
 1998 Microchip Technology Inc. DS51112B

MPLABC17
User’s Guide

Information contained in this publication regarding device applications and the like is intended through suggestion only
and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip
Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other
intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life
support systems is not authorized except with express written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any intellectual property rights.

The Microchip logo, name, PIC, PICMASTER, PICSTART and PRO MATE are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries. PICmicro, ICEPIC, microID, Smart Serial and MPLAB are
trademarks of Microchip in the U.S.A. and other countries.

© Microchip Technology Incorporated 1998.

fuzzyTECH is a registered trademark of Inform Software Corporation.

Intel is a registered trademark of Intel Corporation.

DOS and IBM PC/AT are registered trademark of International Business Machines Corporation.

MS-DOS, Windows and Excel are registered trademarks of Microsoft Corporation.

CompuServe is a registered trademark of CompuServe Incorporated.

DriveWay is a trademark of Aisys Intelligent Systems.

Microwire is a registered trademark of National Semiconductor Corporation.

SPI is a trademark of Motorola Corporation.

All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

MPLAB-C17 USER’S GUIDE
NOTES:
DS51112B  1998 Microchip Technology Inc.

M MPLAB-C17 USER’S GUIDE

Table of Contents
Chapter 1. About MPLAB-C17
Introduction .. 1
Highlights ... 1
ANSI Compatibility .. 1
System Requirements ... 1
About this Guide 2

Conventions Used in this Guide
Recommended Reading .. 3
Warranty Registration .. 4
Customer Support ... 4

Chapter 2. Getting Started with MPLAB-C17
Introduction .. 5
Highlights ... 5
Installing MPLAB-C17 5

Windows Environment 5
DOS Environment 5

Command Line Interface ... 5
Creating Your First MPLAB-C17 Project ... 7
Using Multiple Files in a Project .. 9
Making Projects in the MPLAB Integrated Development Environment ... 10

Introduction 10
Highlights 10
Making a Project with MPLAB-C17 11
Adding Pre-Compiled Object Files 15
 1998 Microchip Technology Inc. DS51112B-page i

MPLAB-C17 User’s Guide
Chapter 3. MPLAB-C17 Fundamentals
Introduction ..19
Highlights ...19
C Fundamentals ..19

Components of an MPLAB-C17 Program19
Comments ...20
C Keywords ...21
Constants 21

Preprocessor Directives..23
#define 23
#endif ..24
#error ..24
#if ..25
#ifdef ..25
#ifndef ..26
#include ...26
#line ..27
#pragma {code|udata|idata|romdata}

 [[name] [{{gpr | sfr} n} | {=address}]................................. 27
#pragma nocontext ...28
#pragma nosaveregs ..28
#pragma list ...28
#pragma nolist ...29
#undef ..29

Variables ..30
Basic Data Types ..30
Variable Declaration ..31
Storage Class (extern, static, volatile) ...33
Enumeration ..35
typedef 37

Functions ...37
Function Declarations ...37
Function Prototyping ...38
Passing Arguments to Functions ..39
Returning Values from Functions 39

Operators ...40
Arithmetic Operators ...40
Relational Operators ...41
Logical Operators ..41
DS51112B-page ii  1998 Microchip Technology Inc.

Table of Contents
Bitwise Operators 42
Assignment Operators .. 42
Increment and Decrement Operators ... 43
Conditional Operator ... 44
Precedence of Operators .. 44

Program Control Statements ... 45
if Statement ... 46
if-else Statements ... 46
for Statement .. 47
while Statement .. 47
do-while Statement ... 47
switch Statement .. 48
break Statement ... 49
continue Statement ... 50

Arrays and Strings ... 50
Arrays ... 50
Strings ... 51
Initializing Arrays ... 51

Pointers ... 54
Introduction to Pointers ... 55
Pointer Arithmetic ... 55
Passing Pointers to Functions .. 56

Structures and Unions ... 56
Introduction to Structures .. 57
Introduction to Unions 59
Nesting Structures 60
Bit-fields .. 61

Chapter 4. MPLAB-C17 and PICmicro™ MCU Programming
Introduction .. 63
Highlights ... 63
Processor Header and Assembly Definition Files 63

Software Stack... 66
C Startup Code ... 66
Interrupts ... 68
Internal Assembler .. 71
 1998 Microchip Technology Inc. DS51112B-page iii

MPLAB-C17 User’s Guide
Chapter 5. Using MPLAB-C17 with Other Microchip Tools 73
Introduction ..73
Highlights ...73

MPLAB IDE ...73
MPLAB-SIM Simulator ...74
PROCMD ..75

PICSTART Plus and PRO MATE II ...75

Chapter 6. Mixing Assembly Language and C Modules
Introduction ..77
Highlights ...77

C calling convention ..77
Mixing assembly language and C variables and functions78

Chapter 7. ANSI Implementation Issues
Introduction ..79
Highlights ...79
Identifiers ...79
Characters ...80
Integers ..80
Floating Point 80
Arrays and Pointers ...81
Registers ..81
Structures and Unions ...81
Bit-Fields ..82
Enumerations ...82
Switch statement ...82
Preprocessing directives ..82
DS51112B-page iv  1998 Microchip Technology Inc.

Table of Contents
Chapter 8. Libraries
1.0 Introduction ... 83

1.1 Highlights ... 83
1.2 MPLAB-C17 Library Functions and

Pre-Compiled Object Files Overview 83
1.3 Pre-Compiled Math Libraries ... 84

2.0 Hardware Peripheral Library ... 86
2.1 A/D Convertor Functions ... 86
2.2 Input Capture Functions .. 91
2.3 I2C Functions .. 95
2.4 Interrupt Functions .. 105
2.5 I/O Port Functions ... 106
2.6 Microwire‚ Functions .. 109
2.7 Pulse Width Modulation Functions 114
2.8 Reset Functions ... 117
2.9 i SPI™ Functions ... 121
2.10 Timer Functions .. 127
2.11 USART Functions ... 132

3.0 Software Peripheral Library .. 139
3.1 External LCD Functions .. 139
3.2 Software I2C Functions ... 147
3.3 Software SPI Functions ... 153
3.4 Software UART Functions ... 157

4.0 General Software Library .. 161
4.1 Character Classification Functions 161
4.2 Number and Text Conversion Functions 165
4.3 Delay Functions .. 171
4.4 Memory and String Manipulation Functions 174

5.0 Math Library ... 178
5.1 32-bit Integer and 32-bit Floating

Point Math Libraries 178
 1998 Microchip Technology Inc. DS51112B-page v

MPLAB-C17 User’s Guide
Appendix A. Porting Code from MPLAB-C to MPLAB-C17
Introduction ..181

External Differences ..181
Internal Differences ...181

Porting Code ..182
Data Types ..182

bits data type ...183
Variable Allocation ...183

General ...183
Using @ to allocate variables at absolute locations183
Using @ to allocate local variables in

global scratch locations no longer needed184
Function arguments using shared global variables185
Use #PRAGMA IDATA, UDATA, ROMDATA

to allocate specific addresses for data186
Code Allocation ..187

Allocating code at a specific address using
ORG or #pragma memory ROM187

Access to pre-loaded code in ROM 187
Header Files and Libraries ...188

Header file inclusion 188
Libraries 188
The use of const ..189
Inline assembler support ...189
Switch..case support 190

#pragma directives ..192
Porting Code from MPLAB-C to MPLAB-C17 Checksheet193
 Example Code Ported from MPLAB-C to MPLAB-C17194

MPLAB-C Portion of Header File Example194
MPLAB-C17 Portion of Header File Example195
MPLAB-C Source File Example ..196
MPLAB-C17 Source File Example ..197

Appendix B. ASCII Character Set
Introduction ..199
ASCII Character Set ..199
DS51112B-page vi  1998 Microchip Technology Inc.

Table of Contents
Appendix C. Detailed MPLAB-C17 Example
Introduction .. 201
Highlights ... 201
Flashing LEDs ... 201
Linker File to Link Flashing LEDs Example ... 207

Appendix D. PIC17CXXX Instruction Set
Introduction .. 209
Highlights ... 209
PIC17CXXX Instruction Set ... 209
 PIC17CXXX Special Control Instructions 212

Appendix E. References
Introduction .. 213
Highlights ... 213
References .. 213

Appendix F. On-Line Support
Introduction .. 215
Connecting to the Microchip Internet Web Site 215
Software Releases .. 215

Intermediate Release 216
Production Release 216

Systems Information and Upgrade Hot Line ... 216

Index
Index ... 219

Worldwide Sales and Service
Sales Office Listings... 224
 1998 Microchip Technology Inc. DS51112B-page vii

MPLAB-C17 User’s Guide
DS51112B-page viii  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Chapter 1. About MPLAB-C17
Introduction
This chapter describes the MPLAB-C17 ANSI-based C Compiler and
suggests recommended reading.

Highlights
This chapter covers the following topics:

• ANSI Compatibility

• System Requirements

• About this Guide

• Recommended Reading

• Warranty Registration

• Customer Support

ANSI Compatibility
MPLAB-C17 is a free-standing ANSI C implementation except where
specifically noted elsewhere in this User’s Guide. The compiler deviates from
the ANSI standard only where the standard and efficient PICmicro MCU
support conflict.

System Requirements
MPLAB-C17 requires:

• PC compatible machine: 386 or higher.

• MS-DOS/PC-DOS version 5.0 or greater or
Windows 95 or Windows NT

Since MPLAB-C17 is integrated with the MPLAB Integrated Development
Environment, it is recommended that you install the current version of MPLAB
software (MPLAB.EXE) on a host computer having the additional minimum
configuration:

• VGA required. Super VGA recommended

• Microsoft Windows version 3.1 or greater operating in
386 enhanced mode

• 4 MB of Memory, 16 MB Recommended

• 8 MB of Hard Disk Space, 20 MB Recommended

• Mouse or other pointing device
1998 Microchip Technology Inc. DS51112B - page 1

MPLAB-C17 USER’S GUIDE
About this Guide
This document describes how to use MPLAB-C17 to write C code for PICmicro
microcontroller applications. For a detailed discussion about basic MPLAB
functions, refer to the MPLAB User’s Guide, Document Number DS51025.

The User’s Guide layout is as follows:

MPLAB-C17 Preview - describes the benefits of using MPLAB-C17 to write C
code for PICmicro microcontroller applications.

Chapter 1: About MPLAB-C17 - describes MPLAB-C17 ANSI-based C
Compiler and suggests recommended reading.

Chapter 2: Getting Started with MPLAB-C17 - discusses how to use
MPLAB-C17 with the MPLAB IDE and as a stand-alone compiler.

Chapter 3: MPLAB-C17 Fundamentals - describes the MPLAB-C17
programming language including functions, statements, operators, variables,
and other elements.

Chapter 4: MPLAB-C17 and PICmicro Programming -

Chapter 5: Using MPLAB-C17 with Other Tools - describes how to use
MPLAB-C17 with Microchip development tools.

Chapter 6: Mixing C with Assembly Language Modules - provides
guidelines to using C with MPASM assembly language modules.

Chapter 7: ANSI Implementation Issues - details MPLAB-C17 specific
parameters described as implementation defined in the ANSI standard.

Chapter 8: Libraries - includes Hardware Peripheral, Software Peripheral
and General Software libraries.

Appendix A: Migrating from MPLAB-C to MPLAB-C17 - provides
guidelines for migrating from MPLAB-C to MPLAB-C17.

Appendix B: ASCII Character Set - contains the ASCII character set.

Appendix C: Detailed MPLAB-C17 Examples - gives examples of actual
working source code with comments included.

Appendix D: PIC17CXXX Instruction Set - gives the instruction set for the
PIC17CXXX device family.

Appendix E: On-Line Support - Information on Microchip’s electronic
support services.

Appendix F: References - gives references that may be helpful in
programming with MPLAB-C17.

Worldwide Sales and Service - gives the address, telephone and fax number
for Microchip Technology Inc. sales and service locations throughout the
world.
DS51112B - page 2  1998 Microchip Technology Inc.

Chapter 1. About MPLAB-C17
Conventions Used in this Guide
This User’s Guide follows these documentation conventions:

Recommended Reading
README.MCC For the latest information on using MPLAB-C17, read the
README.MCC file (an ASCII text file) included with the MPLAB-C17 software.
README.MCC contains update information that may not be included in the
MPLAB-C17 User’s Guide.

