited memory on microcontrollers, optimization becomes an
issue as code complexity increases. This section discusses some
optimization tips for your C code.

1. Choose the correct memory model for your libraries and precompiled
object files. Don’t just pick the large memory model versions for inclusion
in your project. Consult Section 8.5.1 for more information.
DS51217B-page 138  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 9. Mixing Assembly Language and C Modules
U
sin

g

M
P

L
A

B
-C

X
X

Part
2

9.1 Introduction
This section describes how to use assembly language and C modules
together. It gives examples of using C variables and functions in assembly
code and examples of using assembly language variables and functions in C.

9.2 Highlights
This chapter covers the following topics:

• Calling Conventions

• Mixing Assembly Language and C Variables and Functions

• Calling an Assembly Function in C – MPLAB-C17

• Using the File Selection Registers (FSR’s)

9.3 Calling Conventions
This section describes the calling conventions of C and assembly routines.

Calling Assembly Routines from C:

• Function declared as extern in C module.

• Label declared as global in ASM module.

• Function declaration may return a value and/or contain parameters.

• Functions are called using standard C function notation.

Calling C Routines from Assembly:

• C functions are inherently global.

• Function name must be declared as extern symbol in assembly file.

• call must be used to make function call; RETURN 0x00 implemented
at end of C function.
 2000 Microchip Technology Inc. DS51217B-page 139

MPLAB®-CXX Compiler User’s Guide
9.4 Mixing Assembly Language and C Variables and
Functions

The following example shows how to use variables and functions in both
assembly language and C regardless of where they were originally defined.
These example files may be found in c:\mcc\examples\example2, where
c:\mcc is the compiler install directory.

The file ex_c.c defines main and c_variable to be used in the assembly
language file. The C file also shows how to call an assembly function,
asm_function, and how to access the assembly defined variable,
asm_variable.

The file ex_asm.asm defines asm_function and asm_variable as
required to use them in a linked C file. The assembly file also shows how to
call a C function, main, and how to access a C defined variable,
c_variable.

ex_c.c
// file: ex_c.c
extern unsigned asm_variable;
extern near void asm_function(void);
extern void main(void);
unsigned c_variable;
void main(void)
{
 asm_function(); // will modify ’c_variable’
 asm_variable = 0x1234;
}

ex_asm.asm
; file: ex_asm.asm
LIST P=17C44
 EXTERN main ; defined in C module
 EXTERN c_variable ; also defined in C module
MYCODE CODE
asm_function
 movlw 0xff
 movwf c_variable ; put 0xffff in the C declared
 ; variable
 movwf c_variable+1
 return
 GLOBAL asm_function ; export so linker can see it
MYDATA UDATA
asm_variable RES 2 ; 2 byte variable
 GLOBAL asm_variable ; export so linker can see it
 END
DS51217B-page 140  2000 Microchip Technology Inc.

Mixing Assembly Language and C Modules

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

9.5 Calling an Assembly Function in C – MPLAB-C17
The following example shows how to call an assembly function with a
parameter. These example files may be found in
c:\mcc\examples\example3, where c:\mcc is the compiler install
directory.

Most of the work is done in the file call_asm.asm where the parameter is
taken off of the software stack. call_c.c calls the asm_function with a
parameter.

call_c.c
// File call_c.c
unsigned char asm_function(unsigned char a);
unsigned char x;
void main(void)
{
 x = asm_function(0xff);
}

call_asm.asm
; File call_asm.asm
 LIST P=17C756
 EXTERN _stack
 GLOBAL asm_function
MYCODE CODE
asm_function
 banksel _stack ; Get the stack pointer into 0x00
 movfp _stack, 0x01
 decf 0x01, f ; Point FSR1 at the argument
 movfp 0x00, 0x0a ; Get the argument
 decf 0x0a, f
 ; The convention is that we return
 ; with FSR0 pointing at the return value.
 ; We’ll just reuse the space
 ; allocated for the argument since we’re already
 ; pointed there.

 movwf 0x00 ; Store the return value
 return
 END
 2000 Microchip Technology Inc. DS51217B-page 141

MPLAB®-CXX Compiler User’s Guide
9.6 Using the File Selection Registers (FSR’s)
The following is an example of using the file selection registers (FSR’s). The
code is for the library function strcpy, which copies the source string
(pointed to by src) into the destination string (pointed to by dst). See the
MPLAB-CXX Reference Guide for more on the strcpy operation.

Example 9.1: FSR Usage

 extern FSR2L, FSR2H, POSTINC1, POSTDEC1, PLUSW1, FSR0L, FSR0H, POSTINC0
 extern POSTINC2, INDF0, INDF1, FSR1L, FSR1H

 global strcpy

STRCPY CODE
 ; char *strcpy (char *dst, const char *src);
strcpy
 ; We’ll play loose with the stack and frame pointers in this function.
 ; As long as the values are restored upon exit and the stack pointer
 ; always points into unallocated stack space, things will be fine,
 ; even if an interrupt occurs during our processing here.
 ;
 ; Save the current FSR2 value on the stack. We’ll be using it as
 ; a source index.
 movff FSR2L, POSTINC1
 movff FSR2H, POSTINC1
 ; Store the ’src’ pointer into FSR2
 movlw -6
 movff PLUSW1, FSR2L
 movlw -5
 movff PLUSW1, FSR2H
 ; Store the ’dst’ pointer into FSR0
 movlw -4
 movff PLUSW1, FSR0L
 movlw -3
 movff PLUSW1, FSR0H
 ; Perform the copy...
copyloop:
 movff POSTINC2, INDF0
 ; Was that the ’\0’?
 tstfsz POSTINC0,0
 bra copyloop
 ; restore FSR2
 movf POSTDEC1,1,0
 movff POSTDEC1,FSR2H
 movff INDF1,FSR2L
 ; The return value is a pointer to the destination
 movlw -4
 addwf FSR1L,0,0
DS51217B-page 142  2000 Microchip Technology Inc.

Mixing Assembly Language and C Modules

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

 movwf FSR0L,0
 movlw 0xff
 addwfc FSR1H,0,0
 movwf FSR0H
 return

 end
 2000 Microchip Technology Inc. DS51217B-page 143

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 144  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 10. ANSI Implementation Issues
U
sin

g

M
P

L
A

B
-C

X
X

Part
2

10.1 Introduction
This section describes the behavior of MPLAB-CXX where the ANSI standard
X3.159-1989 describes the behavior as implementation defined. The text
below in italic font is taken directly from the ANSI standard with the
appropriate section in parentheses.

10.2 Highlights
This chapter covers ANSI-implementation issues for the following categories:

• Identifiers

• Characters

• Integers

• Floating Point

• Arrays and Pointers

• Registers

• Structures and Unions

• Bit-Fields

• Enumerations

• Switch Statements

• Preprocessor Directives

10.3 Identifiers
The number of significant initial characters (beyond 31) in
an identifier without external linkage (3.1.2)

The number of significant initial characters (beyond 6) in an
identifier with external linkage (3.1.2)

Whether case distinctions are significant in an identifier
with external linkage (3.1.2)

All MPLAB-CXX identifiers have 31 significant characters. Case distinctions
are significant in an identifier with external linkage.
 2000 Microchip Technology Inc. DS51217B-page 145

MPLAB®-CXX Compiler User’s Guide
10.4 Characters
The value of an integer character constant that contains
more than one character or a wide character constant that
contains more than one multibyte character (3.1.3.4)

The value of the integer character constant is the 8-bit value of the first
character. Wide characters are not supported.

Whether a ‘plain’ char has the same range of values as
signed char or unsigned char (3.2.1.1)

A ‘plain' char has the same range of values as a signed char.

For MPLAB-C18, this may be changed to unsigned char via a command
line switch (-k).

10.5 Integers
A ‘char’, a ‘short int’, or and ‘int’ bit-field, or their signed or
unsigned varieties, or an enumeration type, may be used in
an expression wherever an 'int' or 'unsigned int' may be
used. If an ‘int’ can represent all values of the original type,
the value is converted to an ‘int’; otherwise, it is converted
to an ‘unsigned int’. These are called the “integral
promotions.” All other arithmetic types are unchanged by
the integral promotions. The integral promotions preserve
value including sign. (3.2.1.1)

MPLAB-C18 does not enforce this by default. The -oi option can be used to
require the compiler to enforce the ANSI defined behavior.

The result of converting an integer to a shorter signed
integer, or the result of converting an unsigned integer to a
signed integer of equal length, if the value cannot be
represented (3.2.1.2)

When converting from a larger integer type to a smaller integer type, the high
order bits of the value are discarded and the remaining bits are interpreted
according to the type of the smaller integer type. When converting from an
unsigned integer to a signed integer of equal size, the bits of the unsigned
integer are simply reinterpreted according to the rules for a signed integer of
that size.
DS51217B-page 146  2000 Microchip Technology Inc.

ANSI Implementation Issues

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

The results of bitwise operations on signed integers (3.3)

The bitwise operators are applied to the signed integer as if it were an
unsigned integer of the same type. i.e., the sign bit is treated as any other bit.

The sign of the remainder on integer division (3.3.5)

The remainder has the same sign as the quotient.

The result of a right shift of a negative-valued signed
integral type (3.3.7)

The value is shifted as if it were an unsigned integral type of the same size.
i.e., the sign bit is not propagated.

10.6 Floating Point
The representations and sets of values of the various types
of floating point numbers (3.1.2.5)

The direction of truncation when an integral number is
converted to a floating point number that cannot exactly
represent the original value (3.2.1.3)

The direction of truncation or rounding when a floating
point number is converted to a narrower floating point
number (3.2.1.4)

No floating point types are supported in MPLAB-C17 at this time.

32-bit floating point types are native to MPLAB-C18. The difference between
the PICmicro format and the IEEE 754 format consists of a rotation of the top
nine bits of the representation, with a left rotate for IEEE to PICmicro, and a
right rotate for PICmicro to IEEE. Conversion to a 24-bit format is obtained by
the rounding to the nearest from IEEE 754 representation. The limiting
absolute values of the floating point formats are: 6.80564693E+38 max and
1.17549435E-38 min.

The rounding to the nearest method is used.
 2000 Microchip Technology Inc. DS51217B-page 147

MPLAB®-CXX Compiler User’s Guide
10.7 Arrays and Pointers
The type of integer required to hold the maximum size of an
array – that is, the type of the size of operator, size_t (3.3.3.4,
4.1.1)

size_t is defined as an unsigned int (MPLAB-C17) or unsigned
short int (MPLAB-C18).

The result of casting a pointer to an integer, or vice-versa
(3.3.4)

The integer will contain the binary value used to represent the pointer. If the
pointer is larger than the integer, the representation will be truncated to fit in
the integer.

The type of integer required to hold the difference between
two pointers to elements of the same array, ptrdiff_t (3.3.6,
4.1.1)

ptrdiff_t is defined as an unsigned int (MPLAB-C17) or unsigned
long short (MPLAB-C18).

10.8 Registers
The extent to which objects can actually be placed in
registers by use of the register storage class specifier
(3.5.1)

The register storage class specifier is ignored.

10.9 Structures and Unions
A member of a union object is accessed using a member of
a different type (3.3.2.3)

The value of the member is the bits residing at the location for the member
interpreted as the type of the member being accessed.

The padding and alignment of members of structures
(3.5.2.1)

Members of structures and unions are aligned on byte boundaries.
DS51217B-page 148  2000 Microchip Technology Inc.

ANSI Implementation Issues

U
sin

g

M
P

L
A

B
-C

X
X

Part
2

10.10 Bit-Fields
Whether a ‘plain' int bit-field is treated as a signed int or as
an unsigned int bit-field (3.5.2.1)

A ‘plain' int bit-field is treated as an unsigned int bit-field (MPLAB-C17)
or a signed int bit-field (MPLAB-C18).

The order of allocation of bit-fields within a unit (3.5.2.1)

Bit-fields are allocated from least significant bit to most significant bit in order
of occurrence.

Whether a bit-field can straddle a storage-unit boundary
(3.5.2.1)

A bit-field cannot straddle a storage unit boundary.

10.11 Enumerations
The integer type chosen to represent the values of an
enumeration type (3.5.2.2)

signed int is used to represent the values of an enumeration type.

10.12 Switch Statement
The maximum number of case values in a switch statement
(3.6.4.2)

The maximum number of values is limited only by target memory.

10.13 Preprocessing Directives
The method for locating includable source files (3.8.2)

Includable source files specified via the #include <filename> mechanism
are searched for in the path specified in the MCC_INCLUDE environment
variable. The MCC_INCLUDE environment variable contains a semi-colon
delimited list of directories to search.

The support for quoted names for includable source files
(3.8.2)

Includable source files specified via the #include “filename” mechanism
are searched for in the current directory and then in the path specified in the
MCC_INCLUDE environment variable. The MCC_INCLUDE environment
variable contains a semi-colon delimited list of directories to search.

The behavior on each recognized #pragma directive (3.8.6)

Each #pragma directive is listed in Chapter 6.
 2000 Microchip Technology Inc. DS51217B-page 149

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 150  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Chapter 11. Examples
U
sin

g

M
P

L
A

B
-C

X
X

Part
2

11.1 Introduction
This chapter gives an overview of the example programs included with the
compiler program and support files.

At this time, only MPLAB-C17 has example files.

11.2 Highlights
The contents of this chapter are as following:

• Overview of Example Files

• Example Details

11.3 Overview of Example Files
Example files may be found in the examples directory after you have
installed MPLAB-C17. The examples included at the time this document was
published are contained in subdirectories as follows:

• General Examples

- Example1

- Example2

- Example3

• Peripheral-Specific Examples

- AD

- INT

- LINK

- PORT

- PWM

- TABLE_R/W

- USART

• Demo

- DEMO

Additions, deletions or other changes to this list may have occurred. Check
the readme.txt in the examples directory for more information on what
examples are available and a brief description of the function of each
example.
 2000 Microchip Technology Inc. DS51217B-page 151

MPLAB®-CXX Compiler User’s Guide
11.4 Example Details
The types of files typically found in an example subdirectory are as follows:

• Source files (.c, .asm) - the main program files.

• Batch files (.bat) - for use with command-line applications.

Additional files will be necessary to build the example into an application.

From c:\mcc\h:

• Header files (.h) - include files with device register definitions.

From c:\mcc\lib:

• Precompiled object files (.o) - provide “canned” start-up code, initializa-
tion code, interrupt service routines (for MPLAB-C17) and register defi-
nitions, based on device and memory model used.

• Library files (.lib) - include microchip libraries.

From c:\mcc\lkr:

• Linker script files (.lkr) - directions for the linker, based on device.

To build the application, follow either the instructions for building on the
command line (Chapter 4) or using MPLAB IDE (Chapter 5).

Note: When linking, you may get the following message:

“Warning – Could not open source file '<filename>'.
This file will not be present in the list file.”

This comes from using precompiled libraries, where the source for
these libraries is not in the default directory (c:\mcc\src).
DS51217B-page 152  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Appendices
A
p

p
en

d
icies

Part
3

Appendix A. ASCII Character Set..155

Appendix B. PIC17CXXX Instruction Set..157

Appendix C. PIC18CXXX Instruction Set..163

Appendix D. MPLAB-C17 Errors ...169

Appendix E. MPLAB-C18 Errors ...175

Appendix F. References...185
 2000 Microchip Technology Inc. DS51217B-page 153

MPLAB®-CXX Compiler User’s Guide
DS51217B-page 154  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Appendix A. ASCII Character Set
A
p

p
en

d
icies

Part
3

A.1 Introduction
This appendix contains the ASCII character set.

A.2 ASCII Character Set

Most Significant Character

L
ea

st
 S

ig
n

if
ic

an
t

C
h

ar
ac

te
r

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
 2000 Microchip Technology Inc. DS51217B-page 155

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 156  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Appendix B. PIC17CXXX Instruction Set
A
p

p
en

d
icies

Part
3

B.1 Introduction
This appendix gives the instruction set for the PIC17CXXX device family.

B.2 Highlights
This appendix presents the following reference information:

• Key to PICmicro MCU Family Instruction Sets

• PIC17CXXX Instruction Set

B.3 Key to PICmicro MCU Family Instruction Sets
Field Description

b Bit address within an 8 bit file register

d Destination select; d = 0 Store result in W (f0A).
d = 1 Store result in file register f.

Default is d = 1.

f Register file address (0x00 to 0xFF)

k Literal field, constant data or label

W Working register (accumulator)

x Don’t care location

i Table pointer control; i = 0 Do not change.
i = 1 Increment after instruction execution.

p Peripheral register file address (0x00 to 0x1f)

t Table byte select; t = 0 Perform operation on lower byte.
t = 1 Perform operation on upper byte.

PH:PL Multiplication results registers
 2000 Microchip Technology Inc. DS51217B-page 157

MPLAB®-CXX Compiler User’s Guide
B.4 PIC17CXXX Instruction Set
Microchip’s high-performance 8-bit microcontroller family uses a 16-bit wide
instruction set. This instruction set consists of 55 instructions, each a single
16-bit wide word. Most instructions operate on a file register, f, and the
working register, W (accumulator). The result can be directed either to the file
register or the W register or to both in the case of some instructions. Some
devices in this family also include hardware multiply instructions. A few
instructions operate solely on a file register (BSF for example).

Table B.1: 16-Bit Core Data Movement Instructions

Hex Mnemonic Description Function

6pff MOVFP f,p Move f to p f → p

b8kk MOVLB k Move literal to BSR k → BSR (3:0)

bakx MOVLP k Move literal to RAM page select k → BSR (7:4)

4pff MOVPF p,f Move p to f p → W

01ff MOVWF f Move W to F W → f

a8ff TABLRD t,i,f Read data from table latch into file f,
then update table latch with 16-bit
contents of memory location
addressed by table pointer

TBLATH → f if t=1,
TBLATL → f if t=0;
ProgMem(TBLPTR) → TBLAT;
TBLPTR + 1 → TBLPTR if i=1

acff TABLWT t,i,f Write data from file f to table latch
and then write 16-bit table latch to
program memory location addressed
by table pointer

f → TBLATH if t = 1,
f → TBLATL if t = 0;
TBLAT → ProgMem(TBLPTR);
TBLPTR + 1 → TBLPTR if i=1

a0ff TLRD t,f Read data from table latch into file f
(table latch unchanged)

TBLATH → f if t = 1
TBLATL → f if t = 0

a4ff TLWT t,f Write data from file f into table latch f → TBLATH if t = 1
f → TBLATL if t = 0

Table B.2: 16-Bit Core Arithmetic and Logical Instruction

Hex Mnemonic Description Function

b1kk ADDLW k Add literal to W (W + k) → W

0eff ADDWF f,d Add W to F (W + f) → d

10ff ADDWFC f,d Add W and Carry to f (W + f + C) → d

b5kk ANDLW k AND Literal and W (W .AND. k) → W

0aff ANDWF f,d AND W with f (W .AND. f) → d

28ff CLRF f,d Clear f and Clear d 0x00 → f,0x00 → d

12ff COMF f,d Complement f .NOT. f → d

2eff DAW f,d Dec. adjust W, store in f,d W adjusted → f and d
DS51217B-page 158  2000 Microchip Technology Inc.

PIC17CXXX Instruction Set

A
p

p
en

d
icies

Part
3

06ff DECF f,d Decrement f (f - 1) → f and d

14ff INCF f,d Increment f (f + 1) → f and d
b3kk IORLW k Inclusive OR literal with W (W .OR. k) → W
08ff IORWF f,d Inclusive or W with f (W .OR. f) → d
b0kk MOVLW k Move literal to W k → W

bckk MULLW k Multiply literal and W (k x W) → PH:PL
34ff MULWF f Multiply W and f (W x f) → PH:PL
2cff NEGW f,d Negate W, store in f and d (W + 1) → f,(W + 1) → d
1aff RLCF f,d Rotate left through carry

22ff RLNCF f,d Rotate left (no carry)

18ff RRCF f,d Rotate right through carry

20ff RRNCF f,d Rotate right (no carry)

2aff SETF f,d Set f and Set d 0xff → f,0xff → d

b2kk SUBLW k Subtract W from literal (k - W) → W

04ff SUBWF f,d Subtract W from f (f - W) → d

02ff SUBWFB f,d Subtract from f with borrow (f - W - c) → d
1cff SWAPF f,d Swap f f(0:3) → d(4:7),

f(4:7) → d(0:3)

b4kk XORLW k Exclusive OR literal with W (W .XOR. k) → W
0cff XORWF f,d Exclusive OR W with f (W .XOR. f) → d

Table B.2: 16-Bit Core Arithmetic and Logical Instruction (Continued)

Hex Mnemonic Description Function

7......0C

register f

7......0

register f

7......0C

register f

7......0

register f
 2000 Microchip Technology Inc. DS51217B-page 159

MPLAB®-CXX Compiler User’s Guide
Table B.3: 16-Bit Core Bit Handling Instructions

Hex Mnemonic Description Function

8bff BCF f,b Bit clear f 0 → f(b)

8bff BSF f,b Bit set f 1 → f(b)

9bff BTFSC f,b Bit test, skip if clear skip if f(b) = 0

9bff BTFSS f,b Bit test, skip if set skip if f(b) = 1

3bff BTG f,b Bit toggle f .NOT. f(b) → f(b)

Table B.4: 16-Bit Core Program Control Instructions

Hex Mnemonic Description Function

ekkk CALL k Subroutine call (within 8k page) PC+1 → TOS,k → PC(12:0),
k(12:8) → PCLATH(4:0),
PC(15:13) → PCLATH(7:5)

31ff CPFSEQ f Compare f/w, skip if f = w f-W, skip if f = W

32ff CPFSGT f Compare f/w, skip if f > w f-W, skip if f > W

30ff CPFSLT f Compare f/w, skip if f< w f-W, skip if f < W

16ff DECFSZ f,d Decrement f, skip if 0 (f-1) → d, skip if 0

26ff DCFSNZ f,d Decrement f, skip if not 0 (f-1) → d, skip if not 0

ckkk GOTO k Unconditional branch (within 8k) k → PC(12:0)
k(12:8) → PCLATH(4:0),
PC(15:13) → PCLATH(7:5)

1eff INCFSZ f,d Increment f, skip if zero (f+1) → d, skip if 0

24ff INFSNZ f,d Increment f, skip if not zero (f+1) → d, skip if not 0

b7kk LCALL k Long Call (within 64k) (PC+1) → TOS; k → PCL,
(PCLATH)→ PCH

0005 RETFIE Return from interrupt, enable
interrupt

(PCLATH) → PCH:k → PCL
0 → GLINTD

b6kk RETLW k Return with literal in W k → W, TOS → PC,
(PCLATH unchanged)

0002 RETURN Return from subroutine TOS → PC
(PCLATH unchanged)

33ff TSTFSZ f Test f, skip if zero skip if f = 0
DS51217B-page 160  2000 Microchip Technology Inc.

PIC17CXXX Instruction Set

A
p

p
en

d
icies

Part
3

Table B.5: 16-Bit Core Special Control Instructions

Hex Mnemonic Description Function

0004 CLRWT Clear watchdog timer 0 → WDT,0→ WDT prescaler,
1 → PD, 1 → TO

0003 SLEEP Enter Sleep Mode Stop oscillator,power down, 0 → WDT,
0 → WDT Prescaler
1 → PD, 1 → TO
 2000 Microchip Technology Inc. DS51217B-page 161

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 162  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Appendix C. PIC18CXXX Instruction Set
A
p

p
en

d
icies

Part
3

C.1 Introduction
This appendix gives the instruction set for the PIC18CXXX device family.

C.2 Highlights
This appendix presents the following reference information:

• Key to Enhanced 16-Bit Core Instruction Sets

• PIC18CXXX Instruction Set

C.3 Key to Enhanced 16-Bit Core Instruction Set
Field Description

File Addresses

f 8-bit file register address

fs 12-bit source file register address

fd 12-bit destination file register address

dest W register if d = 0; file register if d = 1

Literals

kk 8-bit literal value

kb 4-bit literal value

kc bits 8-11 of 12-bit literal value

kd bits 0-7 of 12-bit literal value

Offsets, Addresses

nn 8-bit relative offset (signed, 2’s complement)

nd 11-bit relative offset (signed, 2’s complement)

ml bits 0-7 of 20-bit program memory address

mm bits 8-19 of 20-bit program memory address

xx any 12-bit value

Bits

b bits 9-11; bit address

d bit 9; 0=W destination; 1=f destination

a bit 8; 0=common block; 1=BSR selects bank

s bit 0 (bit 8 for CALL); 0=no update; 1(fast)=update/save W, STATUS, BSR
 2000 Microchip Technology Inc. DS51217B-page 163

MPLAB®-CXX Compiler User’s Guide
C.4 PIC18CXXX Instruction Set
Microchip’s new high-performance 8-bit microcontroller family uses a 16-bit
wide instruction set. This instruction set consists of 76 instructions, each a
single 16-bit wide word (2 bytes). Most instructions operate on a file register, f,
and the working register, W (accumulator). The result can be directed either to
the file register or the W register or to both in the case of some instructions. A
few instructions operate solely on a file register (BSF for example).