PICmicro Microcontroller Data Book Contains comprehensive data sheets
for Microchip PICmicro microcontroller devices available at print time.
Document Number DS00158, Microchip Technology Inc., Chandler, AZ.

Embedded Control Handbook Contains a wealth of information about
microcontroller applications. Document Number DS00092, Microchip
Technology Inc., Chandler, AZ. The application notes described in this User’s
Guide are also available from the Microchip Internet Home Page. See
Appendix E: On Line Support, for more information.

MPLAB User’s Guide Comprehensive guide that describes installation and
features of Microchip’s MPLAB Integrated Development Environment, as well
as the editor and simulator functions in the MPLAB environment. Document
Number DS30421, Microchip Technology Inc., Chandler AZ.

MPASM User’s Guide with MPLINK & MPLIB Describes how to use
Microchip Universal PICmicro Microcontroller Assembler (MPASM), the Linker
and Librarian (MPLINK & MPLIB). Document Number DS33014, Microchip
Technology Inc., Chandler, AZ.

Table 1: Documentation Conventions

Character Represents

Angle Brackets (< >) Delimiters for special keys or values:
<TAB>, <ESC>, <symbol> etc.

Pipe Character (|) Choice of mutually exclusive arguments;
an OR selection

Square Brackets ([]) Optional argument (unless specified
otherwise)

Courier Font User entered code or sample code

Underlined, Italics Text with
Right Arrow >

Defines a menu selection from the menu
bar: File > Save

0xnnn 0xnnn represents a hexadecimal number
where n is a hexadecimal digit

In-text Bold Characters Designates a button such as OK
 1998 Microchip Technology Inc. DS51112B - page 3

MPLAB-C17 USER’S GUIDE
Midrange Architectural and Peripheral Module Reference

PIC17C4X Data Sheet Document Number DS30412, Microchip Technology
Inc., Chandler, AZ.

PIC17C75X Data Sheet Document Number DS30264, Microchip Technology
Inc., Chandler, AZ.

All of the above documents are available from your local sales office or your
Microchip Field Application Engineer (FAE).

This User’s Guide assumes that you are familiar with Microsoft Windows 3.x
software systems. Many excellent references exist for this software program,
and should be consulted for general operation of Windows.

Warranty Registration
Sending in your Warranty Registration Card ensures that you receive new
product updates and notification of interim software releases that may become
available.

Customer Support
Microchip endeavors to provide the best service and responsiveness possible
to its customers. Technical support questions should first be directed to your
distributor and representative, local sales office, Field Application Engineer
(FAE), or Corporate Applications Engineer (CAE).

The Microchip Internet Home Page can provide you with technical information,
application notes, and promotional news on Microchip products and
technology. The Microchip Web address is http://www.microchip.com.
DS51112B - page 4  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Chapter 2. Getting Started with MPLAB-C17
Introduction
This chapter discusses how to use MPLAB-C17 as a stand-alone compiler or
as a fully integrated tool in the MPLAB Integrated Development Environment.

Highlights
Getting Started with MPLAB-C17 includes:

• Installing MPLAB-C17

• MPLAB-C17 Project

• MPLAB-C17 Command Line Interface

• Using Multiple Files in a Project

• Making projects in the MPLAB Integrated Development Environment

Installing MPLAB-C17

Windows Environment
To install MPLAB-C17, enter Windows, run the file MCCxxx.EXE on the
CD-ROM, and follow the prompts. The install program creates a directory
tree with five subdirectories BIN, H, LIB, SRC and examples. Note that
MPLAB-C17 will create an environment variable, MCC_INCLUDE in your
AUTOEXEC.BAT file. The MCC_INCLUDE environment variable specifies the
directories to search for included files. For more information, refer to the
#include directive. The install program will also add the compiler BIN directory
to your PATH so you can run the compiler from any other directory.

DOS Environment
To install MPLAB-C17 in a DOS environment, run the MCCxxx.EXE file on the
CD-ROM, and follow the prompts.

Command Line Interface
MPLAB-C17 can be invoked directly from the command line, independent of
the MPLAB IED. The command line interface of MPLAB-C17 is as follows:

MCC17 [options] filename

where

filename is the name of the file being compiled, and

options is zero or more command line options.
 1998 Microchip Technology Inc. DS51112B - page 5

MPLAB-C17 USER’S GUIDE
For example, if the file TEST.C exists in the current directory, it can be
compiled with the following command:

MCC17 -P=17C756 TEST.C

When no command line parameters are specified, or with ’-?’ or ’-h’, a help
screen is displayed describing the command line usage and options.

Options to MPLABC-17 can be specified with either ’/’ or ’-’.

Table 2:

Option Default Description

?,H N/A Help screen

Ipath N/A Add the semi-colon delimited path, path, to the
search path for include files.

FO=filename N/A Use filename as the name of the output object
file

FE=filename N/A Use filename as the name of the output error file

O N/A Optimize for smallest code Equivalent to:
-Or -Oc -Op

Oc[+|-] Enabled With this optimization on, the compiler will
intelligently determine the level of stack support
to include for each function.

Or[+|-] Enabled With this optimization on, the compiler will run an
optimization pass to remove extraneous bank
select and MOVLW instructions.

Ol[+|-] Enabled When this optimization is on, the default storage
class for local variables and function parameters
is ’static’ .

Op[+|-] Disable When this optimization in on, far pointers to
RAM are assumed to not point to SFRs. This
simplifies setting the bank for access.

M{s|m|c|l} S Select the memory model
s:small model (near ram, near rom)
m:medium model (near ram, far rom)
c:compact model (far ram, near rom)
l: large model (far ram, far rom)

P=processor 17C44 Select to compile for the PIC17CXX processor

Dmacro[=text] N/A Define a macro. Equivalent to placing the
following at the head of the file:
#define macro
text
DS51112B - page 6  1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17
Creating Your First MPLAB-C17 Project
This section demonstrates how to compile and link a few small projects. It
starts with a simple project with only one C source file. For the purpose of this
discussion it is assumed the compiler is installed on your C: drive in a directory
called MCC. Therefore the following will apply:

Include directory: C:\MCC\H

Library directory: C:\MCC\LIB

Executable directory: C:\MCC\BIN

The include directory is where the compiler stores all its system header files.
The MCC_INCLUDE environment variable should point to that directory (from
the DOS command prompt, type "set" to check this). The library directory is
where the libraries and startup code files reside. The executable directory is
where the compiler programs are located.

The following is a very simple program that adds two numbers.

1. Type the following program and save it as EX1.C in a directory called
(for example) C:\PROJ0.

#include <P17C756.H>

unsigned char Add(unsigned char a, unsigned char b);

char x, y, z;

void main()

{

 x = 2;

 y = 5;

 z = Add(x,y);

}

unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

W{1|2|3} 2 Set compiler message level.
1 display errors only
2 display errors and warnings
3 display errors, warnings, and messages

NWn N/A Suppress message n, where n is the message
number. Error messages cannot be suppressed.

Q N/A Suppress the sign-on banner

Table 2:

Option Default Description

Example Files
There are a number of
examples in the folder
MCC\EXAMPLES.
Execution of the batch file
should compile each
example after MPLAB-C17
is set up. You can use
these files as “cookbooks”
to begin development of
your application.
 1998 Microchip Technology Inc. DS51112B - page 7

MPLAB-C17 USER’S GUIDE
The first line of the program includes the header file P17C756.H which
provides definitions for all special function registers on that part. For
more information on header files see the section "MPLAB-C17
Specifics” in chapter 4.

2. Compile the program by typing the following command:

mcc ex1.c /P=17c756

This tells the compiler to compile the program for the PIC17C756.
The compiler generates two files by default. EX1.O is the object file that
the linker will use to generate (among other files) the executable
(.HEX) file to program your PICmicro. The second file is EX1.ERR which
is the error file containing any error messages and/or warnings that the
compiler generates during compilation. These messages are also
displayed on the screen. The EX1 program will produce a warning since
the function main() was called without a prototype. To suppress the
warning add the /NW1200 switch on the command line.

3. The C object file must be linked with the compiler startup code to work
MPLINK. When using MPLINK, use the linker script for the desired
target processor. Copy the linker script from the MPLAB directory
into your project directory and customize as needed. Copy the script
as follows:

copy c:\mplab\17c756.lkr

Now the linker script is in the current directory.

4. The startup code is described in detail in the section “MPLAB-C17
Specifics” in chapter 4. Link the startup code file, COS17.0, with the
project. Link the processor definition file P17C756.O to reference any
special function registers and idata17.0, which is required for
initialized data. Here is the linker command to produce the executable:

mplink -K . c0s17.o idata17.o p17c756.o ex1.o -L
c:\mcc\lib -m exl.map -o exl.out 17c756.lkr

(Although shown on two lines here, this should be on one line when
executed.) The first option tells the linker that the linker script is in the
current directory. The object files to be linked together are c0s17.o,
idata17.o, p17c756.o, and ex1.o. The library directory where the
startup object files are located is specified after the -L directive. A map
file called ’ex1.map’ is generated with the -m directive. The -o directive
tells the linker to generate an executable called ex1.cof. The linker
script to use for this link session is 17c756.lkr.

The linker produces the files ex1.out, ex1.cod, and ex1.hex. The
.COD file is required by MPLAB for source-level debugging. The .HEX
file is used by device programmers such as PRO MATE and PICSTART
Plus to program a PICmicro MCU device.
DS51112B - page 8  1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17
Using Multiple Files in a Project
Move the Add() function into a file called Add.C to demonstrate the use of
multiple files in a project.

/* EX1.C */
#include <P17C756.H>

unsigned char Add(unsigned char a, unsigned char b);

char x, y, z;

void main()
{

x = 2;
y = 5;
z = Add(x,y);

}

/* ADD.C */
#include <p17c756.h>

unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

To compile these two files, the command lines would be:

mcc ex1.c /P=17c756
mcc add.c /P=17c756

Then link the resulting object files with the startup code as follows:

mplink -K . c0s17.o idata17.o p17c756.o ex1.o add.o -L
c:\mcc\lib -m ex1.map -o ex1.out 17c756.lkr

(This should be entered on one line.) This will produce the same files
as before.
 1998 Microchip Technology Inc. DS51112B - page 9

MPLAB-C17 USER’S GUIDE
Making Projects in the MPLAB Integrated Development
Environment

Introduction
The project manager in MPLAB v3.40 has been extended to support multiple
files. Previously established projects from MPLAB v3.31 and earlier will be
converted automatically by MPLAB v3.40 when they are opened. Converted
projects cannot be re-opened from previous versions of MPLAB.

Read the on-line help with MPLAB for further information on making projects
with MPASM or other compilers.

Highlights
In this tutorial you will learn these functions of MPLAB Projects:

• Making a Project with MPLAB-C17

• New Project

• Set Language Tool Options

• Add Node to Project

• Make Project

• Install Language Tool

• Project Window

• Summary of Setting Up Projects
DS51112B - page 10  1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17
Making a Project with MPLAB-C17
This tutorial will show you how to use MPLAB-C17 with projects in MPLAB to
build applications.

Set Development Mode

Set Options>Development Mode to MPLAB-SIM simulator and select the
17C756 PICmicro for this example.

Figure 2.1:

Install MPLAB-17 Language Tool

Make certain that MPLAB-C17 is installed correctly in MPLAB. The “Install
Language Tool” dialog should look like this:

Figure 2.2:

If the executable is not shown in the window, use the Browse button to point to
MCC17.EXE on your system.
 1998 Microchip Technology Inc. DS51112B - page 11

MPLAB-C17 USER’S GUIDE
New Project

Select Project>New Project and select a directory for a new project, then type
in its name. Name it AD.PJT in the MCC\EXAMPLES\AD directory.

Figure 2.3:

After setting the project name, the Edit Project dialog will be shown.
DS51112B - page 12  1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17
Set Project Options

Select the name of the project in the “Project Files” dialog of the New Project
Dialog and press “Node Properties.”

Figure 2.4:

Set the language tool to “MPLINK.”
 1998 Microchip Technology Inc. DS51112B - page 13

MPLAB-C17 USER’S GUIDE
Add First Source File

To determine which nodes to set up from this tutorial, look at AD.BAT. This is
the batch file that will compile this example in DOS and is in the
\MCC\EXAMPLES\AD directory. Use this data to add all required nodes. Here
is a listing of the batch file:

Figure 2.5:

The nodes required are AD.C, which must be compiled, and the following
object files which need to be linked: C0S17.O, IDATA17.O, INT756L.O,
P17C756.O and the linker script, P17C756L.LKR.