Table C.6: Enhanced 16-Bit Core Literal Operations

Hex Mnemonic Description Function

0Fkk ADDLW kk ADD literal to W W+kk → W
0Bkk ANDLW kk AND literal with W W .AND. kk → W
0004 CLRWDT Clear Watchdog Timer 0 → WDT, 0 → WDT postscaler,

1 → TO,1 → PD

0007 DAW Decimal Adjust W Register if W<3:0> >9 or DC=1, W<3:0>+6→W<3:0>,
else W<3:0> → W<3:0>;
if W<7:4> >9 or C=1, W<7:4>+6→W<7:4>,
else W<7:4> → W<7:4>;

09kk IORLW kk Inclusive OR literal with W W .OR. kk → W
01kb MOVLB kb Move literal to low nibble in

BSR
kb → BSR

EFkc
F0kd

LFSR f,kd:kc Load Literal to FSR
 (second word)

kd:kc → FSR

0Ekk MOVLW kk Move literal to W kk → W
0Dkk MULLW kk Multiply literal with W W * kk → PRODH:PRODL

08kk SUBLW kk Subtract W from literal kk–W → W
0Akk XORLW kk Exclusive OR literal with W W .XOR. kk → W

Table C.7: Enhanced 16-Bit Core Memory Operations

Hex Mnemonic Description Function

0008 TBLRD * Table Read (no change to TBLPTR) Prog Mem (TBLPTR) → TABLAT

0009 TBLRD *+ Table Read (post-increment TBLPTR) Prog Mem (TBLPTR) → TABLAT
TBLPTR +1 → TBLPTR

000A TBLRD *- Table Read (post-decrement TBLPTR) Prog Mem (TBLPTR) → TABLAT
TBLPTR -1 → TBLPTR

000B TBLRD +* Table Read (pre-increment TBLPTR) TBLPTR +1 → TBLPTR
Prog Mem (TBLPTR) → TABLAT

000C TBLWT * Table Write (no change to TBLPTR) TABLAT → Prog Mem(TBLPTR)

000D TBLWT *+ Table Write (post-increment TBLPTR) TABLAT → Prog Mem(TBLPTR)
TBLPTR +1 → TBLPTR
DS51217B-page 164  2000 Microchip Technology Inc.

PIC18CXXX Instruction Set

A
p

p
en

d
icies

Part
3

000E TBLWT *- Table Write (post-decrement TBLPTR) TABLAT → Prog Mem(TBLPTR)
TBLPTR -1 → TBLPTR

000F TBLWT +* Table Write (pre-increment TBLPTR) TBLPTR +1 → TBLPTR
TABLAT → Prog Mem(TBLPTR)

Table C.8: Enhanced 16-Bit Core Control Operations

Hex Mnemonic Description Function

E2nn BC nn Relative Branch if Carry if C=1, PC+2+2*nn→ PC, else PC+2→PC

E6nn BN nn Relative Branch if Negative if N=1, PC+2+2*nn→PC,else PC+2→PC

E3nn BNC nn Relative Branch if Not Carry if C=0, PC+2+2*nn→PC, else PC+2→PC

E5nn BNOV nn Relative Branch if Not Over-
flow

if OV=0, PC+2+2*nn→PC, else PC+2→PC

E1nn BNZ nn Relative Branch if Not Zero if Z=0, PC+2+2*nn→PC, else PC+2→PC

E7nn BNN nn Relative Branch if Not Nega-
tive

if N=0, PC+2+2*nn→PC, else PC+2→PC

E0nd BRA nd Unconditional relative
branch

PC+2+2*nd→ PC

E4nn BOV nn Relative Branch if Overflow if OV=1, PC+2+2*nn→PC, else PC+2→PC

E0nn BZ nn Relative Branch if Zero if Z=1, PC+2+2*nn→PC, else PC+2→PC

ECml
Fmm

CALL mm:ml,s Absolute Subroutine Call
 (second word)

PC+4 → TOS, mm:ml → PC<20:1>,
if s=1, W → WS,
 STATUS → STATUSS, BSR → BSRS

EFml
Fmm

GOTO mm:ml Absolute Branch
 (second word)

mm:ml → PC<20:1>

0001 HALT Halt processor PC=halt

0000 NOP No Operation No operation

0006 POP Pop Top of return stack TOS-1 → TOS

0005 PUSH Push Top of return stack PC +2→ TOS

D8nd RCALL nd Relative Subroutine Call PC+2 → TOS, PC+2+2*nd→PC

00FF RESET Generate a Reset (same as
MCR reset)

same as MCLR reset

0010 RETFIE s Return from interrupt
 (and enable interrupts)

TOS → PC, 1 → GIE/GIEH or PEIE/GIEL,
if s=1, WS → W, STATUSS → STATUS,
 BSRS → BSR, PCLATU/PCLATH unchngd.

0Ckk RETLW kk Return from subroutine, lit-
eral in W

kk → W,

Table C.7: Enhanced 16-Bit Core Memory Operations (Continued)

Hex Mnemonic Description Function
 2000 Microchip Technology Inc. DS51217B-page 165

MPLAB®-CXX Compiler User’s Guide
0012 RETURN s Return from subroutine TOS → PC, if s=1, WS → W,
 STATUSS → STATUS, BSRS → BSR,
 PCLATU/PCLATH are unchanged

0003 SLEEP Enter SLEEP Mode 0 → WDT, 0 → WDT postscaler,
1 → TO, 0 → PD

Table C.9: Enhanced 16-Bit Core Bit Operations

Hex Mnemonic Description Function

9bf BCF f,b,a Bit Clear f 0 → f

8bf BSF f,b,a Bit Set f 1 → f

Bbf BTFSC f,b,a Bit test, skip if clear if f=0, PC+4→PC, else PC+2→PC

Abf BTFSS f,b,a Bit test, skip if set if f=1, PC+4→PC, else PC+2→PC

7bf BTG f,b,a Bit Toggle f f → f

Table C.10: Enhanced 16-Bit Core File Register Operations

Hex Mnemonic Description Function

24f ADDWF f,d,a ADD W to f W+f → dest

20f ADDWFC f,d,a ADD W and Carry bit to f W+f+C → dest

14f ANDWF f,d,a AND W with f W .AND. f → dest

6Af CLRF f,a Clear f 0 → f
1Cf COMF f,d,a Complement f f → dest

62f CPFSEQ f,a Compare f with W, skip if f=W f–W, if f=W, PC+4 → PC
 else PC+2 → PC

64f CPFSGT f,a Compare f with W, skip if f >
W

f–W, if f > W, PC+4 → PC
 else PC+2 → PC

60f CPFSLT f,a Compare f with W, skip if f <
W

f–W, if f < W, PC+4 → PC
 else PC+2 → PC

04f DECF f,d,a Decrement f f–1 → dest

2Cf DECFSZ f,d,a Decrement f, skip if 0 f–1 → dest, if dest=0, PC+4 → PC
 else PC+2 → PC

4Cf DCFSNZ f,d,a Decrement f, skip if not 0 f–1 → dest, if dest ≠ 0, PC+4 → PC
 else PC+2 → PC

28f INCF f,d,a Increment f f+1 → dest

3Cf INCFSZ f,d,a Increment f, skip if 0 f+1 → dest, if dest=0, PC+4 → PC
 else PC+2 → PC

48f INFSNZ f,d,a Increment f, skip if not 0 f+1 → dest, if dest ≠ 0, PC+4 → PC
 else PC+2 → PC

Table C.8: Enhanced 16-Bit Core Control Operations (Continued)

Hex Mnemonic Description Function
DS51217B-page 166  2000 Microchip Technology Inc.

PIC18CXXX Instruction Set

A
p

p
en

d
icies

Part
3

10f IORWF f,d,a Inclusive OR W with f W .OR. f → dest

50f MOVF f,d,a Move f f → dest

Cfs
Ffd

MOVFF fs,fd Move fs to fd
 (second word)

fs → fd

6Ef MOVWF f,a Move W to f W → f
02f MULWF f,a Multiply W with f W * f → PRODH:PRODL

6Cf NEGF f,a Negate f f +1 → f
34f RLCF f,d,a Rotate left f through Carry

44f RLNCF f,d,a Rotate left f (no carry)

30f RRCF f,d,a Rotate right f through Carry

40f RRNCF f,d,a Rotate right f (no carry)

48f SETF f,a Set f 0xFF → f
54f SUBFWB f,d,a Subtract f from W with Bor-

row
W–f–C → dest

5Cf SUBWF f,d,a Subtract W from f f–W → dest

58f SUBWFB f,d,a Subtract W from f with Bor-
row

f–W–C → dest

38f SWAPF f,d,a Swap f f<3:0> → dest<7:4>, f<7:4> → dest<3:0>

66f TSTFSZ f,a Test f, skip if 0 PC+4 → PC, if f=0, else PC+2 → PC

18f XORWF f,d,a Exclusive OR W with f W .XOR. f → dest

Table C.10: Enhanced 16-Bit Core File Register Operations (Continued)

Hex Mnemonic Description Function

7......0C

register f

7......0

register f

7......0C

register f

7......0

register f
 2000 Microchip Technology Inc. DS51217B-page 167

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 168  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Appendix D. MPLAB-C17 Errors
A
p

p
en

d
icies

Part
3

D.1 Introduction
This appendix lists errors generated by the MPLAB-C17 compiler.

D.2 Highlights
The following errors apply to MPLAB-C17:

• Errors

• Warnings

D.3 Errors
1000: argument count mismatch in function call

To call a function, the number of arguments passed must match exactly the
number of parameters declared for the function.

1001: type mismatch in argument %d

The type of an argument to a function call must be compatible with the
declared type of the corresponding parameter

1002: arithmetic type expected in expression

The operator requires that its operand be of arithmetic type

1003: arithmetic or pointer to object type required

1004: array must have integral constant size

1005: object of pointer type required for [] operator

The array access operator, ‘[]’, requires that one operand be a pointer and
the other be an integer, that is, for ‘x[y]’ the expression ‘*(x+y)’ must be
valid. ‘x[y]’ is functionally equivalent to ‘*(x+y)’.

1006: ‘−>’ requires pointer to struct or union

The member access operator ‘−>’ requires operands of pointer to struct/
union.

1007: call of non-function

The operand of the ‘()’ function call post-fix operator must be of type
‘pointer to function.’ Most commonly, this is a function identifier. Common
causes include missing scope parentheses.

1008: cannot modify ‘const’ qualified object

An object qualified with ‘const’ is declared to be read-only data and modi-
fications to it are therefore not allowed.

1009: cannot return an object of array type
 2000 Microchip Technology Inc. DS51217B-page 169

MPLAB®-CXX Compiler User’s Guide
1010: unable to locate include file ‘%s’

The compiler was unable to locate the ‘%s’ file. Common causes include
misspelled file ‘%s’ and misconfigured include path.

1011: unable to open include file ‘%s’

The compiler was unable to open the ‘%s’d file. Common causes include
misspelled file’%s’ and insufficient access rights

1012: ‘)’ expected in macro definition

A closing parenthesis is missing in the definition of a macro.

1013: constant expression required

1014: ‘)’ expected

A closing parenthesis is missing.

1015: ‘%s’

source code ‘#error’ directive message

1016: divide by zero in constant expression

The compiler cannot process a constant expression which contains a
divide by (or modulus by) zero.

1017: divide by constant zero in expression

The compiler cannot process an expression which contains a divide by (or
modulus by) constant zero.

1018: ‘.’ requires struct or union

The member access operator ‘.’ requires operands of struct/union.

1019: duplicate case label value %d

1020: duplicate declaration for symbol ‘%s’

1021: duplicate label ‘%s’

1022: #elif in #else clause not allowed

1023: #elif without #if

1024: #else without #if

1025: #endif without #if

1026: extra ‘default’ statement in switch

A switch statement can only have a single ‘default’ label. Common causes
include a missing ‘}’ to close an inner switch.

1027: extraneous input following ‘%s’

1028: ‘high’ and ‘low’ are not valid in this context

1029: identifier expected

1030: member access on incomplete structure type ‘%s’

1031: initializer count mismatch for ‘%s’
DS51217B-page 170  2000 Microchip Technology Inc.

MPLAB-C17 Errors

A
p

p
en

d
icies

Part
3

1032: initializer list required for ‘%s’

1034: type mismatch in initializer

1035: value expected in initializer

1036: inline assembly must be within a function body

1037: integer constant expected

1038: integer type required

Bitwise operators require that both operands be of integer type. Common
causes include a missing ‘*’ or ‘[]’ operator.

1040: invalid character constant

1041: invalid expression in assembly statement

1042: invalid member of structure ‘%s’

1043: invalid storage class in parameter %d

1044: lvalue required

An expression which designates an object is required. Common causes
include missing parentheses and a missing ‘*’ operator.

1045: argument count mismatch invoking macro ‘%s’

1046: identifier expected in macro definition

1047: missing argument %d in macro ‘%s’

1048: misplaced ‘break’ statement

A ‘break’ statement must be inside a ‘while’, ‘do’, ‘for’, or ‘switch’ state-
ment. Common causes include a misplaced ‘}’.

1049: misplaced ‘continue’ statement

A ‘continue’ statement must be inside a ‘while’, ‘do’, ‘for’, or ‘switch’ state-
ment.

1050: missing ‘)’ in macro invocation on line %d

1051: missing #endif

1052: multiple ‘#else’ clauses for ‘#if’ not allowed

1053: cannot use ‘%s’ twice in same declaration

1054: cannot use type twice in same declaration

1055: must have constant operand for 1-bit quantity

1056: must have constant operand for 3-bit quantity

1057: identifier expected following ‘%s’

1058: pointer operand required for ‘*’ operator

The ‘*’ dereference operator requires a pointer to a non-void object as its
operand

1059: syntax error: Expecting second parameter
 2000 Microchip Technology Inc. DS51217B-page 171

MPLAB®-CXX Compiler User’s Guide
1060: hardware multiply is not supported on the 17c42

1061: pragma error: bank type specified for ROM section

1062: block assignments must be four bytes or smaller

1064: 32-bit integers not supported

1065: invalid assembly instruction

1066: variable length argument lists not supported

1067: number of parameters conflicts with previous definition

1068: old style function definitions not supported

1069: ‘(’ expected in macro invocation

1070: operator %c requires arithmetic operands

1071: operator ‘%s’ requires arithmetic operands

1072: operator %c requires integral operands

1073: parameter ‘%s’ type mismatch

1074: cannot cast a pointer’s location qualifier

1075: error in pragma directive

1076: redundant section modifier ‘%s’ in pragma

1077: definition ‘%s’ does not match prototype

1078: conflicting qualifiers specified

1079: redeclaration of ‘%s’ does not match first

1080: scalar operand required

A conditional statement control expression must be of scalar type, i.e., an
integer or a pointer.

1081: section address permitted only at definition

1082: section pragma not allowed inside a function

1083: section overlay attribute does not match definition

1084: section share attribute does not match definition

1085: section type does not match definition

1086: shift by a negative value

1087: static function ‘%s’ missing definition

1088: conflicting storage classes specified

1089: structure, Union or Enum type mismatch ‘%s’

1090: switch expression must be 8-bit

1091: symbol ‘%s’ already defined

1092: syntax error

1093: syntax error, expecting string
DS51217B-page 172  2000 Microchip Technology Inc.

MPLAB-C17 Errors

A
p

p
en

d
icies

Part
3

1094: conflicting types specified

1095: type declarator mismatch

1096: type location mismatch

1097: type mismatch

The type of the return value is not compatible with the declared return type
of the function. Common causes include a missing ‘*’ or ‘[]’ operator

1098: type mismatch in redeclaration of ‘%s’

The type of the symbol declared is not compatible with the type of a previ-
ous declaration of the same symbol. Common causes include missing
qualifiers or misplaced qualifiers.

1099: type qualifier mismatch

1100: type range mismatch

1101: type storage class mismatch

1102: undefined symbol ‘%s’

A symbol has been referenced before it has been defined. Common
causes include a misspelled symbol ‘%s’, a missing header file which
declares the symbol, and a reference to a symbol valid only in an inner
scope.

1103: unexpected input after ‘%s’

1104: unknown preprocessor directive ‘%s’

1105: unresolved label ‘%s’

The label has been referenced via a ‘goto’ statement, but has not been
defined in the function. Common causes include a misspelled label identi-
fier and a reference to an out of scope label, i.e., a label defined in another
function.

1106: bit field type must be integer

1107: section #pragmas not allowed inside functions

D.4 Warnings
2000: no prototype for ‘%s’

2001: shift by zero

2002: shift by more bits than contained in operand

2003: ‘rom’ and ‘volatile’ in same declaration

2004: unused symbol block

2005: redefinition of macro ‘%s’ is not identical
 2000 Microchip Technology Inc. DS51217B-page 173

MPLAB®-CXX Compiler User’s Guide
2006: call of function ‘%s’ without prototype

A function call has been made without an in-scope function prototype for
the function being called. This can be un-safe, as no type-checking for the
function arguments can be performed.

2007: unknown pragma ‘%s’ encountered
DS51217B-page 174  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Appendix E. MPLAB-C18 Errors
A
p

p
en

d
icies

Part
3

E.1 Introduction
This appendix lists errors generated by the MPLAB-C18 compiler.

E.2 Highlights
The following errors apply to MPLAB-C18:

• Errors

• Warnings

E.3 Errors
1000: unexpected input following ‘%s’

1001: identifier expected following ‘%s’

1002: syntax error, ‘%s’ expected

1003: unknown pre-processor directive ‘%s’

1004: missing ‘)’ in macro on line %d

1005: missing argument %d invoking macro %s

1006: extra argument(s) invoking macro ‘%s’

1007: ‘(’ expected invoking macro ‘%s’

1008: #else without #if detected

1009: #elif without #if detected

1010: #endif without #if detected

1012: identifier expected in macro definition

1013: error in pragma directive

1014: attribute mismatch in resumption of section ‘%s’

1011: missing #endif

1015: missing include path for system header files

1050: section address permitted only at definition

1051: section pragma not allowed inside a function

1052: section overlay attribute does not match definition

1053: section share attribute does not match definition

1054: section type does not match definition

1100: syntax error
 2000 Microchip Technology Inc. DS51217B-page 175

MPLAB®-CXX Compiler User’s Guide
1101: lvalue required

An expression which designates an object is required. Common causes
include missing parentheses and a missing ‘*’ operator.

1102: cannot assign to ‘const’ modified object

An object qualified with ‘const’ is declared to be read-only data and modi-
fications to it are therefore not allowed.

1103: unknown escape sequence ‘%s’

The specified escape sequence is not known to the compiler. Check the
User’s Guide for a list of valid character escape sequences

1104: division by zero in constant expression

The compiler cannot process a constant expression which contains a
divide by (or modulus by) zero.

1105: symbol ‘%s’ has not been defined

A symbol has been referenced before it has been defined. Common
causes include a misspelled symbol name, a missing header file which
declares the symbol, and a reference to a symbol valid only in an inner
scope.

1500: unable to open file ‘%s’

The compiler was unable to open the named file. Common causes include
misspelled filename and insufficient access rights

1501: unable to locate file ‘%s’

The compiler was unable to locate the named file. Common causes
include misspelled filename and misconfigured include path.

1106: ‘%s’ is not a function

A symbol must be a function name in order to be declared as an interrupt
function

1107: interrupt functions must not take parameters

When the processor vectors to an interrupt routine, no parameters are
passed, so a function declared as an interrupt function should not expect
parameters.

1108: interrupt functions must not return a value

Since interrupts are invoked asynchronously by the processor, there will
not be a calling routine to which a value can be returned.

1109: type mismatch in redeclaration of ‘%s’

The type of the symbol declared is not compatible with the type of a previ-
ous declaration of the same symbol. Common causes include missing
qualifiers or misplaced qualifiers.

1110: ‘auto’ symbol ‘%s’ not in function scope

Variables may only be allocated off the stack within the scope of a function.
DS51217B-page 176  2000 Microchip Technology Inc.

MPLAB-C18 Errors

A
p

p
en

d
icies

Part
3

1111: undefined label ‘%s’ in ‘%s’

The label has been referenced via a ‘goto’ statement, but has not been
defined in the function. Common causes include a misspelled label identi-
fier and a reference to an out of scope label, i.e., a label defined in another
function.

1112: integer type expected in switch control expression

The control expression for a switch statement must be an integer type.
Common causes include a missing ‘*’ operator and a missing ‘[]’ operator.

1113: integer constant expected for case label value

The value for a case label must be an integer constant.

1114: case label outside switch statement detected

A ‘case’ label is only valid inside the body of a switch statement. Common
causes include a misplaced ‘}’.

1115: multiple default labels in switch statement

A switch statement can only have a single ‘default’ label. Common causes
include a missing ‘}’ to close an inner switch.

1116: type mismatch in return statement

The type of the return value is not compatible with the declared return type
of the function. Common causes include a missing ‘*’ or ‘[]’ operator

1117: scalar type expected in ‘if’ statement

An ‘if’ statement control expression must be of scalar type, i.e., an integer
or a pointer.

1118: scalar type expected in ‘while’ statement

A ‘while’ statement control expression must be of scalar type, i.e., an inte-
ger or a pointer.

1119: scalar type expected in ‘do..while’ statement

A ‘do..while’ statement control expression must be of scalar type, i.e., an
integer or a pointer.

1120: scalar type expected in ‘for’ statement

A ‘for’ statement control expression must be of scalar type, i.e., an integer
or a pointer.

1120: scalar type expected in ‘?:’ expression

A ‘?:’ operator control expression must be of scalar type, i.e., an integer or
a pointer.

1122: scalar operand expected for ‘!’ operator

The ‘!’ operator requires that its operand be of scalar type.

1123: scalar operands expected for ‘||’ operator

The logical OR operator, ‘||’, requires scalar operands.
 2000 Microchip Technology Inc. DS51217B-page 177

MPLAB®-CXX Compiler User’s Guide
1124: scalar operands expected for ‘&&’ operator

The logical AND operator, ‘&&’, requires scalar operands.

1125: ‘break’ must appear in a loop or switch statement

A ‘break’ statement must be inside a ‘while’, ‘do’, ‘for’, or ‘switch’ state-
ment. Common causes include a misplaced ‘}’.

1126: ‘continue’ must appear in a loop statement

A ‘continue’ statement must be inside a ‘while’, ‘do’, ‘for’, or ‘switch’ state-
ment.

1127: operand type mismatch in ‘?:’ operator

The types of the result operands of the ‘?:’ operator must be either both
scalar types, or compatible types.

1128: compatible scalar operands required for comparison

A comparison operator must have operands of compatible scalar types.

1129: [] operator requires a pointer and an integer as operands

The array access operator, ‘[]’, requires that one operand be a pointer and
the other be an integer, that is, for ‘x[y]’ the expression ‘*(x+y)’ must be
valid. ‘x[y]’ is functionally equivalent to ‘*(x+y)’.

1130: pointer operand required for ‘*’ operator

The ‘*’ dereference operator requires a pointer to a non-void object as its
operand

1131: type mismatch in assignment

The assignment operators require that the result of the right hand expres-
sion be of compatible type with the type of the result of the left hand
expression. Common causes include a missing ‘*’ or ‘[]’ operator

1132: integer type expected for right hand operand of ‘-=’ operator

The ‘-=’ operator requires that the right hand side by of integer type when
the left hand side is of pointer type. Common causes include a missing ‘*’
or ‘[]’ operator.

1133: type mismatch in ‘-=’ operator

The types of the operands of the ‘-=’ operator must be such that for ‘x-=y’
the expression ‘x=x-y’ is valid.

1134: arithmetic operands required for multiplication operator

The ‘*’ and ‘*=’ multiplication operators require that their operands be of
arithmetic type. Common causes include a missing ‘*’ dereference opera-
tor or a missing ‘[]’ index operator.