You can return to setting up the project from the Project>Edit Project menu
selection.

Select “Add Node” from the Edit Project Dialog. Add the source file, AD.C from
the \MCC\EXAMPLES\AD directory.

Figure 2.6:

When the file name is shown and selected in the Add Node dialog, press
“Node Properties.”

Set up this dialog this way:

• Set the “Language Tool” to MPLAB-C17.

• Check the “Processor” check box.

• Go to the “Data” column and enter “17C756.”
DS51112B - page 14  1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17
Adding Pre-Compiled Object Files
Use the “Add Node” button from the Edit Project dialog to add the precompiled
object files from the MPLAB-C17 library in \MCC\LIB. Add C0S17.O as the first
node. Options cannot be set on precompiled object files.

Figure 2.7:

Add the rest of the nodes that were listed in the batch file, IDATA17.O,
INT756L.O and P17C756.O using the Add Node button from the Edit Project
Dialog.

Note: “Object filename” is set to “AD.O” automatically.
 1998 Microchip Technology Inc. DS51112B - page 15

MPLAB-C17 USER’S GUIDE
Select Linker Script

Select a linker script and add it as a node. Use the linker script in the
MCC\EXAMPLES\AD directory. Options can not be set on a linker script.

Figure 2.8:

 Press OK on the New Project Dialog.

The Edit Project window should now look like this:

Figure 2.9:
DS51112B - page 16  1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17
Make Project

Select Project>Make Project from the menu to see the command lines sent to
MPLAB-C17 and MPLINK to build the application. It should look like this:

Figure 2.10:

Troubleshooting

If this did not work, check these items:

Select Project>Install Language Tool... and check that MPLAB-C17 and
MPLINK are pointed to the MCC17.EXE and MPLINK.EXE executables.

Figure 2.11:

Figure 2.12:
 1998 Microchip Technology Inc. DS51112B - page 17

MPLAB-C17 USER’S GUIDE
Project Window

Open the Window>Project Window. It should look like this:

Figure 2.13:

Summary of Setting Up Projects

Here is a quick list of the steps to set up a new project as described above:

• Create new project with Project>NewProject

• Set project Node Properties to MPLINK

• Add Source files, setting language tool to MPLAB-C17 or MPASM

• Set Processor in Node Properties of each source file

• For MPASM source files, set to generate object file

• Add Pre-Compiled Nodes (.O files and .LIB files)

• Add Linker Script
DS51112B - page 18  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Chapter 3. MPLAB-C17 Fundamentals
Introduction
MPLAB-C17 Fundamentals describes the C programming language, including
functions, statements, expressions and declarations.

Highlights
This chapter covers the following topics:

• C Fundamentals

• Preprocessor Directives

• Variables

• Arrays and Strings

• Pointers

• Structures and Unions

• Functions

• Operators

• Program Control Statements

C Fundamentals
This section is intended as a reference for programmers with a basic
understanding of C programming. Various points are highlighted for users who
are not experienced with programming microcontrollers in C, and deviations
from ANSI C are described.

Programmers who are unfamiliar with the C language can refer to Appendix E
for a list of C programming references.

This section discusses the following topics:

• Components of an MPLAB-C17 Program

• Comments

• C Keywords

• Constants

Components of an MPLAB-C17 Program
A C program is a collection of declarations, statements, comments, and
preprocessor directives that typically do the following:

• Declare data structures
 1998 Microchip Technology Inc. DS51112B - page 19

MPLAB-C17 USER’S GUIDE
• Allocate data space

• Evaluate expressions

• Perform program control operations

• Control PICmicro MCU peripherals

The following is a shell for an MPLAB-C17 source file:

#include <P17CXX.h>

void main()

{

/* User source code here */

}

The first line includes the processor definition file. This file defines processor-
specific information such as special function registers. Any user-defined
function prototypes should follow this line. Finally, the function main is defined,
with the appropriate source code between the braces.

Comments

Description

Comments are used to document the meaning and operation of the source
code. The compiler ignores all comments. A comment can be placed
anywhere in a program where white space can occur. Comments can be many
lines long and may also be used to temporarily remove a line of code.
Comments cannot be nested.

Syntax

'/*' begins a comment, and '*/' terminates a comment.

'//' comments to the end of the line

Example

/* This is a block comment.

 It can have multiple lines

 between the comment delimiters.

*/

// This is a C++ style comment

P17CXX.H includes proper
processor specific header
file based on the processor
selected on the command
line.
DS51112B - page 20  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
C Keywords

Description

The ANSI C standard defines 32 keywords for use in the C language. Typically,
C compilers add keywords that take advantage of the processor’s architecture.
The following table shows the ANSI C and the MPLAB-C17 keywords.

Additional MPLAB-C17 keywords are shown in bold.

*float, double, and long are not supported by MPLAB-C17

Constants

Description

A constant in C is any literal number, single character, or character string.

Syntax

Numeric Constants

By default, literal numbers are evaluated in decimal. Hexadecimal values can
be specified by preceding the number by 0x. Octal values can be specified by
preceding the number by 0 (zero). Binary values can be specified by
preceding the number by 0b.

Character Constants

Character constants are denoted by a single character enclosed by single
quotes. ANSI C escape sequences, as shown by the following table, are
treated as a single character.

_asm double* long* struct

_endasm else near switch

auto enum ram typedef

break extern register union

case far return unsigned

char float* rom void

const for short volatile

continue goto signed while

default if sizeof

do int static
 1998 Microchip Technology Inc. DS51112B - page 21

MPLAB-C17 USER’S GUIDE
String Constants

String constants are denoted by zero or more characters (including ANSI C
escape sequences) enclosed in double quotes. A string constant has an
implied null (zero) value after the last character.

Example

Numeric Constants

// Each of the following evaluates to a

// decimal twelve

12 // Decimal

0x0C // Hexadecimal

014 // Octal

0b1100 // Binary

Character Constants

’a’ // Lowercase ’a’

’\n’ // New Line

’\0’ // Zero or null character

Table 3.1: ANSI C Escape Sequences

Escape
Character

Description
Hex

Value

\a Bell (alert) character 07

\b Backspace character 08

\f Form feed character 0C

\n New line character 0A

\r Carriage return character 0D

\t Horizontal tab character 09

\v Vertical tab character 0B

\\ Backslash 5C

\? Question mark character 3F

\’ Single quote (apostrophe) 27

\" Double quote character 22

\0OO Octal number (zero, Octal digit, Octal digit)

\xHH Hexadecimal number
DS51112B - page 22  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
String Constants

"Hello World"

Preprocessor Directives
Preprocessor directives give instructions on how to compile the source
code. Preprocessor directives generally do not translate directly into
executable code.

Preprocessor directives begin with the ’#’ character. This section discusses the
following preprocessor directives:

• #define

• #else

• #elif

• #endif

• #error

• #if

• #ifdef

• #ifndef

• #include

• #line

• #pragma

• #undef

#define

Description

The #define directive defines string constants that are substituted into a source
line before the source line is evaluated. These can improve source code
readability and maintainability. Common uses are to define constants that are
used in many places and provide short cuts to more complex expressions.

Syntax

define-directive:

#define identifier pp-token-list new-line
#define identifier lparen parameter-list) pp-token-list
 new-line
#define identifier lparen) pp-token-list new-line

lparen:
(1

1 No whitespace may separate1paren and the macro name.
 1998 Microchip Technology Inc. DS51112B - page 23

MPLAB-C17 USER’S GUIDE
parameter-list:
identifier
parameter-list , identifier

 Example

#define MAX_COUNT 100

#define VERSION "v1.0"

#define PERIMETER(x, y) 2*x + 2*y

#define INCREMENTALL x++;\

y++; \

z++;

#else

Description

Refer to #if, #ifdef, and #ifndef for a description of the #else directive.

#elif

Description

Refer to #if, #ifdef, and #ifndef for a description of the #elif directive.

#endif

Description

Refer to #if, #ifdef, and #ifndef for a description of the #endif directive.

#error

Description

The #error directive generates a user-defined error message at compile time.
One use of #error is to detect cases where the source code generates
constants that are out of range. No code is generated as a result of using this
directive.

Syntax

error-directive:
#error pp-token-list new-line
DS51112B - page 24  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
Example

#define MAX_COUNT 100

#define ELEMENT_SIZE 3

#if (MAX_COUNT * ELEMENT_SIZE) > 256

 #error "Data size too large."

#endif

#if

Description

The #if directive is useful for conditionally compiling code based on the
evaluation of an expression. #if must be terminated by #endif. The #elif is used
to test a new expression. The directive #else is also available to provide an
alternative compilation. The defined() operator acts similarly to #ifdef when
combined with #if.

Syntax

if-directive:

#if constant-expression new-line

Example

#define MAX_COUNT 100

#define ELEMENT_SIZE 3

#if defined(MAX_COUNT) && defined(ELEMENT_SIZE)

#if (MAX_COUNT * ELEMENT_SIZE) > 256

 #error "Data size too large."

#else

 #define DATA_SIZE MAX_COUNT * ELEMENT_SIZE

#endif

#endif

#ifdef

Description

The #ifdef directive is similar to the #if directive, except that instead of
evaluating an expression, it checks to see if the specified symbol has been
defined. Like the #if directive, #ifdef must be terminated by #endif, and can
optionally be used with #else.
 1998 Microchip Technology Inc. DS51112B - page 25

MPLAB-C17 USER’S GUIDE
Syntax

ifdef-directive:

#ifdef identifier new-line

Example

#ifdef DEBUG

 Count = MAX_COUNT;

#endif

#ifndef

Description

The #ifndef directive is similar to the #ifdef directive, except that it checks to
see if the specified symbol has not been defined. Like the #if directive, #ifndef
must be terminated by #endif, and can optionally be used with #else.

Syntax

ifndef-directive:

#ifndef identifier new-line

Example

#ifndef DEBUG

#define Debug(x)

#else

#define Debug(x) x

#endif

#include

Description

#include inserts the full text from another file at this point in the source code.
The inserted file may contain any number of valid C statements.
DS51112B - page 26  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
Syntax

include-directive:

#include " filename " new-line
#include < filename > new-line
#include pp-token-list new-line

When <filename> is used, MPLAB-C17 looks for the file in the directory
specified by the environment variable MCC_INCLUDE or in the command line
parameter ’/i’.

When "filename" is used, MPLAB-C17 looks for the file in the current
directory and then in the directory specified by MCC_INCLUDE.

Example

#include <p17cxx.h>

#include "header.h"

#line

Description

The line directive causes the compiler to renumber the source text so that the
following line has the specified line number.

Syntax

line-directive:

#line digit-sequence new-line
#line digit-sequence " filename " new-line
#line pp-token-list new-line

Example

#line 34 // This line is line 34

#line 55 "main.c" // This line is line 55 of main.c

#pragma {code|udata|idata|romdata} [[name] [{{gpr | sfr}
n} | {=address}]

Description

These directives change the section in which a type of data is allocated.
Specifying an address for a new section will create an absolute section at that
location and begin allocating data of the specified type into the new section.
Issuing a section pragma without specifying a name for the section causes the
compiler to revert to allocating data into the default section for that section
type. Issuing a section pragma with a section name which is the same as a
section name earlier in the source code file causes the compiler to resume
 1998 Microchip Technology Inc. DS51112B - page 27

MPLAB-C17 USER’S GUIDE
allocation of the type of data into that section. Specifying an address twice for
the same section name is an error. Specifying ’gpr | sfr nn’ is equivalent to
adding a ’#pragma varlocate gpr | sfr n’ for each variable contained inthe
section.

Syntax

#pragma code mycode // changes the allocation of code to a new
 // section called ’mycode’

#pragma romdata // changes the allocation of code to the
 // default romdata section

#pragma nocontext

Description

For the next function defined after the #pragma nocontext directive, the
compiler will not generate prologue or epilogue code to set up the stack frame
or save and restore working register contents. Use this directive to optimize a
function that has no return value, no arguments and no local variables.

Syntax

#pragma nocontext

#pragma nosaveregs

Description

For the next function defined after the #pragma nosaveregs directive, the
compiler will not generate prologue or epilogue code to save and restore
working register contents. Use this directive to optimize a function with no
return value.