1134: arithmetic operands required for division operator

The ‘/’ and ‘/=’ division operators require that their operands be of arith-
metic type. Common causes include a missing ‘*’ dereference operator or
a missing ‘[]’ index operator.
DS51217B-page 178  2000 Microchip Technology Inc.

MPLAB-C18 Errors

A
p

p
en

d
icies

Part
3

1135: integer operands required for modulus operator

The ‘%’ and ‘%=’ division operators require that their operands be of inte-
ger type. Common causes include a missing ‘*’ dereference operator or a
missing ‘[]’ index operator.

1136: integer operands required for shift operator

The bitwise shift operators require that their operands be of integer type.
Common causes include a missing ‘*’ dereference operator or a missing
‘[]’ index operator.

1137: integer types required for bitwise AND operator

The ‘&’ and ‘&=’ operators require that both operands be of integer type.
Common causes include a missing ‘*’ or ‘[]’ operator

1138: integer types required for bitwise OR operator

The ‘|’ and ‘|=’ operators require that both operands be of integer type.
Common causes include a missing ‘*’ or ‘[]’ operator

1139: integer types required for bitwise XOR operator

The ‘^’ and ‘^=’ operators require that both operands be of integer type.
Common causes include a missing ‘*’ or ‘[]’ operator

1139: integer type required for bitwise NOT operator

The ‘~’ operator requires that the operand be of integer type. Common
causes include a missing ‘*’ or ‘[]’ operator

1141: integer type expected for pointer addition

The addition operator requires that when one operand is of pointer type,
the other must be of integer type. Common causes include a missing ‘*’ or
‘[]’ operator.

1142: type mismatch in ‘+’ operator

The types of the operands of the ‘+’ operator must be such that one oper-
and is of pointer type and the other is of integer type or both operands are
of arithmetic type.

1143: pointer difference requires pointers to compatible types

When calculating the difference between two pointers, the pointers must
point to objects of compatible type. Common causes include missing
parentheses and a missing ‘[]’ operator.

1144: integer type required for pointer subtraction

When the left hand operand of the subtraction operator is of pointer type,
the right hand operand must be of integer type. Common causes include a
missing ‘*’ or ‘[]’ operator.

1145: arithmetic type expected for subtraction operator

When the left hand operand is not of pointer type, the subtraction operator
requires that both operands by of arithmetic type.
 2000 Microchip Technology Inc. DS51217B-page 179

MPLAB®-CXX Compiler User’s Guide
1146: type mismatch in argument ‘%d’

The type of an argument to a function call must be compatible with the
declared type of the corresponding parameter

1147: scalar type expected for increment operator

The increment operators require that the operand be a modifiable lvalue of
scalar type.

1148: scalar type expected for decrement operator

The decrement operators require that the operand be a modifiable lvalue
of scalar type.

1149: arithmetic type expected for unary plus

The unary plus operator requires that its operand be of arithmetic type

1150: arithmetic type expected for unary minus

The unary minus operator requires that its operand be of arithmetic type

1151: struct or union object designator expected

The member access operators, ‘.’ and ‘−>’ require operands of struct/union
and pointer to struct/union, respectively

1152: scalar or void type expected for cast

An explicit cast requires that the type of the operand be of scalar type and
the type being cast to be scalar type or void type.

1200: cannot reference the address of a bitfield

The address of a bitfield member of a structure cannot be referenced
directly.

1201: cannot dereference a pointer to ‘void’ type

The ‘*’ dereference operator requires a pointer to a non-void object as its
operand

1202: call of non-function

The operand of the ‘()’ function call post-fix operator must be of type
‘pointer to function.’ Most commonly, this is a function identifier. Common
causes include missing scope parentheses.

1203: too few arguments in function call

To call a function, the number of arguments passed must match exactly the
number of parameters declared for the function.

1204: too many arguments in function call

To call a function, the number of arguments passed must match exactly the
number of parameters declared for the function.

1207: tag ‘%s’ is incomplete

An incomplete struct or union tag cannot be referenced by the member
access operators. Common causes include a misspelled structure tag
name in the symbol definition.
DS51217B-page 180  2000 Microchip Technology Inc.

MPLAB-C18 Errors

A
p

p
en

d
icies

Part
3

1205: unknown member ‘%s’ in ‘%s’

The structure or union tag does not have a member of the name requested.
Common causes include a misspelled member name and a missing mem-
ber access operator for a nested structure.

1206: unknown member ‘%s’

The structure or union type does not have a member of the name
requested. Common causes include a misspelled member name and a
missing member access operator for a nested structure.

1208: "#pragma interrupt" detected inside function body

The ‘interrupt’ pragma is only available at file level scope.

1209: unknown function ‘%s’ in #pragma interrupt

The ‘interrupt’ pragma requires that the function being declared as an
interrupt have an active prototype when the pragma is encountered

1210: unknown symbol ‘%s’ in interrupt save list

The ‘interrupt’ pragma requires that symbols listed in the ‘save’ list must be
declared and of in scope

1211: missing definition for interrupt function ‘%s’

The function was declared as an interrupt, but was never defined. The
function definition of an interrupt function must be in the same module as
the pragma declaring the function as an interrupt.

1212: static function ‘%s’ referenced but not defined

The function has been declared as static and has been referenced else-
where in the module, but there is no definition for the function present.
Common causes include a misspelled function name in the function defi-
nition.

1300: stack frame too large

The size of the stack frame has exceeded the maximum addressable size.
Commonly caused by too many local variables allocated as ‘auto’ storage
class in a single function.

1301: parameter frame too large

The size of the parameter frame has exceeded the maximum addressable
size. Commonly caused by too many parameters being passed to a single
function.

1099: %s

source code ‘#error’ directive message
 2000 Microchip Technology Inc. DS51217B-page 181

MPLAB®-CXX Compiler User’s Guide
E.4 Warnings
2000: redefinition of macro ‘%s’

2051: storage class mismatch in redeclaration of ‘%s’

2060: shift expression has no effect

2061: shift expression always zero

2052: unexpected return value

A return of a value statement has been detected in a function declared to
return no value. The return value will be ignored.

2053: return value expected

A return with no value has been detected in a function declared to return a
value. The return value will be undefined.

2054: suspicious pointer conversion

A pointer has been used as an integer or an integer has been used as a
pointer without an explicit cast.

2055: expression is always false

The control expression of a conditional statement evaluates to a constant
false value

2056: expression is always true

The control expression of a conditional statement evaluates to a constant
true value

2057: possibly incorrect test of assignment

An implicit test of an assignment expression, e.g., ‘if(x=y)’ is often seen
when a ‘=’ operator has been used when a ‘==’ operator was intended.

2058: call of function without prototype

A function call has been made without an in-scope function prototype for
the function being called. This can be un-safe, as no type-checking for the
function arguments can be performed.

2059: unary minus of unsigned value

The unary minus operator is normally only applied to signed values.

2062: ‘−>’ operator expected, not ‘.’

A struct/union member access via a pointer to struct/union has been per-
formed using the ‘.’ operator.

2063: ‘.’ operator expected, not ‘−>’

A direct struct/union member access has been performed using the ‘−>’
operator.

2064: static function ‘%s’ not defined
DS51217B-page 182  2000 Microchip Technology Inc.

MPLAB-C18 Errors

A
p

p
en

d
icies

Part
3

The function has been declared as static, but there is no definition for the
function present. Common causes include a misspelled function name in
the function definition.

2065: static function ‘%s’ never referenced

The static function has been defined, but has not been referenced.
 2000 Microchip Technology Inc. DS51217B-page 183

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 184  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Appendix F. References
A
p

p
en

d
icies

Part
3

F.1 Introduction
This appendix gives references that may be helpful in programming with
MPLAB-CXX.

F.2 Highlights
This appendix lists the following reference types:

• C Standards Information

• General C Information

F.3 C Standards Information
American National Standard for Information Systems – Programming

Language – C. American National Standards Institute (ANSI), 11 West
42nd. Street, New York, New York, 10036.

This standard specifies the form and establishes the interpretation of pro-
grams expressed in the programming language C. Its purpose is to pro-
mote portability, reliability, maintainability, and efficient execution of C
language programs on a variety of computing systems.

F.4 General C Information
Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language,

Second Edition. Prentice Hall, Englewood Cliffs, New Jersey 07632.

Presents a concise exposition of C as defined by the ANSI standard. This
book is an excellent reference for C programmers.

Kochan, Steven G. Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Another excellent reference for learning ANSI C, used in colleges and uni-
versites.

Harbison, Samuel P., and Steele, Guy L., C A Reference Manual, Fourth
Edition, Prentice-Hall, Englewood Cliffs, New Jersey 07632.

A best selling authoritative reference for the C programming language.

Van Sickle, Ted. Programming Microcontrollers in C, First Edition. LLH
Technology Publishing, Eagle Rock, Virginia 24085.

Although this book focuses on Motorola microcontrollers, the basic princi-
ples of programming with C for microcontrollers is useful.
 2000 Microchip Technology Inc. DS51217B-page 185

MPLAB®-CXX Compiler User’s Guide
NOTES:
DS51217B-page 186  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE
Glossary
Introduction
To provide a common frame of reference, this glossary defines the terms for
several Microchip tools.

Highlights
This glossary contains terms and definitions for the following tools:

• MPLAB IDE, MPLAB-SIM, MPLAB Editor

• MPASM, MPLINK, MPLIB

• MPLAB-CXX

• MPLAB-ICE, PICMASTER Emulators

• MPLAB-ICD

• PICSTART Plus, PRO MATE programmer

Terms
Absolute Section

A section with a fixed (absolute) address which can not be changed by the
linker.

Access RAM (PIC18CXXX Devices Only)

Special general purpose registers on PIC18CXXX devices that allow access
regardless of the setting of the bank select bit (BSR).

Alpha Character

Alpha characters are those characters, regardless of case, that are letters of
the alphabet: (a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters include alpha characters and numbers: (0,1, …, 9).

Application

A set of software and hardware developed by the user, usually designed to be
a product controlled by a PICmicro microcontroller.

Assemble

What an assembler does. See assembler.

Assembler

A language tool that translates a user’s assembly source code (.asm) into
machine code. MPASM is Microchip’s assembler.
 2000 Microchip Technology Inc. DS51217B-page 187

MPLAB®-CXX Compiler User’s Guide
Assembly

A programming language that is once removed from machine language.
Machine languages consist entirely of numbers and are almost impossible for
humans to read and write. Assembly languages have the same structure and
set of commands as machine languages, but they enable a programmer to
use names (mnemonics) instead of numbers.

Assigned Section

A section which has been assigned to a target memory block in the linker
command file. The linker allocates an assigned section into its specified target
memory block.

Break Point – Hardware

An event whose execution will cause a halt.

Break Point – Software

An address where execution of the firmware will halt. Usually achieved by a
special break opcode.

Build

A function that recompiles all the source files for an application.

C

A high level programming language that may be used to generate code for
PICmicro MCUs, especially high-end device families.

Calibration Memory

A special function register or registers used to hold values for calibration of a
PICmicro microcontroller on-board RC oscillator.

COFF

Common Object File Format. An intermediate file format generated by
MPLINK that contains machine code and debugging information.

Command Line Interface

Command line interface refers to executing a program on the DOS command
line with options. Executing MPASM with any command line options or just the
file name will invoke the assembler. In the absence of any command line
options, a prompted input interface (shell) will be executed.

Compile

What a compiler does. See compiler.

Compiler

A language tool that translates a user’s C source code into machine code.
MPLAB-C17 and MPLAB-C18 are Microchip’s C compilers for PIC17CXXX
and PIC18CXXX devices, respectively.
DS51217B-page 188  2000 Microchip Technology Inc.

Glossary
Configuration Bits

Unique bits programmed to set PICmicro microcontroller modes of operation.
A configuration bit may or may not be preprogrammed. These bits are set in
the Options > Development Mode dialog for simulators or emulators and in
the _ _ CONFIG MPASM directive for programmers.

Control Directives

Control directives in MPASM permit sections of conditionally assembled code.

Data Directives

Data directives are those that control MPASM’s allocation of memory and
provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

General purpose file registers (GPRs) from RAM on the PICmicro device
being emulated. The File Register window displays data memory.

Directives

Directives provide control of the assembler’s operation by telling MPASM how
to treat mnemonics, define data, and format the listing file. Directives make
coding easier and provide custom output according to specific needs.

Download

Download is the process of sending data from the PC host to another device,
such as an emulator, programmer or target board.

EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of
PROM that can be erased electrically. Data is written or erased one byte at a
time. EEPROM retains its contents even when power is turned off.

Emulation

The process of executing software loaded into emulation memory as if the
firmware resided on the microcontroller device under development.

Emulation Memory

Program memory contained within the emulator.

Emulator

Hardware that performs emulation.

Emulator System

The MPLAB-ICE emulator system includes the pod, processor module, device
adapter, cables, and MPLAB Software. The PICMASTER emulator system
includes the pod, device-specific probe, cables, and MPLAB Software.

Event

A description of a bus cycle which may include address, data, pass count,
external input, cycle type (fetch, R/W), and time stamp. Events are used to
describe triggers and break points.
 2000 Microchip Technology Inc. DS51217B-page 189

MPLAB®-CXX Compiler User’s Guide
Executable Code

See Hex Code.

Export

Send data out of the MPLAB IDE in a standardized format.

Expressions

Expressions are used in the operand field of MPASM’s source line and may
contain constants, symbols, or any combination of constants and symbols
separated by arithmetic operators. Each constant or symbol may be preceded
by a plus or minus to indicate a positive or negative expression.

Extended Microcontroller Mode
(PIC17CXXX and PIC18CXXX Devices Only)

In extended microcontroller mode, on-chip program memory as well as
external memory is available. Execution automatically switches to external if
the program memory address is greater than the internal memory space of
the PIC17CXXX or PIC18CXXX device.

External Input Line (MPLAB-ICE only)

An external input signal logic probe line (TRIGIN) for setting an event based
upon external signals.

External Linkage

A function or variable has external linkage if it can be accessed from outside
the module in which it is defined.

External RAM (PIC17CXXX and PIC18CXXX Devices Only)

Off-chip Read/Write memory.

External Symbol

A symbol for an identifier which has external linkage.

External Symbol Definition

A symbol for a function or variable defined in the current module.

External Symbol Reference

A symbol which references a function or variable defined outside the current
module.

External Symbol Resolution

A process performed by the linker in which external symbol definitions from all
input modules are collected in an attempt to update all external symbol
references. Any external symbol references which do not have a
corresponding definition cause a linker error to be reported.

Note: MPASM expressions are evaluated in 32 bit integer math.
(Floating point is not currently supported.)
DS51217B-page 190  2000 Microchip Technology Inc.

Glossary
File Registers

On-chip general purpose and special function registers.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle
instruction. Since the PICmicro architecture is pipelined, it prefetches the next
instruction in the physical address space while it is executing the current
instruction. However, if the current instruction changes the program counter,
this prefetched instruction is explicitly ignored, causing a forced NOP cycle.

GPR

See Data Memory.

Halt

A function that stops the emulator. Executing Halt is the same as stopping at a
break point. The program counter stops, and the user can inspect and change
register values, and single step through code.

Hex Code

Executable instructions assembled or compiled from source code into
standard hexadecimal format code. Also called executable or machine code.
Hex code is contained in a hex file.

Hex File

An ASCII file containing hexadecimal addresses and values (hex code)
suitable for programming a device. This format is readable by a device
programmer.

High Level Language

A language for writing programs that is of a higher level of abstraction from
the processor than assembler code. High level languages (such as C) employ
a compiler to translate statements into machine instructions that the target
processor can execute.

ICD

In-Circuit Debugger. MPLAB-ICD is Microchip’s in-circuit debugger for
PIC16F87X devices. MPLAB-ICD works with MPLAB IDE.

ICE

In-Circuit Emulator. MPLAB-ICE is Microchip’s in-circuit emulator that works
with MPLAB IDE.

IDE

Integrated Development Environment. An application that has multiple
functions for firmware development. The MPLAB IDE integrates a compiler,
an assembler, a project manager, an editor, a debugger, a simulator, and an
 2000 Microchip Technology Inc. DS51217B-page 191

MPLAB®-CXX Compiler User’s Guide
assortment of other tools within one Windows application. A user developing
an application can write code, compile, debug, and test an application without
leaving the MPLAB IDE desktop.

Identifier

A function or variable name.

Import

Bring data into the MPLAB Integrated Development Environment (IDE) from
an outside source, such as from a hex file.

Initialized Data

Data which is defined with an initial value. In C, int myVar=5; defines a
variable which will reside in an initialized data section.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from
outside the module in which it is defined.

Librarian

A language tool that creates and manipulates libraries. MPLIB is Microchip’s
librarian.

Library

A library is a collection of relocatable object modules. It is created by
assembling multiple source files to object files, and then using the librarian to
combine the object files into one library file. A library can be linked with object
modules and other libraries to create executable code.

Link

What a linker does. See Linker.

Linker

A language tool that combines object files and libraries to create executable
code. Linking is performed by Microchip’s linker, MPLINK.

Linker Script Files

Linker script files are the command files of MPLINK (.LKR). They define linker
options and describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the MPASM listing file
format. They allow the specification of titles, pagination and other listing
control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for
each C source statement, assembly instruction, MPASM directive, or macro
encountered in a source file.
DS51217B-page 192  2000 Microchip Technology Inc.

Glossary
Local Label

A local label is one that is defined inside a macro with the LOCAL directive.
These labels are particular to a given instance of a macro’s instantiation. In
other words, the symbols and labels that are declared as local are no longer
accessible after the ENDM macro is encountered.

Logic Probes

Up to 14 logic probes connected to the emulator. The logic probes provide
external trace inputs, trigger output signal, +5V, and a common ground.

Machine Code

Either object or executable code.

Macro

A collection of assembler instructions that are included in the assembly code
when the macro name is encountered in the source code. Macros must be
defined before they are used; forward references to macros are not allowed.

All statements following a MACRO directive and prior to an ENDM directive are
part of the macro definition. Labels used within the macro must be local to the
macro so the macro can be called repetitively.

Macro Directives

Directives that control the execution and data allocation within macro body
definitions.

Make Project

A command that rebuilds an application, re-compiling only those source files
that have changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also µC.

Memory Models

Versions of libraries and/or precompiled object files based on a device’s
memory (RAM/ROM) size and structure.

Microcontroller

A highly integrated chip that contains all the components comprising a
controller. Typically this includes a CPU, RAM, some form of ROM, I/O ports,
and timers. Unlike a general-purpose computer, which also includes all of
these components, a microcontroller is designed for a very specific task – to
control a particular system. As a result, the parts can be simplified and
reduced, which cuts down on production costs.

Microcontroller Mode (PIC17CXXX and PIC18CXXX Devices Only)

One of the possible program memory configurations of the PIC17CXXX and
PIC18CXXX families of microcontrollers. In microcontroller mode, only
internal execution is allowed. Thus, only the on-chip program memory is
available in microcontroller mode.
 2000 Microchip Technology Inc. DS51217B-page 193

MPLAB®-CXX Compiler User’s Guide
Microprocessor Mode (PIC17CXXX and PIC18CXXX Devices Only)

One of the possible program memory configurations of the PIC17CXXX and
PIC18CXXX families of microcontrollers. In microprocessor mode, the on-chip
program memory is not used. The entire program memory is mapped
externally.

Mnemonics

Instructions that are translated directly into machine code. Mnemonics are
used to perform arithmetic and logical operations on data residing in program
or data memory of a microcontroller. They can also move data in and out of
registers and memory as well as change the flow of program execution. Also
referred to as Opcodes.

MPASM

Microchip Technology’s relocatable macro assembler. MPASM is a DOS or
Windows-based PC application that provides a platform for developing
assembly language code for Microchip’s PICmicro microcontroller families.
Generically, MPASM will refer to the entire development platform including the
macro assembler and utility functions.

MPASM will translate source code into either object or executable code. The
object code created by MPASM may be turned into executable code through
the use of the MPLINK linker.

MPLAB-CXX

Refers to MPLAB-C17 and MPLAB-C18 C compilers.

MPLAB-ICD

Microchip’s in-circuit debugger for PIC16F87X devices. MPLAB-ICD works
with MPLAB IDE. The MPLAB-ICD system consists of a module, header,
demo board (optional), cables, and MPLAB Software.

MPLAB-ICE

Microchip’s in-circuit emulator that works with MPLAB IDE.

MPLAB IDE

The name of the main executable program that supports the IDE with an
Editor, Project Manager, and Emulator/Simulator Debugger. The MPLAB
Software resides on the PC host. The executable file name is MPLAB.EXE.
MPLAB.EXE calls many other files.

MPLAB-SIM

Microchip’s simulator that works with MPLAB IDE.

MPLIB

MPLIB is a librarian for use with COFF object modules (filename.o)
created using either MPASM v2.0, MPASMWIN v2.0, or MPLAB-C v2.0 or
later.

MPLIB will combine multiple object files into one library file. Then MPLIB can
be used to manipulate the object files within the created library.
DS51217B-page 194  2000 Microchip Technology Inc.

Glossary
MPLINK

MPLINK is a linker for the Microchip relocatable assembler, MPASM, and the
Microchip C compilers, MPLAB-C17 or MPLAB-C18. MPLINK also may be
used with the Microchip librarian, MPLIB. MPLINK is designed to be used with
MPLAB IDE, though it does not have to be.

MPLINK will combine object files and libraries to create a single executable
file.

MPSIM

The DOS version of Microchip’s simulator. MPLAB-SIM is the newest
simulator from Microchip.

MRU

Most Recently Used. Refers to files and windows available to be selected
from MPLAB IDE main pull down menus.

Nesting Depth

The maximum level to which macros can include other macros. Macros can
be nested to 16 levels deep.

Non Real-Time

Refers to the processor at a break point or executing single step instructions
or MPLAB IDE being run in simulator mode.

Node

MPLAB IDE project component.

NOP

No Operation. An instruction that has no effect when executed except to
advance the program counter.

Object Code

The intermediate code that is produced from the source code after it is
processed by an assembler or compiler. Relocatable code is code produced
by MPASM or MPLAB-C17/C18 that can be run through MPLINK to create
executable code. Object code is contained in an object file.

Object File

A module which may contain relocatable code or data and references to
external code or data. Typically, multiple object modules are linked to form a
single executable output. Special directives are required in the source code
when generating an object file. The object file contains object code.

Object File Directives

Directives that are used only when creating an object file.
 2000 Microchip Technology Inc. DS51217B-page 195

MPLAB®-CXX Compiler User’s Guide
Off-Chip Memory (PIC17CXXX and PIC18CXXX Devices Only)

Off-chip memory refers to the memory selection option for the PIC17CXXX or
PIC18CXXX device where memory may reside on the target board, or where
all program memory may be supplied by the Emulator. The Memory tab
accessed from Options > Development Mode provides the Off-Chip Memory
selection dialog box.

Opcodes

Operational Codes. See Mnemonics.

Operators

Arithmetic symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used
when forming well-defined expressions. Each operator has an assigned
precedence.

Pass Counter

A counter that decrements each time an event (such as the execution of an
instruction at a particular address) occurs. When the pass count value
reaches zero, the event is satisfied. You can assign the Pass Counter to break
and trace logic, and to any sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any IBM or compatible Personal Computer running Windows 3.1x or
Windows 95/98, Windows NT, or Windows 2000. MPLAB IDE runs on 486 or
higher machines.

PICmicro MCUs

PICmicro microcontrollers (MCUs) refers to all Microchip microcontroller
families.

PICMASTER Emulator

The hardware unit that provides tools for emulating and debugging firmware
applications. This unit contains emulation memory, break point logic,
counters, timers, and a trace analyzer among some of its tools. MPLAB-ICE is
the newest emulator from Microchip.

PICSTART Plus

A device programmer from Microchip. Programs 8, 14, 28, and 40 pin
PICmicro microcontrollers. Must be used with MPLAB Software.

Pod

The external emulator box that contains emulation memory, trace memory,
event and cycle timers, and trace/break point logic. Occasionally used as an
abbreviated name for the MPLAB-ICE emulator.
DS51217B-page 196  2000 Microchip Technology Inc.

Glossary
Power-on-Reset Emulation

A software randomization process that writes random values in data RAM
areas to simulate uninitialized values in RAM upon initial power application.

Precedence

The concept that some elements of an expression are evaluated before
others; i.e., * and / before + and -. In MPASM, operators of the same
precedence are evaluated from left to right. Use parentheses to alter the order
of evaluation.

Program Counter

A register that specifies the current execution address.