Syntax

#pragma nosaveregs

#pragma list

Description

The #pragma list directive turns on list file generation for all code following the
directive.

Syntax

#pragma list
DS51112B - page 28  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
#pragma nolist

Description

The #pragma nolist directive turns off list file generation for all code following
the directive.

Syntax

#pragma nolist

#undef

Description

The #undef directive undefines a string constant. After a string constant has
been undefined, any reference to it generates an error unless the string
constant is redefined.

Syntax

undef-directive:

#undef identifier new-line

Example

#define MAX_COUNT 10

.

.

.

#undef MAX_COUNT

#define MAX_COUNT 20

#pragma varlocate {gpr | sfr} n

The varlocate pragma tells the compiler in which bank and in what address
range (GPR or SFR) a variable will be located at link time, enabling the
compiler to perform more efficient bank switching.

varlocate specifications are not enforced by the compiler at link time. The
sections which contain the variables should be assigned explicitly in the linker
script, or via absolute sections in the modules(s) where they are defined, into
the correct bank.
 1998 Microchip Technology Inc. DS51112B - page 29

MPLAB-C17 USER’S GUIDE
Variables
This section examines how C uses variables to store data.

The topics discussed in this section are:

• Basic Data Types

• Variable Declaration

• Enumeration

• Typedef

Basic Data Types

Description

• void

• char

• int

• float - not supported in MPLAB-C17

• double - not supported in MPLAB-C17

The following modifiers are also allowed:

Table 3.2: Data Type Modifiers

Modifier
Applicable
Data Type

Use

auto any Variable exists only during the execution of the
block in which it was defined.

const any Declares data that will not be modified.

far any Declares paged/banked data

extern any Declares data that is allocated elsewhere

long int Not supported

near any Declares non-paged/non-banked data

register any No effect in MPLAB-C17

short int Declares an 16-bit integer.

signed char, int, long* Declares a signed variable.

static any Variable is retained unchanged between
executions of the defining block.

unsigned char, int, long* Declares an unsigned variable.
DS51112B - page 30  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
The following table shows the size and range of common data types as
implemented by MPLAB-C17.

* these types are not supported in MPLAB-C17

C represents all negative numbers in the two’s complement format.

Integral data types are char, int, long of all sizes, and enumerations.

Variable Declaration

Description

A variable is a name for a specific memory location. In C, all variables must be
declared before they are used. A variable’s declaration defines the data type
and the size of the variable.

Variables can be declared in two places: inside a function or outside all
functions. The variables are called local and global, respectively.

Syntax

declaration:
declaration-specifiers declarator-list ;

declarator-list:
declarator
declarator-list , declarator

Table 3.3: Data Type Ranges

Type Bit Width Range

void N/A none

char 8 -128 to 127

unsigned char 8 0 to 255

int 16 -32,768 to 32,767

unsigned int 16 0 to 65,535

short 16 -32,768 to 32,767

unsigned short 16 0 to 65,535

long* 32 -2,147,483,648 to
2,147,483,647

unsigned long* 32 0 to 4,294,967,295

float* 32 1.7549435E-38 to
6.80564693E+38

double* 32 1.7549435E-38 to
6.80564693E+38
 1998 Microchip Technology Inc. DS51112B - page 31

MPLAB-C17 USER’S GUIDE
declaration-specifiers:
declaration-specifier
declaration-specifiers declaration-specifier

declaration-specifier:
type-name
extern
static
ram
rom
const
volatile
near
far

type-name:
basic-type-name
tag-type-name

basic-type-name:
int
short
char
unsigned
long
float
double

tag-type-name:
enumerated-type-name
struct-or-union-type-name

Local variables (declared inside a function or a block of code) can only be used
by statements within the block where they are declared. The value of a local
variable cannot be accessed by functions or statements outside of the
function. The most important thing to remember about local variables is that
they are created upon entry into the block and destroyed when the block is
exited. Local variables must be declared before executable statements.

Global variables can be used by all of the functions in the program. Global
variables must be declared before any functions that use them. Most
importantly, global variables are not destroyed until the execution of the
program is complete.

Example

#include <p17cxx.h>
unsigned char GlobalCount;

void f2()
{

unsigned char count;
for(count=0;count<10;count++)

GlobalCount++;
}

DS51112B - page 32  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
void f1()
{

unsigned char count;
for(count=0;count<10;count++)

 {
unsigned char temp;

f2();
temp = count *2;

}
}

void main(void)
{

GlobalCount = 0;
f1();

}

This program increments GlobalCount to 100. The operation of the program is
not affected adversely by the variable named count located in both functions.
The variable ’temp’ is allocated inside the for() loop and deallocated once the
loop exits.

Storage Class (extern, static, volatile)

static/extern/volatile

’static’ and ’extern’ behave in the ANSI specified manner. ’static’ used with a
local variable declaration inside of a block causes the variable to maintain its
value between entrances to the block. ’static’ used for a global object (variable
or function) declaration outside of all functions limits the scope of the object to
the file containing the definition.

’extern’ does not allocate space for its object. The compiler assumes the
definition appears in an external file. This external reference is resolved at
link time.

A global object has external linkage by default.

Example

In file1.c:

static unsigned char a;
 unsigned char b;
void main(void)
{

a = 1;
b = 2;
a = new_function();
return a;

}

In file2.c:
 1998 Microchip Technology Inc. DS51112B - page 33

MPLAB-C17 USER’S GUIDE
extern int b;
int new_function(void)
{

int c;

c = b;/* this will not produce an error, because
 b is extern by default in file1.c and

declared extern in file2.c */
return a;/*this will produce an undefined variable

error because ’a’ is only valid within
file1.c */

}

Example

unsigned char hello()
{

static unsigned char i = 0;
i++;
return i;

}
void main()
{

unsigned char count;

for(count = 0; count < 10; count++)
{

unsigned char a;
a = hello();

}
}

/* For each call of the function hello, i will be
incremented. i is static and will maintain its value
between calls to hello. hello is called 10 times, so i
will be ’10’ after the last call. */

volatile

A volatile variable has a value that can be changed by something other
than user code. A typical example is an input port or a timer register. These
variables must be declared as ’volatile’ so the compiler makes no assumptions
on their values while performing optimizations.

Example

unsigned char x, y;
volatile unsigned char TMR0;

x = 0x55; //Compiler’s temporary registers contain 0x55
y = x; //and those values are written to ’y’ since x is
 unchanged
DS51112B - page 34  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
TMR0 = 0x00;
y = TMR0; //The compiler must read TMR0 and cannot use the

// 0x00 in its temporary variables since TMR0
increments with execution.

Enumeration

Description

An Enumeration defines a list of named integer constants. The constants
defined by an enumeration can be used in the place of any integral value.
Enumerated types are implemented as signed int type in MPLAB-C17. This
means that the enumerated values are between -32,768 to 32,767.

Syntax

enumerated-type-name:
enum identifier
enum identifier { enumeration-list }
enum { enumeration-list }

enumeration-list:

enumerated-value

enumeration-list , enumerated-value

enumerated-value:

identifier

identifier = constant-expression

All enumeration identifiers (such as VALUE_1 in the example) must be unique
across all defined enumerations.

Enumerated values can be specified for each enumerated member.

Example

enum tag_1 { VALUE_1, VALUE_2, VALUE_3 } enum_1;
/* VALUE_1 is equal to 0 *
 * VALUE_2 is equal to 1 *
 * VALUE_3 is equal to 2 */

char char_1;

enum_1 = 42; /* this will not produce an error */
char_1 = VALUE_3;/* this will assign char_1 value to 2 */

Example

enum tag_2 { VALUE_3, VALUE_4, VALUE_5 } enum_2;

/* this definition will cause an error because VALUE_3
already has a value of 2, and cannot also hold a value of 0 */
 1998 Microchip Technology Inc. DS51112B - page 35

MPLAB-C17 USER’S GUIDE
enum tag_3 { VALUE_6 =2, VALUE_7, VALUE_8=50, VALUE_9 }
enum_3;
/* VALUE_6 is equal to 2 *
 * VALUE_7 is equal to 3 *
 * VALUE_8 is equal to 50 *
 * VALUE_9 is equal to 51 */
enum color_type {red,green,yellow} color;

The entries in the enumeration list are assigned constant integer values,
starting with zero for the first entry. Each entry is one greater than the previous
one. Therefore, in the above example, red is 0, green is 1, and yellow is 2.

The default integer values assigned to the enumeration list can be overridden
by specifying a value for a constant. The following example illustrates
specifying a value for a constant.

enum color_type {red,green=9,yellow} color;

This statement assigns 0 to red, 9 to green, and 10 to yellow.

Once an enumeration is defined, the name can be used to create additional
variables at other points in the program. For example, the variable mycolor can
be created with the color_type enumeration by:

enum color_type mycolor;

Essentially, enumerations help to document code. Instead of assigning a value
to a variable, use an enumeration to clarify the meaning of the value.

Using typedef to Create Portable Programs. When writing portable code, it is important that the data
size be consistent. For example, suppose that 16-bit integers are required. Rather than declaring integers as
int, declare them as a typedef name, such as myint. Near the top of the program, declare the typedef based
on the target machine. When compiling with a tool that uses 16-bit integers, the typedef statement should
read:

typedef int myint;
DS51112B - page 36  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
typedef

Description

The typedef statement creates a new name for an existing type. The new
name can then be used to declare variables.

Syntax

The ’typedef’ keyword may be used anywhere the storage class specifiers
’extern’ and ’static’ may be used.

Example

typedef char string;
typedef unsigned int uint;
void main()
{

string j[10];
uint i;
for(i=0;i<10;i++)

j[i]=i;
}

When using a typedef statement, remember these two key points:

• A typedef does not deactivate the original name or type.

• Several typedef statements can be used to create many new names for
the same original type.

The typedef typically has two purposes:

• Create portable programs

• Document source code

Functions
Functions are the basic building blocks of the C language. All executable
statements must reside within a function.

The topics discussed in this section are:

• Function Declarations

• Function Prototyping

• Passing Arguments to Functions

• Returning Values from Functions

Function Declarations

Description

Functions must be declared before they are used. The compiler supports the
modern ANSI form of function declarations.
 1998 Microchip Technology Inc. DS51112B - page 37

MPLAB-C17 USER’S GUIDE
Syntax

function-definition:
function-declarator compound-statement

function-declarator:
declaration-specifiers identifier (parameter-list)

parameter-list:
parameter
parameter parameter-list

parameter:
type-specifier
declarator

Example

unsigned char AddOne(unsigned char x)
{

return(x + 1);
}

Function Prototyping

Description

A function prototype should be declared before the function is called. A
function prototype declares the return type, name, and types of parameters for
a function, but no other statements.

Syntax

function-prototype:
function-declarator ;

Example

unsigned char AddOne(unsigned char x);

Overhead of Passing Variables
MPLAB-C17 uses a software stack for passing variables into functions and for returning values from functions.
This makes it possible to support quite complex functions and allows recursive functions, but there is some
overhead in managing the software stack. You can choose to reduce code size by not passing on the stack,,
using instead static variables. When compiling, the compiler will examine the function and only include the
appropriate level of stack support code.
DS51112B - page 38  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
Passing Arguments to Functions

Description

A function argument is a value that is passed to the function when the function
is called. C allows zero or more arguments to be passed to a function.

When a function is defined, formal parameters are declared between the
parentheses that follow the function name.

Function parameters can have storage class ’auto’ or ’static’. ’auto’
parameters are placed on the software stack, enabling reentrancy, and

’static’ parameters are allocated globally, enabling direct access and,
therefore, smaller code.

If the first parameter to a function is ’static’ and is 8 bits wide, the argument will
be passed to the functin in PRODL. If it is ’static’ and 16-bits wide, the argument
will be passed in PROD.

Example

The function below calculates the sum of two values that are passed to the
function when it is called. When sum() is called, the value of each argument is
copied into the corresponding parameter variable.

void sum(static unsigned char a, unsigned char b)
{

int c;
c = a+b;

}

void main()
{

sum(1,10);
sum(15,6);
sum(100,25);

}

Functions pass arguments by value. Any changes made to the formal
parameter do not affect the original value in the calling routine.

Returning Values from Functions

Description

A function in C can return a value to the calling routine by using the return
statement. If the value being returned is 8-bits wide, it is returned in WREG. If
it is 16-bits wide, it is retuned in the WREG/FSR1 pair. Otherwise, it is retuned
on the software stack.