Program Memory

The memory area in a PICmicro microcontroller where instructions are stored.
Memory in the emulator or simulator containing the downloaded target
application firmware.

Programmer

A device used to program electrically programmable semiconductor devices
such as microcontrollers.

Project

A set of source files and instructions to build the object and executable code
for an application.

PRO MATE

A device programmer from Microchip. Programs all PICmicro microcontrollers
and most memory and Keeloq devices. Can be used with MPLAB IDE or
stand-alone.

Prototype System

A term referring to a user’s target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PICmicro devices have a PWM
peripheral.

Qualifier

An address or an address range used by the Pass Counter or as an event
before another operation in a complex trigger.

Radix

The number base, hex, or decimal, used in specifying an address and for
entering data in the Window > Modify command.

RAM

Random Access Memory (Data Memory).

Raw Data

The binary representation of code or data associated with a section.
 2000 Microchip Technology Inc. DS51217B-page 197

MPLAB®-CXX Compiler User’s Guide
Real-Time

When released from the halt state in the emulator or MPLAB-ICD mode, the
processor runs in real-time mode and behaves exactly as the normal chip
would behave. In real-time mode, the real-time trace buffer of MPLAB-ICE is
enabled and constantly captures all selected cycles, and all break logic is
enabled. In the emulator or MPLAB-ICD, the processor executes in real-time
until a valid break point causes a halt, or until the user halts the emulator.

In the simulator real-time simply means execution of the microcontroller
instructions as fast as they can be simulated by the host CPU.

Recursion

The concept that a function or macro, having been defined, can call itself.
Great care should be taken when writing recursive macros; it is easy to get
caught in an infinite loop where there will be no exit from the recursion.

Relocatable Section

A section whose address is not fixed (absolute). The linker assigns addresses
to relocatable sections through a process called relocation.

Relocation

A process performed by the linker in which absolute addresses are assigned
to relocatable sections and all identifier symbol definitions within the
relocatable sections are updated to their new addresses.

ROM

Read Only Memory (Program Memory).

Run

The command that releases the emulator from halt, allowing it to run the
application code and change or respond to I/O in real time.

Section

An portion of code or data which has a name, size, and address.

SFR

Special Function Registers of a PICmicro.

Shared Section

A section which resides in a shared (non-banked) region of data RAM.

Shell

The MPASM shell is a prompted input interface to the macro assembler.
There are two MPASM shells: one for the DOS version and one for the
Windows version.

Simulator

A software program that models the operation of the PICmicro
microprocessor.
DS51217B-page 198  2000 Microchip Technology Inc.

Glossary
Single Step

This command steps though code, one instruction at a time. After each
instruction, MPLAB IDE updates register windows, watch variables, and
status displays so you can analyze and debug instruction execution.

You can also single step C compiler source code, but instead of executing
single instructions, MPLAB IDE will execute all assembly level instructions
generated by the line of the high level C statement.

Skew

The information associated with the execution of an instruction appears on
the processor bus at different times. For example, the executed opcode
appears on the bus as a fetch during the execution of the previous instruction,
the source data address and value and the destination data address appear
when the opcode is actually executed, and the destination data value appears
when the next instruction is executed. The trace buffer captures the
information that is on the bus at one instance. Therefore, one trace buffer
entry will contain execution information for three instructions. The number of
captured cycles from one piece of information to another for a single
instruction execution is referred to as the skew.

Skid

When a hardware break point is used to halt the processor, one or more
additional instructions may be executed before the processor halts. The
number of extra instructions executed after the intended break point is
referred to as the skid.

Source Code - Assembly

Source code consists of PICmicro instructions and MPASM directives and
macros that will be translated into machine code by an assembler.

Source Code - C

A program written in the high level language called “C” which will be converted
into PICmicro machine code by a compiler. Machine code is suitable for use
by a PICmicro MCU or Microchip development system product like MPLAB
IDE.

Source File - Assembly

The ASCII text file of PICmicro instructions and MPASM directives and
macros (source code) that will be translated into machine code by an
assembler. It is an ASCII file that can be created using any ASCII text editor.

Source File - C

The ASCII text file containing C source code that will be translated into
machine code by a compiler. It is an ASCII file that can be created using any
ASCII text editor.

Special Function Registers

Registers that control I/O processor functions, I/O status, timers, or other
modes or peripherals.
 2000 Microchip Technology Inc. DS51217B-page 199

MPLAB®-CXX Compiler User’s Guide
Stack - Hardware

An area in PICmicro MCU memory where function arguments, return values,
local variables, and return addresses are stored; i.e., a “Push-Down” list of
calling routines. Each time a PICmicro MCU executes a CALL or responds to
an interrupt, the software pushes the return address to the stack. A return
command pops the address from the stack and puts it in the program counter.

The PIC18CXXX family also has a hardware stack to store register values for
“fast” interrupts.

Stack - Software

The compiler uses a software stack for storing local variables and for passing
arguments to and returning values from functions.

Static RAM or SRAM

Static Random Access Memory. Program memory you can Read/Write on the
target board that does not need refreshing frequently.

Status Bar

The Status Bar is located on the bottom of the MPLAB IDE window and
indicates such current information as cursor position, development mode and
device, and active tool bar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step
Over) follows a CALL instruction into a subroutine.

Step Over

Step Over allows you to debug code without stepping into subroutines. When
stepping over a CALL instruction, the next break point will be set at the
instruction after the CALL. If for some reason the subroutine gets into an
endless loop or does not return properly, the next break point will never be
reached.

The Step Over command is the same as Single Step except for its handling of
CALL instructions.

Stimulus

Data generated to exercise the response of simulation to external signals.
Often the data is put into the form of a list of actions in a text file. Stimulus may
be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.

Symbol

A symbol is a general purpose mechanism for describing the various pieces
which comprise a program. These pieces include function names, variable
names, section names, file names, struct/enum/union tag names, etc.

Symbols in MPLAB IDE refer mainly to variable names, function names and
assembly labels.
DS51217B-page 200  2000 Microchip Technology Inc.

Glossary
System Button

The system button is another name for the system window control. Clicking on
the system button pops up the system menu.

System Window Control

The system window control is located in the upper left corner of windows and
some dialogs. Clicking on this control usually pops up a menu that has the
items “Minimize,” “Maximize,” and “Close.” In some MPLAB IDE windows,
additional modes or functions can be found.

Figure G1: System Window Control Menu - Watch Window

Target

Refers to user hardware.

Target Application

Firmware residing on the target board.

Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board that is being
emulated.

Template

Lines of text that you build for inserting into your files at a later time. The
MPLAB Editor stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB IDE
functions.

system window control
 2000 Microchip Technology Inc. DS51217B-page 201

MPLAB®-CXX Compiler User’s Guide
Trace

An emulator or simulator function that logs program execution. The emulator
logs program execution into its trace buffer which is uploaded to MPLAB IDE’s
trace window.

Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes
called the trace buffer.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any
address or address range, and is independent of the trace and break point
settings. Any number of trigger output points can be set.

Unassigned Section

A section which has not been assigned to a specific target memory block in
the linker command file. The linker must find a target memory block in which
to allocate an unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C, int myVar; defines a
variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or
programmer, to the host PC or from the target board to the emulator.

Warning

An alert that is provided to warn you of a situation that would cause physical
damage to a device, software file, or equipment.

WatchDog Timer (WDT)

A timer on a PICmicro microcontroller that resets the processor after a
selectable length of time. The WDT is enabled or disabled and set up using
configuration bits.

Watch Variable

A variable that you may monitor during a debugging session in a watch
window.

Watch Window

Watch windows contain a list of watch variables that are updated at each
break point.
DS51217B-page 202  2000 Microchip Technology Inc.

MPLAB®-CXX COMPILER
USER’S GUIDE

Index
Symbols
! ...100
- ...99
!= ...100
#define ..76
#elif ..77
#else ..77
#endif ..77
#error ...77
#if ..78
#ifdef ...78
#ifndef ...79
#include ...79
#line ...80
#pragma interrupt80, 125, 138
#pragma list ...82
#pragma nolist ...82
#pragma varlocate ..84
#undef ...84
% ...99
& ..101
&& ...100
* ...99
+ ..99
.asm ..25, 39
.c ...21, 25, 39
.cod ...25, 39
.err ...21, 28, 33
.h ...28, 33
.hex ...25, 29, 34, 39, 43
.lib ..25, 39
.lkr ...25, 39
.lst ..25, 39
.map ..25, 29, 34, 39
.o ...21, 25, 39
.out ..25, 29, 34, 39
/ ...99
/* ..85
// ..85
< ..100
<< ..101
<= ..100
== ..100
> ..100

>= ... 100
>> ... 101
^ .. 101
| ... 101
|| .. 100
~ ... 101

A
Absolute Section ... 187
Access RAM ... 187
Add Project Files 44, 58
Address Spaces, ROM and RAM 114
ALUSTA .. 131
AND (&&) .. 100
AND, Bitwise (&) ... 101
ANSI Compatibility 14, 145
Arithmetic Operators 99
Arrays ... 112

ANSI C ... 148
Initialization .. 113

ASCII .. 155
asm (_asm) ... 73, 126
Assembler ... 187
Assembler, Internal 126
Assembly Language, Mixing with C 140
Assigned Section .. 188
Assignment Operators 101
auto ... 88
AUTOEXEC.BAT .. 18

B
Banked/Paged Data 88, 126
Basic Data Types ... 88
bin directory .. 18, 27, 33
Binary ... 86
Bit-Fields ... 122

ANSI C ... 149
Bitwise Operators ... 101
Block Comment .. 85
break ... 110
Break Point, Hardware 188
Break Point, Software 188
BSR .. 131
 2000 Microchip Technology Inc. DS51217B-page 203

MPLAB®-CXX Compiler User’s Guide
C
C Keywords ..73
C Programming ...75
C++ Comment ..85
c018.o ...137
c018i.o ..137
c0l17.asm ...129
c0s17.asm ..129
Calibration Memory188
case ..109
char ...88, 89
Characters

ANSI C ...146
ClrWdt() ...124
Code

Start Up25, 28, 39, 47, 125, 129, 136
Code File ..25, 39
COFF File25, 29, 34, 39
Command Line

Multiple File Compile, MPLAB-C1730
Multiple File Compile, MPLAB-C1835
Options, MPLAB-C1726
Options, MPLAB-C1831
Single File Compile, MPLAB-C1727
Single File Compile, MPLAB-C1833

Command Line Interface188
Comments ..85, 126
Compiler ...188
Compiler Overview ...19
Conditional Operator103
Configuration Bits ...189
const ...88
Constants

Character ..86, 87
Numeric ..86, 87
String ..84, 87

continue ..111
Customer Notification Service7
Customer Support ...9

D
Data Memory ..189
Data Types ...89
Decrement Operators102
default ...109
Development Mode41, 55
Directives ..189

Control ..189
Data ..189

Listing ...192
Macro ..193
Object File ..195

doc directory ..18
Document Conventions3
Document Layout ..1
double ...88, 90
do-while ...108

E
Edit Project ..43, 57
EEPROM ...189
else ..107
Emulator ..189
endasm (_endasm)73, 126
Enumerations ..93

ANSI C ..149
Environment Variable See MCC_INCLUDE
equal to (==) ..100
Error File ...21, 28, 33
Escape Sequences ...86
Example Code ...151
examples directory ..18
Executable

Directory18, 27, 33
Files15, 25, 29, 34, 37, 39

Executable Code ...190
Export ..190
Expressions ...190
Extended Microcontroller Mode190
extern ..88
External Declaration123, 124, 127, 135
External RAM ..190

F
far73, 88, 90, 118, 126, 128, 135
File

Listing ...192
float ...88, 90
Floating Point

ANSI C ..147
for ..107
FSR0, PIC17CXXX Hardware133
FSR1, PIC17CXXX Hardware133
FSR1, PIC18CXXX Software136
FSR2, PIC18CXXX Software136
Functions ...96

Declaration ...96
Funky ..96
Passing Arguments97
DS51217B-page 204  2000 Microchip Technology Inc.