Syntax

return-statement:

return expression ;

return ;
 1998 Microchip Technology Inc. DS51112B - page 39

MPLAB-C17 USER’S GUIDE
Example

unsigned char sum(unsigned char a, unsigned char b)
{

return(a + b);
}

void main()
{

unsigned char c;

c = sum(1, 10);
c = sum(15, 6);
c = sum(100, 25);

}

When a return statement is encountered, the function returns immediately to
the calling routine. Any statements after the return are not executed. The
return value of a function is not required to be assigned to a variable or to be
used in an expression; however, if it is not used, then the value is lost.

Operators
A C expression is a combination of operators and operands. For the most
part, C expressions follow the rules of algebra.

This section discusses many different types of operators including:

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Assignment Operators

• Increment and Decrement Operators

• Conditional Operator

• Precedence of Operators

• Operator Differences

Arithmetic Operators

Description

The C language defines five arithmetic operators: addition, subtraction,
multiplication, division, and modulus.

Syntax

arithmetic-expression:
postfix-expression
arithmetic-expression arithmetic-operator postfix-
expression
DS51112B - page 40  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
arithmetic-operator:
+ addition
- subtraction
* multiplication
/ division
% modulus

The +, -, *, and / operators may be used with any basic data type.

The modulus operator, %, can only be used with integral data types.

Example

-b //negative b

count - 163 //variable count minus 163

Relational Operators

Description

The relational operators in C compare two values and return ’1’ or ’0’ based on
the comparison.

Syntax

relational-expression:
arithmetic-expression
relational-expression relational-operator arithmetic-
expression

relational-operator:
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to
!= not equal to

Example

count > 0
value <= MAX
input != BADVAL

Logical Operators

Description

The logical operators support the basic logical operations AND, OR, and NOT.

Syntax

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression
 1998 Microchip Technology Inc. DS51112B - page 41

MPLAB-C17 USER’S GUIDE
logical-and-expression:
relational-expression
logical-and-expression || relational-expression

logical-not-expression:
! unary-expression
&& Logical AND
|| Logical OR
! Logical NOT

Example

NotFound && (i <= MAX)
!(Value <= LIMIT)
((’a’ <= ch) && (ch <= ’z’)) || ((’A’ <= ch) && (ch <= ’Z’))

Bitwise Operators

Description

C contains six special operators which perform bit-by-bit operations on
numbers. These bitwise operators can only be used on integral data
types. The result of using any of these operators is a bitwise operation
of the operands.

Syntax

bitwise-expression:
postfix-expression
bitwise-expression bitwise-operator postfix-expression

bitwise-not-expression:
~ unary-expression

bitwise-operator:
& bitwise AND
| bitwise OR
^ bitwise XOR
~ 1’s complement
>> right shift
<< left shift

Example

Flags & MASK; //Zero unwanted bits
Flags ^ 0x07; //Flip bits 0, 1, and 2
Val << 2; //Multiply Val by 4

Assignment Operators

Description

The most common operation in a program is to assign a value to a variable.
In C, this is done by using the equals sign (=).
DS51112B - page 42  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
C also provides shortcuts for modifying a variable by performing an operation
on itself. These shortcuts are special assignment operators.

Syntax

assignment-expression:
unary-expression assignment-op expression

assignment-op:
=
+=
-=
*=
/=
%=
|=
^=
>>=
<<=

Example

a += b + c; //Same as a = a + b + c;

a *= b + c; //Same as a = a * (b + c);

a *= (b + c); //Same as a = a * (b + c);

r /= s; //Same as r = r / s;

m *= 5; //Same as m = m * 5;

Flags |= SETBITS; //Set bits in Flags

Div2 >>= 1; //Divide Div2 by 2

Increment and Decrement Operators

Description

C provides shortcuts for the common operation of incrementing or
decrementing a variable. The increment and decrement operators are
extremely flexible. They can be used in a statement by themselves, or they
can be embedded within a statement with other operators. The position of the
operator indicates whether the increment or decrement is to be performed
before or after the evaluation of the statement in which it is embedded.

Syntax

pre-increment-expression:
++ unary-expression

pre-decrement-expression:
-- unary-expression

post-increment-expression:
postfix-expression ++
 1998 Microchip Technology Inc. DS51112B - page 43

MPLAB-C17 USER’S GUIDE
post-decrement-expression:
postfix-expression --

Example

void main()
{

unsigned char a = 0, b, c;
a++; //same as ++a;

//a = 1
b = 5 + a++; //b = 6, a = 2
c = 6 + --a; //c = 7, a = 1

}

Conditional Operator

Description

The conditional operator is a shortcut for executing code based on the
evaluation of an expression.

Syntax

conditional-expression:
logical-OR-expression ? comma-expression : conditional-
expression

Example

c = (a>b) ? a : b; //c is set to the larger of a and b

Precedence of Operators

Description

Precedence refers to the order in which operators are processed. The C
language maintains a precedence for all operators. The following shows the
precedence from highest to lowest. Operators at the same level are evaluated
from left to right.

Highest

() [] -> .

! ~ ++ -- - (type cast) * & sizeof

* / %

+ -

<< >>

< <= > >=

== !=
DS51112B - page 44  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
Example

Program Control Statements
This section describes the statements that C uses to control the flow of
execution in a program, explains how relational and logical operators are used
with these control statements, and covers how to execute loops.

Topics discussed in this section include:

• if Statement

• if-else Statements

• for Loop

• while Loop

• do-while Loop

• break Statement

• continue Statement

• switch Statement

• TRUE is any non-zero value

• FALSE is zero

&

^

|

&&

||

?

= += -= *= /=

,

Lowest

Expression Result Note

10 - 2 * 5 0 *has higher precedence than +

(10 - 2) * 5 40

0x20 | 0x01 != 0x01 0x20 != has higher precedence than |

(0x20 | 0x01) != 0x01 1

1 << 2 + 1 8 + has higher precedence than <<

(1 << 2) + 1 5
 1998 Microchip Technology Inc. DS51112B - page 45

MPLAB-C17 USER’S GUIDE
if Statement

Description

The if statement is a conditional statement. The block of code associated with
the if statement is executed based upon the outcome of a condition. If the
condition evaluates to TRUE, the code is executed. Otherwise, the code is
skipped.

Syntax

if-statement:
if (expression) statement

Example

if(num > 0) Adjust(num);
if(count<0)
{

count=0;
EndFound = TRUE;

}

if-else Statements

Description

The if-else statement handles conditions where a program requires one set of
instructions to be executed if a condition is TRUE and a different set of
instructions if the condition is FALSE.

Syntax

if-else-statement:
if (expression) statement else statement

Example

if(num < 0)
{

num = 0;
Valid = FALSE;

}
else

Valid = TRUE;

if(num == 1)
DoCase1();

else if(num == 2)
DoCase2();

else if(num == 3)
DoCase3();

else
DoInvalid();
DS51112B - page 46  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
for Statement

Description

One of the three loop statements that C provides is the for loop. Use a for loop
to repeat a statement or set of statements.

Syntax

for-statement:
for (expression ; expression ; expression) statement

Example

unsigned char i;
for(i=0;i<10;i++)

DoFunc();
for(num=100;num>0;num=num-1)

{ . . . }
for(count=0;count<50;count+=5)

{ . . . }
for(i=0; (i<MAX) && (Array[i]<>Target); i++); //Find Target

while Statement

Description

Another of the loops in C is the while loop. While an expression is TRUE, the
while loop repeats a statement or block of code. The value of the expression is
checked prior to each execution of the statement.

Syntax

while-statement:
while (expression) statement

Example

X = GetValue()
while (1);//Loop Forever
{

HandleValue(X);
X = GetValue();

}

do-while Statement

Description

The final loop in C is the do loop. In the do loop, the statement is always
executed before the expression is evaluated. Thus, the do statement always
executes at least once.
 1998 Microchip Technology Inc. DS51112B - page 47

MPLAB-C17 USER’S GUIDE
Syntax

if-statement:
do statement while (expression) ;

Example

do
{

x = GetValue()
HandleValue(x);

} while (x != 0);

switch Statement

Description

A switch statement is functionally equivalent to multiple if-else statements.

The switch statement has two limitations:

• The switch variable must be an 8-bit integral data type.

• The switch variable can only be compared against constant values.

Syntax

switch-statement:
switch (expression) statement

case-statement:
case constant-expression : statement

default-statement:
default : statement

The switch variable is successively tested against a list of constants. When a
match is found, execution continues at the labeled case staement. If no match
is found, the statements associated with the default case are executed if a
default label exists.

Example

switch(i)
{

case 1:
DoCase1();
break;

case 2:
DoCase2();
break;

case 3:
DoCase3();
break;

case 4:

The use of the default
label is good
programming practice. It
can catch out of range
data that is not expected.
DS51112B - page 48  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
DoCase4();
break;

default:
DoDefault();
break;

}

x = 0;
switch(ch)
{

case ’c’: //Ignoring case, set x to:
case ’C’: x++; // 1 if ch is A
case ’b’: // 2 if ch is B
case ’B’: x++; // 3 if ch is C
case ’a’: //otherwise, ch is invalid
case ’A’: x++;

break;
default :

BadChar(ch);
break;

}

break Statement

Description

The break statement exits the innermost enclosing control statement (for,
while, do, switch) from any point within the body. The break statement
bypasses normal termination from an expression. If the break occurs in a
nested loop, control returns to the previous nesting level.

Syntax

break-statement:
break ;

Example

//Get 100 values. Stop immediately if the value is 0.
unsigned char i;
for(i = 0; i < 100; i++)
{

x = GetValue();
if(x == 0)

break;
HandleValue(x);

}

 1998 Microchip Technology Inc. DS51112B - page 49

MPLAB-C17 USER’S GUIDE
continue Statement

Description

The continue statement allows a program to skip to the end of a for, while, or
do statement without exiting the loop.

Syntax

continue-statement:
continue ;

Example

//Get 100 values. If the value is 0,
//ignore it and go on.
unsigned char i;
for (i = 0; i < 100; i++)
{

x = GetValue;
if (x == 0)

continue;
HandleValue(x);

}

Arrays and Strings
An array is a list of related variables of the same data type. Strings are arrays
of characters with some special rules.

Topics discussed in this section include:

• Arrays

• Strings

• Initializing Arrays

Arrays

Description

An array is a list of variables that are all of the same type and can be
referenced through the same name. An individual variable in the array is
called an array element. When an array is declared, C defines the first element
to be at an index of 0. If the array has 50 elements, the last element is at an
index of 49.

C stores arrays in contiguous memory locations. The first element is at the
lowest address. An array element can be used anywhere a variable or
constant would be used.
DS51112B - page 50  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
Syntax

declarator:
declarator array-declarator

array-declarator:
[constant-expression]
array-declarator [constant-expression]

Example

#define SIZE 10
unsigned char i, num[SIZE];
for(i = 0; i < SIZE; i++)

num[i] = i;

To copy the contents of one array into another, copy each individual element
from the first array into the second array. The following example shows one
method of copying the array a[] into b[] assuming that each array has 10
elements.

for(i=0;i<10;i++)
b[i] = a[i];

Strings

Description

A common one-dimensional array is the string. C does not have a built-in
string data type. Instead, a string is defined as a null (0) terminated character
array. The size of the character array must include the terminating null. All
string constants are automatically null terminated.

Example

char String[80];
int i;
.
.
.
for(i = 0; (i < 80) && !String[i]; i++)

HandleChar(String[i]);

Initializing Arrays

Description

C allows pre-initialization of arrays.

Syntax

initialized-declarator:
declarator = { value-list }
 1998 Microchip Technology Inc. DS51112B - page 51

MPLAB-C17 USER’S GUIDE
value-list:
{ value-list }
constant-expression-list

constant-expression-list:
constant-expression
constant-expression-list , constant-expression

Example

The following example shows a 5 element integer array initialization.

int i[5] = {1,2,3,4,5};

The element i[0] has a value of 1 and the element i[4] has a value of 5.