Index
Prototyping ... 96
Recursive ... 97
Returning Values 98

G
global .. 90
Global variables .. 91
Glossary ... 187
Going Forward .. 36, 68
goto .. 111

H
h directory 18, 27, 33, 43, 57
Header

Directory 18, 27, 33
File ... 28, 33

Header Directory 43, 57
Hex Code ... 191
Hex File 25, 29, 34, 39, 43, 57
Hexadecimal ... 86

I
ICD ... 191
ICE ... 191
IDE ... 191
Identifiers

ANSI C ... 145
if .. 106, 107
Import ... 192
Include

Current Search Path 43, 57, 79
Directory .. 27

Increment Operators 102
Initialization

Arrays .. 113
Data 25, 28, 39, 47, 130, 137
Stack .. 130, 137

Initialized Data .. 192
Install _TMR0 ... 132
Install Language Tool 51, 65
Install_INT .. 127
Install_PIV .. 127
Install_T0CKI .. 127
Install_TMR0 .. 127
Installation

Proceedure .. 16
Requirements .. 15

Instruction Sets 157, 163
Integers

ANSI C ... 146

int ... 88, 89
Internet Address ... 6
Interrupts

Handler Code 25, 28, 39, 47
Nested .. 131
Saving FSR .. 133
Support - MPLAB-C18 125, 138
Support Macros - MPLAB-C17 131

L
Left Shift (<<) .. 101
lib directory 18, 27, 33, 47, 61, 62
Librarian .. 192
Librarian See MPLIB
Libraries .. 13
Library ... 192

Directory 18, 27, 33, 47, 61, 62
Files .. 25, 39

Linker .. 192
Directory 18, 27, 33
Script 25, 39, 49, 63

Linker Script Files ... 192
Linker See MPLINK
list ... 82
Listing File .. 25, 39, 192
lkr directory ... 18, 27, 33
local .. 90
Local Label ... 193
Local Variables ... 91
Logic Probes ... 193
Logical Operators ... 100
long ... 88, 89

M
main(), branching to 130, 137
Make Project ... 51, 65
Map File .. 25, 29, 34, 39
MCC_INCLUDE 18, 27, 33, 79
mcc17 ... 15, 26, 37
mcc17d ... 15, 37
mcc18 ... 15, 37
MCU ... 193
Memory

Calibration .. 188
Data .. 189
Models .. 47, 61, 123
Program ... 197
Requirements ... 15
Trace .. 202

Memory Models .. 193
 2000 Microchip Technology Inc. DS51217B-page 205

MPLAB®-CXX Compiler User’s Guide
Microchip Internet Web Site6
Microcontroller Mode193
Microprocessor Mode194
Mnemonics ...194
modulus (%) ..99
MPASM ...187, 194
MPLAB IDE13, 16, 194
MPLAB Projects ..37
MPLAB-CXX ...13, 194

Basic Program Components72
vs. C ...71

MPLAB-ICD ..194
MPLAB-ICE13, 14, 194
MPLAB-SIM ..13, 194
MPLIB19, 25, 39, 192, 194
MPLINK 19, 25, 39, 44, 52, 58, 66, 126, 192, 195

N
near73, 89, 90, 118, 126, 135
Nesting

Interrupts ..131
Structures ...121

New Project ..42, 56
Node Properties ..44, 58
Nop() ..124
NOT (!) ..100
not equal to (!=) ...100

O
Object Code ..195
Object Files ...21
Object Files, Precompiled25, 39, 47, 61
Octal ...86
Off-Chip Memory ..196
One’s complement (~)101
Opcodes ...196
Operators ..99, 196

Arithmetic ...99
Assignment ...101
Bitwise ..101
Conditional ...103
Decrement ..102
Increment ...102
Precedence ..105
Relational ...100
Smooth ...99

Optimization Tips134, 138
OR (||) ...100
OR, Bitwise (|) ...101

P
Paged/Banked Data88, 126
Pass Counter ..196
Passing Arguments to Functions97
Passing Pointers to Functions117
Passing Variables ...97
PCLATH ..131
PIC17CXXX Instruction Set157
PIC18CXXX Instruction Set163
PICMASTER ...196
PICmicro ...199
PICSTART ..14
PICSTART Plus ..196
Pointers ...115

ANSI C ..148
Arithmetic ..117

Post-decrement (c - -)102
Post-increment (c++)102
Precedence ...197
Precedence of Operators105
Precompiled Object Files47, 61
Pre-decrement (- - c)102
Pre-increment (++c)102
Preprocessor Directives76

ANSI C ..149
PRO MATE ...14, 197
Processor Header File72
PRODH ...132, 133
PRODL ..132, 133
Program Control Statements106
Program Counter ...197
Program Memory ..197
Programmer ..197
Project ...197
Project Nodes ..44, 58
Project Window ...53, 67
Project, MPLAB ...37
Prototyping, Functions96

Q
Qualifier ...197

R
Radix ...197
RAM

Address Spaces114
Pointers114, 116, 117
ram73, 113, 126, 135

README File ..4, 14
DS51217B-page 206  2000 Microchip Technology Inc.

Index
Real-Time ... 198
Recursive Functions 97
References ... 4
register ... 89
Register Definitions 25, 28, 39, 47
Register Definitions File 124, 127, 135
Registers

ANSI C ... 148
Relational Operators 100
Relocatable Section 198
Reset() ... 124
return .. 98
Returning Values from Functions 98
Right Shift (>>) ... 101
Rlcf() .. 124
Rlncf() .. 124
ROM

Address Spaces 114
Pointers 114, 116, 117
rom 73, 113, 126, 135
String ... 115

Rrcf() ... 124

S
Section ... 198

Absolute ... 187
Assigned .. 188
Relocatable .. 198
Shared ... 198
Unassigned .. 202

SFRs .. 124, 127, 135
Shared Section ... 198
short ... 89
signed ... 89
Simulator .. 198
Simulator See MPLAB-SIM
Single Step ... 199
Skew ... 199
Skid .. 199
Sleep() ... 124
Source Code 21, 25, 39

Directory .. 18
Source Code, Assembly 199
Source Code, C .. 199
Special Function Registers 124, 127, 135
src directory .. 18
Stack, Hardware ... 200
Stack, Software 125, 128, 135, 200

Initialization 130, 137

Size .. 128, 135
Start Up Code 25, 28, 39, 47, 125, 129, 136
STARTUP() (_ _STARTUP()) 129
static ... 89
Static Strings .. 114
Stimulus .. 200
Stopwatch ... 200
Storage Class

extern ... 92
static ... 92
volatile .. 93

Strings .. 113
struct ... 119
Structures ... 119

ANSI C ... 148
Nested .. 121

Swapf() .. 124
switch .. 109
switch, ANSI C .. 149
Symbol .. 200
System Button .. 201
System Requirements, Host Computer 15
System Window Control 201

T
Target ... 201
TBLPTR .. 134
Trace .. 202
Trace Memory .. 202
Troubleshooting 5, 51, 65
Tutorial, Using MPLAB-C17 with MPLAB 40
Tutorial, Using MPLAB-C18 with MPLAB 54
typedef .. 95

U
Unassigned Section 202
Uninitialized Data .. 202
Unions .. 120

ANSI C ... 148
unsigned ... 89
Updates .. 3
USE_INITDATA .. 130
USE_STARTUP ... 129

V
Variables ... 88
Variables, Declaration 90
void ... 88, 89
volatile .. 127, 128
 2000 Microchip Technology Inc. DS51217B-page 207

MPLAB®-CXX Compiler User’s Guide
W
Watch Dog Timer ..202
Watch Window ..202
Watchdog Timer (WDT)124
WDT ..202
while ..108, 109
WREG ...131, 133
WWW Address ...6

X
XOR, Bitwise (^) ..101
DS51217B-page 208  2000 Microchip Technology Inc.

Index
NOTES:
 2000 Microchip Technology Inc. DS51217B-page 209

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights
arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written
approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property
rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other
trademarks mentioned herein are the property of their respective companies.

DS51217B-page 210  2000 Microchip Technology Inc.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 2/00 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75248
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Beijing
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing 100027 PRC
Tel: 86-10-85282100 Fax: 86-10-85282104
Hong Kong
Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Shanghai
Microchip Technology
Unit B701, Far East International Plaza,
No. 317, Xianxia Road
Shanghai, 200051 P.R.C
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

ASIA/PACIFIC (continued)
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5858 Fax: 44-118 921-5835

01/21/00

WORLDWIDE SALES AND SERVICE

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

	Part 1 – Getting Started with MPLAB-CXX
	Chapter 1. MPLAB-CXX Preview
	1.1 Introduction
	1.2 Highlights
	1.3 What MPLAB-CXX Is
	1.4 What MPLAB-CXX Does
	1.5 ANSI Compatibility
	1.6 Tool Compatibility

	Chapter 2. MPLAB-CXX Installation
	2.1 Introduction
	2.2 Highlights
	2.3 Host Computer System Requirements
	2.4 Compiler Versions
	2.5 Installation

	Chapter 3. MPLAB-CXX Overview
	3.1 Introduction
	3.2 Highlights
	3.3 Overview of Compilers
	3.4 Compiler Input/Output Files
	3.5 Compiler Resource Requirements

	Chapter 4. Using MPLAB-CXX without MPLAB IDE
	4.1 Introduction
	4.2 Highlights
	4.3 MPLAB-CXX – Command Line Overview
	4.4 Using MPLAB-C17 on the Command Line
	4.5 Using MPLAB-C18 on the Command Line
	4.6 Going Forward

	Chapter 5. Using MPLAB-CXX with MPLAB IDE
	5.1 Introduction
	5.2 Highlights
	5.3 MPLAB-CXX – MPLAB Projects Overview
	5.4 Using MPLAB-C17 with MPLAB IDE – A Tutorial
	5.5 Using MPLAB-C18 with MPLAB IDE – A Tutorial
	5.6 Going Forward

	Part 2 – Using MPLAB-CXX
	Chapter 6. MPLAB-CXX and C
	6.1 Introduction
	6.2 Highlights
	6.3 C vs. MPLAB-CXX
	6.4 Components of a Basic MPLAB-CXX Program
	6.5 C Keywords

	Chapter 7. MPLAB-CXX Fundamentals
	7.1 Introduction
	7.2 Highlights
	7.3 Preprocessor Directives
	7.4 Comments
	7.5 Constants
	7.6 Variables
	7.7 Functions
	7.8 Operators
	7.9 Program Control Statements
	7.10 Arrays and Strings
	7.11 Pointers
	7.12 Structures and Unions

	Chapter 8. MPLAB-CXX and PICmicro MCU Programming
	8.1 Introduction
	8.2 Highlights
	8.3 PICmicro MCU Programming Specifics
	8.4 MPLAB-C17 and PICmicro MCU Programming
	8.5 MPLAB-C18 and PICmicro MCU Programming

	Chapter 9. Mixing Assembly Language and C Modules
	9.1 Introduction
	9.2 Highlights
	9.3 Calling Conventions
	9.4 Mixing Assembly Language and C Variables and Functions
	9.5 Calling an Assembly Function in C – MPLAB-C17
	9.6 Using the File Selection Registers (FSR’s)

	Chapter 10. ANSI Implementation Issues
	10.1 Introduction
	10.2 Highlights
	10.3 Identifiers
	10.4 Characters
	10.5 Integers
	10.6 Floating Point
	10.7 Arrays and Pointers
	10.8 Registers
	10.9 Structures and Unions
	10.10 Bit-Fields
	10.11 Enumerations
	10.12 Switch Statement
	10.13 Preprocessing Directives

	Chapter 11. Examples
	11.1 Introduction
	11.2 Highlights
	11.3 Overview of Example Files
	11.4 Example Details

	Appendices
	Appendix A. ASCII Character Set
	A.1 Introduction
	A.2 ASCII Character Set

	Appendix B. PIC17CXXX Instruction Set
	B.1 Introduction
	B.2 Highlights
	B.3 Key to PICmicro MCU Family Instruction Sets
	B.4 PIC17CXXX Instruction Set

	Appendix C. PIC18CXXX Instruction Set
	C.1 Introduction
	C.2 Highlights
	C.3 Key to Enhanced 16-Bit Core Instruction Set
	C.4 PIC18CXXX Instruction Set

	Appendix D. MPLAB-C17 Errors
	D.1 Introduction
	D.2 Highlights
	D.3 Errors
	D.4 Warnings

	Appendix E. MPLAB-C18 Errors
	E.1 Introduction
	E.2 Highlights
	E.3 Errors
	E.4 Warnings

	Appendix F. References
	F.1 Introduction
	F.2 Highlights
	F.3 C Standards Information
	F.4 General C Information

	Glossary
	Introduction
	Highlights
	Terms

	Index
	Worldwide Sales and Service