A string (character array) can be initialized in two ways. One method is to
make a list of each individual character:

char str[4]={’a’,’b’,’c’, 0};

The second method is to use a string constant:

char name[5]="John";

A null is automatically appended at the end of "John". When initializing an
entire array, the array size may be omitted:

char Version[] = "V1.0";

Because the PICmicro family of microcontrollers uses separate program
memory and data memory address busses in their design, MPLAB-C17
requires ANSI extensions to distinguish between data located in ROM and
data located in RAM. The ANSI/ISO C standard allows for code and data to be
in separate address spaces, but this is not sufficient when it is required to
locate data in the code space as well. To this purpose, MPLAB-C17 introduces
the rom and ram qualifiers. Syntactically, these qualifiers bind to identifiers just
as the const and volatile qualifiers do in strict ANSI C.

The primary use of ROM data is for static strings. In keeping with this, MPLAB-
C17 automatically places all string literals in ROM. The type of a string literal is
"array of char located in ROM." For example, a string table in ROM can be
declared as:

rom const char table[][20] = { "string 1", "string 2",
 "string 3", "string 4"

};
rom const char *rom table2[] = { "string 1", "string 2",

 "string 3", "string 4"
};

The declaration of table declares an array of four strings that are each 20
characters long, and so takes 40 words of program memory. Table2 is
declared as an array of pointers to ROM. The rom qualifier after the * places
the array of pointers in ROM as well. All of the strings in table2 are 9 bytes
long, and the array is four elements long, so table2 takes (9*4+4*2)/2 = 22
words of program memory. Accesses to table2 may often be less efficient
than accesses to table, however, because of the additional level of
indirection required by the pointer.
DS51112B - page 52  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
An important consequence of the separate ROM and RAM address spaces for
MPLAB-C17 is that pointers to data in ROM and pointers to data in RAM are
not compatible. That is, two pointer types are not compatible unless they point
to objects of compatible types and the objects they point to are located in the
same address space. For example, a pointer to a string in ROM and a pointer
to a string in RAM are not compatible because they refer to different address
spaces. To copy data from ROM to RAM, it must be done explicitly. For simple
types, this entails only a simple assignment, but for arrays and other complex
data-types it may require more.

For example, a function to copy a string from ROM to RAM could be written as
follows.

void str2ram(static char *dest, static char rom *src)
{

while((*dest++ = *src++) != ’\0’)
;

} /* end str2ram */

As an example, the following code will send a ROM string to USART1 on a
PIC17C756 using the PICmicro C libraries. The library function to send a string
to the USART, putsUSART1(const char *str), takes a pointer to a string
as its argument, but that string must be in ram.

METHOD 1: COPY THE ROM STRING TO A RAM BUFFER BEFORE SENDING

rom char mystring[] = "Send me to the USART";
void foo(void)
{

char strbuffer[21];
str2ram(strbuffer, mystring);
putsUSART1(strbuffer);

}

METHOD 2: MODIFY THE LIBRARY ROUTINE TO READ FROM A ROM STRING.

/* The only changes required to the library routine is to change
 * the name so the new routine does not conflict with the
 original
 * routine and to add the rom qualifier to the parameter.
 */
void putsUSART1_rom(static const rom char *data)
{

do // Send characters up to the null
{ // Write a byte to the UASRT

while(BusyUSART1());
putcUSART1(*data);

} while(*data++);
} /* end putsUSART1_rom */
 1998 Microchip Technology Inc. DS51112B - page 53

MPLAB-C17 USER’S GUIDE
Pointers
This section covers one of the most important and powerful features of C,
pointers. A pointer is a variable that contains the location of an object.

The topics covered in this section are:

• Introduction to Pointers

• Pointers and Arrays

• Pointer Arithmetic

• Passing Pointers to Functions

ROM and RAM pointers in MPLAB-C17
Pointer arithmetic is complicated by the ROM paging and RAM banking of the PICmicro MCU. Pointers are
assumed to be RAM pointers unless declared as ROM.
rom int *p; // ROM pointer
char *q; // RAM pointer (default)
ram char *r; // RAM pointer (explicitly declared)
char * rom * pp; // RAM pointer to a ROM char pointer
RAM pointers are 16-bit values. ROM pointers are 24-bit values if they point to 8-bit objects. ROM pointers are
DS51112B - page 54  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
Introduction to Pointers

Description

A pointer is an object that holds the location of another object or a NULL
constant.

For example, if a pointer variable called Var1 contains the address of a
variable called Var2, then Var1 points to Var2. If Var2 is a variable at address
100 in memory, then Var1 would contain the value 100.

Syntax

declarator:
* type-qualifier-list declarator

The two special operators that are associated with pointers are the asterisk (*)
and the ampersand (&). The address of a variable can be accessed by
preceding the variable with the & operator. The * operator returns the value
stored at the address pointed to by the variable.

Example

void main(void)
{

unsigned char *Var1, Var2, Var3;

Var2 = 6;
Var1 = &Var2;
Var3 = Var2; //These two do
Var3 = *Var1; //the same thing.

}

The first statement declares three variables: Var1, which is an integer pointer,
and Var2 and Var3, which are integers. The next statement assigns the value
of 6 to Var2. Then the address of Var2 (&Var2) is assigned to the pointer
variable Var1. Finally, the value of Var2 is assigned to Var3 in two ways: first by
accessing Var2 directly, then by accessing Var2 through the pointer Var1.

Pointer Arithmetic

Description

In general, pointers may be treated like other variables. However, there are a
few rules and exceptions. In addition to the * and & operators, there are only
four other operators that can be applied to pointer variables: +, ++, -, --.

An important point to remember when performing pointer arithmetic is that the
value of the pointer is adjusted according to the size of the data type it is
pointing to. If a pointer’s data type requires five memory bytes, "incrementing"
the pointer actually increases the value of the pointer by five. Similarly,
"adding" three to the pointer increases the value of the pointer by fifteen (three
times five).
 1998 Microchip Technology Inc. DS51112B - page 55

MPLAB-C17 USER’S GUIDE
Example

unsigned char *p, *q, r[30] ;
.
.
p = r + 20;//p points to element 20 of r
q = p - 5//q points to element 15 of r
p++; //p points to element 21 of r

It is possible to increment or decrement either the pointer itself or the object to
which it points. Pointers may also be used in relational operations.

Passing Pointers to Functions

Description

A pointer may be passed to a function just like any other variable.

Example

void incby10(unsigned char *n)
{

*n += 10;
}
void main(void)
{

unsigned char *p;
unsigned char i = 0;

p=&i;
incby10(p); //i equals 10
incby10(&i); //i equals 20

}

Structures and Unions
Structures are a group of related variables. Unions are a group of variables,
often of differing types, that share the same memory space.

This section covers:

• Introduction to Structures

• Introduction to Unions

• Nesting Structures

• Bit-fields

Syntax

struct-or-union-type-name:
struct-or-union identifier
struct-or-union identifier { member-declaration-list }
struct-or-union { member-declaration-list }
DS51112B - page 56  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
member-declaration-specifiers declarator-list ;

member-declaration-specifiers:
member-declaration-specifier
member-declaration-specifiers member-declaration-
specifier

member-declaration-specifier:
type-name
const
volatile
near
far

Introduction to Structures

Structures and unions allow the storage and manipulation of related data
together rather than in separate variables. Structures located in ROM must
have all elements word aligned.

Description

A structure is a group of related items that can be accessed through a common
name. Each item within a structure has its own data type, which can be
different from the other data types.

Example

The following example is for a card catalog in a library.

struct catalog_tag
{

char author[40];
char title[40];
char pub[40];
unsigned int date;
unsigned char rev;

} card;

In this example, the tag of the structure is catalog. It is not the name of a
variable, only the name of the type of structure. The variable card is declared
as a structure of type catalog. The following shows what the structure catalog
looks like in memory.

author 40 bytes

title 40 bytes

pub 40 bytes

date 2 bytes

Structures and
Debugging in MPLAB
User-defined data
constructs are not fully
described in the symbolic
information file from the
linker, and you may not be
able to use the names of
elements of structures
when debugging in
MPLAB.
 1998 Microchip Technology Inc. DS51112B - page 57

MPLAB-C17 USER’S GUIDE
rev 1 byte
DS51112B - page 58  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
To access any member of a structure, specify the name of the variable and the
name of the member separated by a period. For example, to change the
revision member of the structure catalog, use the following:

card.rev=’a’;

To access the third character in the title, use the following:

ThirdChar = card.title[2];

Introduction to Unions

Description

A union is a memory block that is shared by two or more variables, which can
be of any data type. A union resembles a structure, but its memory usage is
fundamentally different. In a structure, the elements are arranged sequentially.
In a union, all of the elements begin at the same address, making the size of
the union equal to the size of the largest element.

Syntax

The <union-name> is the tag of the union, and the <variable-list>
contains the names of the variables that have a data type of <union-name>.

Accessing members of a union is the same as accessing members of a
structure.

Example

Because an int is two bytes, a char is one byte, and a long is four bytes, the
union below is stored in memory as shown:

union u_tag
{

int i;
char c[3];
long l;

} temp;

where:

<------------ i ------------>

<-----c[0]----><---- c[1]----><---- c[2]----><---- c[3]-----
>

<---------------------------- l ----------------------------
>

An example of saving space is shown below:

struct type_tag
{

enum { VARIABLE, CONSTANT } type;

location 0 location 1 location 2 location 3
 1998 Microchip Technology Inc. DS51112B - page 59

MPLAB-C17 USER’S GUIDE
union
{

char *variable_name;
int constant_value;

} value;
} variable_or_constant;

void function(struct type_tag var_or_const)
{

int constant;
char *variable;

switch(var_or_const.type)
{

case VARIABLE:
variable = var_or_const.value.variable_name;
break;

case CONSTANT:
constant = var_or_const.value.constant_value;
break;

}
}

Based on the type of data stored in struct type_tag, the access of the
data is different. A union allows the data for the two types to share space.

An example of using a union to access memory as two different data types is
shown below:

union MergeData
{

short int TwoInts[2];
long OneLong;

};

The above union accesses memory as two integers or as one long integer.

Nesting Structures

Description

A structure member can have a data type that is another structure. This is
referred to as a nested structure.

Example

struct Memory
{

int RAMSize;
int ROMSize;

};
DS51112B - page 60  1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals
struct PIC
{

char Name[12];
struct Memory MemSizes;

};

Members of a structure or union define a separate name space, Meaning that
two different structures can have the same names for their members.

Example

struct struct_tag_1{
int a;
int b;
char c;

} struct_1;
struct struct_tag_2
{

char d;
int a;
int b;

} struct_2;

struct_1.a references the first two bytes of a structure of type struct
tag_1.

struct_2.a references the second and third bytes of a structure of type
struct tag_2.

struct_2.c and struct_1.d would produce an error because the
referenced member is not part of the structure’s definition.

Bit-fields

Description

Bit-fields allow the specification of 1-bit wide elements of a structure.

Syntax

struct <struct_name>

{
<int type> <member1> : <bit-width>;
<int type> <member2> : <bit-width>;
:
<int type> <membern> : <bit-width>;
}

Example

See Special Function Registers section in Chapter 4.
 1998 Microchip Technology Inc. DS51112B - page 61

MPLAB-C17 USER’S GUIDE
DS51112B - page 62  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Chapter 4. MPLAB-C17 and PICmicro™ MCU Programming
Introduction
This section discusses specific details for PICmicro MCUs when using
MPLAB-C17.

Highlights
• Processor header and assembly definition files

• Software Stack

• C startup code

• Interrupts

• Internal Assembler

Processor Header and Assembly Definition Files
Each PICmicro device has two files associated with it, a processor header file,
and a processor assembly file. The assembly file contains declarations for all
the special function registers on the device. Every assembly file is associated
with a C header file that contains, among other things, external declarations for
the special function registers.

Special Function Registers

Special function registers are defined in the processor assembly file. For
example, here port A is defined in the processor assembly file
P17C44.ASM as:

BANK0_SFR_SEC DATA H’010’
PORTAbits
PORTA RES 1 ; 010h
DDRB RES 1 ; 011h
.
.
and so on.

The first line specifies the file register bank where port A is located and the
starting address for that bank. Port A has two labels PORTAbits and PORTA
both referring to the same location (in this case 010h in bank 0). So the above
definition reserves 1 byte for PORTA and PORTAbits at location 010h.

In P17C44.H, port A is declared as:

volatile extern far unsigned char PORTA;

and as:
 1998 Microchip Technology Inc. DS51112B - page 63

MPLAB-C17 USER’S GUIDE
extern far volatile union
{
 struct
 {
 unsigned RA0:1; /* Bit 0 */
 unsigned RA1:1;
 unsigned RA2:1;
 unsigned RA3:1;
 unsigned RA4:1;
 unsigned RA5:1;
 unsigned :1;
 unsigned NOT_RBPU:1;
 };
 struct
 {
 unsigned INT:1; /* Alternate name for bit 0 */
 unsigned T0CKI:1; /* Alternate name for bit 1 */
 unsigned :6; /* pad next 6 locatons */
 };
} PORTAbits;

The first declaration specifies that PORTA is a byte (unsigned char) whereas
the second one declares PORTAbits as a union of bit-addressible structures.
Since individual bits in a special function register may have more than one
function (and hence more than one name), there are multiple structure
definitions inside the union all referring to the same register. Respective bits in
all structure definitions refer to the same bit in the register. Where a bit has
only one function for its position is simply padded in other structure definitions.
For example, bits 2 through 7 on port A are simply padded in the second
structure definition using the statement (unsigned :6).

When using a special function register such as port A, write the following
statements:

PORTA = 0x34; /* Assigns the value 0x34 to the whole
port */

PORTAbits.INT = 1; /* Sets the INT pin high */
PORTAbits.RA0 = 1; /* Sets the RA0 pin high, same as

above statement */

The ’extern’ modifier is needed since the variables are declared in the
processor assembly definition file. The ’volatile’ modifier tells the compile that
it cannot assume that port A retains values assigned to it. The ’far’ modifier
specifies that the port needs a bank switching instruction prior to access.
DS51112B - page 64  1998 Microchip Technology Inc.

Chapter 4. MPLAB-C17 and PICmicro™ MCU
Specific Instruction Macros for PICmicro MCUs

There are certain instructions on PICmicro MCUs that may need to execute from
the C code. They can be included as inline assembler instructions but for
convenience they are also available as macros in C. They are listed in the
following table:

Note: ’var’ must be an 8-bit quantity (i.e. char) and not located on the stack.

Interrupt Support Macros

All PIC17CXXX header files have four macros for installing interrupt service
routines to the four interrupt vectors available. Call these macros as part of setting
up the interrupt handler functions. Specify which C function should act as the
interrupt handling function for a particular interrupt vector. For more information on
how interrupts are handled by MPLAB-C17, please refer to the ’interrupts’ section
below. Interrupt support macros are listed in the following table:

Table 4:

Instruction Macro Action

Nop () Executes a no operation (NOP)

ClrWdtT () Clears the watchdog timer (CLRWDT).

Sleep () Executes a SLEEP instruction

Rlcf(var) Rotates ’var’ to the left through the carry bit

Rlncf(var) Rotates ’var’ to the left without going through the
carry bit.

Rrcf(var) Rotates ’var’ to the right through the carry bit.

Rlncf(var) Rotates ’var’ to the right without going through the
carry bit.

Swapf(var) Swaps the upper and lower nibble of ’var’

Table 5:

Macro Action

Install_INT(func) Sets ’func’ as the handler for the INT interrupt.

Install_TMR0(func) Sets ’func’ as the handler for the TMR0 interrupt.

Install_T0CKI(func) Sets ’func’ as the handler for the T0CKI interrupt.

Install_PIV(func) Sets ’func’ as the handler for the PIV interrupt.
 1998 Microchip Technology Inc. DS51112B - page 65

MPLAB-C17 USER’S GUIDE

DS
Software Stack
The compiler uses a software stack for storing local variables, and for passing
arguments to and returning values from functions. The software stack should not
be confused with the hardware stack that the PICmicro MCU uses for storing
return addresses during function calls and interrupts. Define a software stack in
the linker script for the processor by placing a command similar to the following:

stack size = 0x20

This reserves 32 bytes in the general purpose RAM area for the software stack.
The size of the software stack required by a program varies with the complexity
of the program. The following considerations should be kept in mind:

• One location of the stack will be reserved by the compiler for use as the
Stack Pointer.

• When nesting function calls, all arguments and local variables of the
calling function will remain on the stack. Therefore, the stack must be
large enough to accommodate the requirements by all functions in a
calling sequence.

C Startup Code
The C start up code is an assembly file that is assembled and linked with your C
files. It performs four main tasks:

1. Sets up the software stack used by the compiler.

2. Optionally calls a function called __STARTUP() upon reset.

3. Optionally calls the code which copies initialized data from program
memory to data memory.

4. Transfers control to the C function main() which is the entry point for C
programs.

There are two C startup code files for the PIC17CXXX family. The first is
C0S17.ASM which uses short GOTOs and CALLs. C0S17.ASM should be
assembled and linked with the small model (code less than 8K). The other
startup file is C0L17.ASM which uses long jumps and LCALLs. C0L17.ASM
should be used with projects targeting memory larger than 8K.

Stack initialization

The stack initialization simply points the compiler stack pointer to the right
location in data memory.

__STARTUP()

To execute some code immediately after a device reset before any other code
generated by the compiler is executed, optionally create a function by the name
__STARTUP(). This will be the first code executed upon a reset. To use a
__STARTUP() function in a program:

1. Define a __STARTUP() function in a C program as follows:
51112B - page 66  1998 Microchip Technology Inc.

Chapter 4. MPLAB-C17 and PICmicro™ MCU
void __STARTUP(void)
{

 // Initialize some registers to 0
 DDRB = 0;
 DDRC = 0;

}

2. In C0L17.ASM and C0S17.ASM, uncomment the line:

#DEFINE USE_STARTUP

3. Compile the source file, assemble C0L17.ASM or C0S17.ASM and link
them.

Note that since __STARTUP() is executed before the stack is initialized, ’t’
variables may not be used

Initialized Data Support

When declaring initialized data (such as int x = 5;) the variable is allocated
in data memory but the value is stored in program memory. Before the data is
usable in any program, the values must be copied from program memory into
the variable in data memory. C0L17.ASM and C0S17.ASM perform this task
by calling a routine that does just that. The size of the initialization code is
approximately 50 words. Therefore, to only initialize a few variables, do not
use that feature and initialize the variables manually in the code. If initializing
many variables (10 or more integers or 20 or more characters) as they are
declared, then the initialization code is the better option in terms of code size.
To use initialized data in the program:

1. Uncomment the following line in C0L17.ASM or C0S17.ASM
#DEFINE USE_INITDATA

2. Assemble C0L17.ASM or C0S17.ASM and IDATA17.ASM (or use
IDATA17.o directly).

3. Link the above files with the C object code.

Branching to main()

After the startup code optionally calls __STARTUP() and/or copies initialized
data, and sets up the stack, it calls the main() function of the C program. There
are no arguments passed to main().

Default Options for the Startup Code

The startup code files are provided in object format as C0L17.O and C0S17.O.
These two files are assembled with the following options:

• Initialized data support is on (i.e. USE_INITDATA is defined).

• __STARTUP() support is off (i.e. USER_STARTUP is commented out).

To change the behavior of the startup code, assemble the files after making
the necessary changes. Choose 17CXX as the processor type when
assembling C0L17.ASM and C0S17.ASM. The resulting object file will be
usable for any PIC17CXXX project.
 1998 Microchip Technology Inc. DS51112B - page 67

MPLAB-C17 USER’S GUIDE
Interrupts
MPLAB-C17 provides interrupt support macros and code for saving and
restoring context during interrupt handling. The use of such macros and code
are optional. Elect to do interrupt handling in assembler to reduce latency and
minimize overhead.

Each PICmicro MCU processor has two interrupt support assembly files. One
is for the small model and the other for the large model as before. These files
contain code fragments that save critical special function registers, call the
interrupt handling function, and returns from the interrupt. The registers are
saved as follows:

• First ALUSTA is saved primarily to preserve the Z bit. The saved
ALUSTA can go in any bank (since BSR isn't known at that time) but
always at location 0xFF. The interrupt support code reserves location
0xFF in all banks for save_ALUSTA.

• Second, PCLATH is saved at location 0xFE or the equivalent location in
the same manner as with ALUSTA. The interrupt support code reserves
location 0xFE in all banks for save_PCLATH.

• Finally BSR and WREG are saved in bank 0 at locations 0xFD and
0xFC, respectively. The interrupt support code reserves locations 0xFD
and 0xFC in bank 0 for save_BSR and save_WREG.

Here is how the highest addresses in data memory would look if an interrupt
occurred while BSR was pointing to bank 2 on the PIC17C756. (For the
PIC17C44 only banks 0 and 1 are used.)

The ALUSTA, PCLATH, BSR, and WREG are the registers that absolutely
need to be saved before we branch to the interrupt service function. However,
there are other registers used by the compiler that are worth saving under
certain circumstances. The following is an example that uses the Timer 0
Overflow Interrupt.

Table 6:

Bank 0 Bank 1 Bank 2 Bank 3

0xFB <Available> <Available> <Available> <Available>

0xFC save_BSR <Available> <Available> <Available>

0xFD save_WREG <Reserved> <Reserved> <Reserved>

0xFE save_ALUSTA <Reserved> <Reserved> <Reserved>

0xFF save_PCLATH <Reserved> <Reserved> <Reserved>

Startup code supplied with
MPLAB-C17 does not
support nested interrupts.
DS51112B - page 68  1998 Microchip Technology Inc.

Chapter 4. MPLAB-C17 and PICmicro™ MCU
#include <p17c44.h>

unsigned char x;

void __TMR0()
{

x++;
PORTB = x;

}

void main()
{

x = 1;

// Install interrupt handler for timer 0 interrupt
Install_TMR0(__TMR0);

// Set prescale value for TMR0
T0STA = 0b11100110;

// Unmask TMR0 overflow interrupt
INTSTA = 0b00000010;

// Enable all unmasked interrupts
CPUSTA = 0;

// Set Port B in o/p mode
DDRB = 0;

while(1)
{

// Loop and wait for an interrupt to take place!
}

}

Install _TMR0 (_TMR0) sets the function __TMR0() as the interrupt handler for
Timer 0 overflow interrupts. Then the appropriate prescale value, interrupt flag,
and global interrupt enable flag are set. The program enters into an infinite
loop when it reaches the while(1) statement. When Timer 0 overflows,
program control goes to the __TMR0() function where the value of ’x’ is sent to
PORT B and possibly displayed on LEDs.

In this simple program the PICmicro MCU wasn’t doing much at the time the
interrupt occurred. Therefore do not save any more registers in addition to
what the compiler interrupt code saved. However, in a more complex
application, the interrupt may occur at any point in the program. Therefore
other registers may need to be saved. The best way to find out is to look at the
generated code for the interrupt handling function. Find out which registers are
used by the compiler inside the function and make sure to save them at the
beginning and restore them at the end of the function. Looking at the following
example’s generated code, determine that registers PRODL and PRODH are
used both inside and outside the interrupt function.

#include <p17c44.h>
 1998 Microchip Technology Inc. DS51112B - page 69

MPLAB-C17 USER’S GUIDE
#pragma udata intSave = 0xFa
 unsigned char save_PRODL; // 0xF9
 unsigned char save_1F; // 0xFA
 unsigned char save_1E; // 0xFB

#pragma udata anywhere
 unsigned char x, y;

void __TMR0()
{
_asm
 movpf PRODL, save_PRODL
 movpf PRODH, save_1E
 movpf , save_1F
_endasm
 x++;
 PORTB = x;
 y = y * x;
_asm
 movlr 0 // Switch to bank 0
 movfp save_PRODL, PRODL
 movfp save_1E, PRODH
 movfp save_1F,
_endasm
}

void main()
{
 x = y = 1;

 Install_TMR0(__TMR0);

// Set prescale value for TMR0
 T0STA = 0b11100110;

// Unmask TMR0 overflow interrupt
 INTSTA = 0b00000010;

// Enable all unmasked interrupts
 CPUSTA = 0;

// Set Port B in o/p mode
 DDRB = 0;

 while(1)
 {
 x = x * 5;
 }
}

The registers PRODH and PRODL are saved in save_1F, save_1E, and
save_PRODL, respectively. These variables are declared globally and
allocated at locations 0xFa to 0xFB in bank 0 using the #pragma udata
directive. This places them at the end of the bank just before save_B and
guarantees they are in bank 0. Since BSR is cleared in the interrupt support
DS51112B - page 70  1998 Microchip Technology Inc.

Chapter 4. MPLAB-C17 and PICmicro™ MCU
code, don’t do any bank switching to save those three registers. However,
clear the BSR (using MOVLR 00) before restoring them as the interrupt
function code could have switched banks.

 The following are merely guidelines as to what the compiler might be using for
certain tasks. However, the best guarantee that the context is saved and
restored correctly is by looking at generated code.

1. WREG: This is necessary if the program is doing anything other than
looping when an interrupt occurs. It is best to save WREG at all times.

2. FSR0, FSR1: Save FSR0 if the interrupt handling function uses arrays
or pointers.

3. PRODL, PRODH: Save these registers if performing multiplication in
the interrupt function. The compiler potentially uses PRODL and
PRODH if it is evaluating a complex expression.

4. TBLPTRL, TBLPTRH: These two registers are used for table read and
write operations. However, the compiler rarely uses them for temporary
storage. In general, it is not recommended to do table reads or writes in
the interrupt functions if done elsewhere in the program. Table reads
and writes use the 16-bit TBLAT register for latching data transferred
from and to program memory. Since TBLAT is not an addressable
register it cannot be saved or restored during interrupts.

Internal Assembler
MPLAB-C17 has an internal assembler using a syntax similar to MPASM. The
block of assembly code must begin with "_asm" and end with "_endasm". The
syntax within the block is

<instruction> [arg1][, arg2][, arg3]

Comments must be C or C++ type notation.
Example:

_asm
/* User assembly code */
movlw 7 // Load 7 into WREG
movwf PORTB // and send it to PORTB
_endasm

It is generally recommended to limit the use of inline assembly to a minimum.
To write large fragments of assembly code, use the standalone assembler and
link the modules to the C modules using MPLINK.
 1998 Microchip Technology Inc. DS51112B - page 71

MPLAB-C17 USER’S GUIDE
NOTES:
DS51112B - page 72  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Chapter 5. Using MPLAB-C17 with Other Microchip Tools
Introduction
This chapter describes how to use MPLAB-C17 with other Microchip
development tools.

Highlights
• MPLAB IDE

• MPLAB-SIM

• PROCMD

• PICSTART  Plus and PRO MATE ™II

MPLAB IDE

Why You Would
Want to Use
MPLAB Tools

The MPLAB IDE provides the ability to do source level
debugging in C, and a Project Manager that allows
programmers to edit and compile MPLAB-C17 source
code. The MPLAB IDE interfaces with the
PICMASTER emulator and the MPLAB-SIM
simulator for debugging source code.

The MPLAB IDE
Software Version

3.40 or later

MPLAB-C17
Command Line
Parameters
Needed

None.

Files Types
Shared between
the MPLAB IDE
and MPLAB-C17

Common Object Description (*.COD), List File (*.LST),
Error File (*.ERR)

Setup Required Project > Make Setup

Method of
Opening Source
Files from the
MPLAB IDE

From the MPLAB IDE Main Menu:
Project > Open Project. Open the source file from the
project window.
From the MPLAB IDE Main Menu:
File > Open Source

Integration
Description

The MPLAB IDE extracts the machine code and
symbolic information from the *.COD file.

Special
Considerations

None
 1998 Microchip Technology Inc. DS51112B - page 73

MPLAB-C17 USER’S GUIDE
MPLAB-SIM Simulator

Why You Would
Want to Use the
MPLAB-SIM
Simulator Tools

The MPLAB-SIM Simulator allows programmers to
simulate discrete events in an application by
imitating the operation of the microcontroller. Thus,
MPLAB-SIM assists in the debugging of the general
logic of software.

MPLAB-SIM
Software Version

5.10 or greater

MPLAB-C17
Command Line
Parameters
Needed

None

Files Types
Shared between
MPLAB-SIM and
MPLAB-C17

Machine Code (*.HEX), Common Object Description
(*.COD), List File (*.LST)

Setup Required All *.HEX, *.COD, and *.LST files must be placed in
the current MPLAB-SIM directory.

Method of
Opening Source
Files from
MPLAB-SIM

Same as MPLAB

Integration
Description

MPLAB-SIM gets machine code from *.HEX files, and
gets symbols and source/list file correspondence from
*.COD files. MPLAB-SIM uses *.LST files to show
code while disassembling, single-stepping, and
tracing.

Special
Considerations

The PIC17CXXX family requires a hex file output
format of INHX32 if configuration bits or program
words above address 0x7FFF are specified.
DS51112B - page 74  1998 Microchip Technology Inc.

Chapter 5. Using MPLAB-C17 with Other Microchip Tools
PROCMD

PICSTART Plus and PRO MATE II

Why You Would
Want to Use
PROCMD Tools

PROCMD enables development engineers to program
Microchip PICmicro eight-bit microcontroller devices in
a DOS environment.

PROCMD
Software Version

All

MPLAB-C17
Command Line
Parameters
Needed

None

Files Types
Shared between
PROCMD and
MPLAB-C17

Machine Code (*.HEX)

Setup Required None

Integration
Description

PROCMD programs the contents of the *.HEX file into
the microcontroller.

Special
Considerations

The PIC17CXXX family uses the INHX32 file format
when programming. The other families use the
INHX8M file format.

Why You Would
Want to Use
PICSTART Plus or
PRO MATE II

The PICSTART Plus or PRO MATE II device
programmer enables users to quickly and easily
program PICmicro microcontroller devices.

PICSTART Plus or
PRO MATE II
Software Version

All

MPLAB-C17
Command Line
Parameters
Needed

None

Files Types Shared
between PICSTART
Plus or PRO MATE
II and MPLAB-C17

Machine Code (*.HEX)

Setup Required None
 1998 Microchip Technology Inc. DS51112B - page 75

MPLAB-C17 USER’S GUIDE
Method of Opening
Source Files from
PICSTART Plus or
PRO MATE II

Same as MPLAB

Integration
Description

PICSTART Plus and PRO MATE II program the
contents of the *.HEX file into the microcontroller.

Special
Considerations

The PIC17CXXX family uses the INHX32 file format
when programming. The other families use the
INHX8M file format.
DS51112B - page 76  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Chapter 6. Mixing Assembly Language and C Modules
Introduction
This section describes how to use assembly language and C modules
together. It gives examples of using C variables and functions in assembly
code and examples of using assembly language variables and functions in C.

Highlights
This chapter covers the following topics:

• C calling convention

• Mixing assembly language and C variables and functions

C calling convention
The following example shows how to call an assembly function with a
parameter. Most of the work is done in the file ’call_asm.asm’ where the
parameter is taken off of the software stack. ’call_c.c’ calls the ’asm_function’
with a parameter.

// File CALL_C.C
unsigned char asm_function(unsigned char a);

unsigned char x;

void main(void)
{

x = asm_function(0xff);
}

; File CALL_ASM.ASM
LIST P=17C756

EXTERN _stack
GLOBAL asm_function

MYCODE CODE
asm_function

banksel _stack ; Get the stack pointer into 0x00
movfp _stack, 0x01
decf 0x01, f ; Point FSR1 at the argument
movfp 0x00, 0x0a ; Get the argument
decf 0x0a, f

; The convention is that we return
; with
; FSR0 pointing at the return value.
 1998 Microchip Technology Inc. DS51112B - page 77

MPLAB-C17 USER’S GUIDE
; We’ll just reuse the space
; allocated for
; the argument since we’re already
; pointed there.

movwf 0x00 ; Store the return value
return

END

Mixing assembly language and C variables
and functions
The following example shows how to use variables and functions in both
assembly language and C regardless of where they are originally defined. The
file ’EX_ASM.ASM’ defines ’asm_function’ and ’asm_variable’ as required to
use them in a linked C file. The assembly file also shows how to call a C
function, ’main’, and how to access a C defined variable, ’c_variable’. The file
’EX_C.C’ defines ’main’ and ’c_variable’ to be used in the assembly language
file. The C file also shows how to call an assembly function, ’asm_function’,
and how to access the assembly defined variable, ’asm_variable’.

; file: EX_ASM.ASM
LIST P=17C44

 EXTERN main ; defined in C module
 EXTERN c_variable ; also defined in C module

MYCODE CODE

asm_function
 movlw 0xff
 movwf c_variable ; put 0xffff in the C declared

 variable
 movwf c_variable+1
 return

 GLOBAL asm_function ; export so linker can see it

MYDATA UDATA
asm_variable RES 2 ; 2 byte variable
 GLOBAL asm_variable ; export so linker can see it

 END

// file: EX_C.C
extern unsigned asm_variable;
extern near void asm_function(void);

extern void main(void);

unsigned c_variable;

void main(void)
{
 asm_function(); // will modify ’c_variable’

 asm_variable = 0x1234;

}

DS51112B - page 78  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Chapter 7. ANSI Implementation Issues
Introduction
This section describes the behavior of MPLAB-C17 where the ANSI standard
X3.159-1989 describes the behavior as implementation defined. The text
below in italic font is taken directly from the ANSI standard with the appropriate
section in parentheses.

Highlights
This chapter covers ANSI-implementation issues for the following categories:

• Identifiers

• Characters

• Integers

• Floating Point

• Arrays and Pointers

• Registers

• Structures and Unions

• Bit-Fields

• Enumerations

• Switch statements

• Preprocessor directives

Identifiers
The number of significant initial characters (beyond 31) in
an identifier without external linkage (3.1.2)

The number of significant initial characters (beyond 6) in an
identifier with external linkage (3.1.2)

Whether case distinctions are significant in an identifier
with external linkage (3.1.2)

All MPLAB-C17 identifiers have 31 significant characters. Case distinctions
are significant in an identifier with external linkage.
 1998 Microchip Technology Inc. DS51112B - page 79

MPLAB-C17 USER’S GUIDE
Characters
The value of an integer character constant that contains
more than one character or a wide character constant that
contains more than one multibyte character (3.1.3.4)

The value of the integer character constant is the 8-bit value of the first
character. Wide characters are not supported.

Whether a ’plain’ char has the same range of values as
signed char or unsigned char (3.2.1.1)

A ’plain’ char has the same range of values as a signed char.

Integers
The result of converting an integer to a shorter signed
integer, or the result of converting an unsigned integer to a
signed integer of equal length, if the value cannot be
represented (3.2.1.2)

When converting from a larger integer type to a smaller integer type, the high
order bits of the value are discarded and the remaining bits are interpreted
according to the type of the smaller integer type. When converting from an
unsigned integer to a signed integer of equal size, the bits of the unsigned
integer are simply re-interpreted according to the rules for a signed integer of
that size.

The results of bitwise operations on signed integers (3.3)

The bitwise operators are applied to the signed integer as if it were an
unsigned integer of the same type. i.e., the sign bit is treated as any other bit.

The sign of the remainder on integer division (3.3.5)

The remainder has the same sign as the quotient.

The result of a right shift of a negative-valued signed
integral type (3.3.7)

The value is shifted as if it were an unsigned integral type of the same size.
i.e., the sign bit is not propagated.

Floating Point
The representations and sets of values of the various types
of floating point numbers (3.1.2.5)

The direction of truncation when an integral number is
converted to a floating point number that cannot exactly
DS51112B - page 80  1998 Microchip Technology Inc.

Chapter 7. ANSI Implementation Issues
represent the original value (3.2.1.3)

The direction of truncation or rounding when a floating
point number is converted to a narrower floating point
number (3.2.1.4)

No floating point types are supported in MPLAB-C17 at this time.

Arrays and Pointers
The type of integer required to hold the maximum size of an
array - that is, the type of the sizeof operator, size_t (3.3.3.4,
4.1.1)

size_t is defined as an unsigned int.

The result of casting a pointer to an integer, or vice-versa
(3.3.4)

The integer will contain the binary value used to represent the pointer. If the
pointer is larger than the integer, the representation will be truncated to fit in
the integer.

The type of integer required to hold the difference between
two pointers to elements of the same array, ptrdiff_t (3.3.6,
4.1.1)

ptrdiff_t is defined as an unsigned int.

Registers
The extent to which objects can actually be placed in
registers by use of the register storage class specifier
(3.5.1)

The register storage class specifier is ignored.

Structures and Unions
A member of a union object is accessed using a member of
a different type (3.3.2.3)

The value of the member is the bits residing at the location for the member
interpreted as the type of the member being accessed.

The padding and alignment of members of structures
(3.5.2.1)

Members of structures and unions are aligned on byte boundaries.
 1998 Microchip Technology Inc. DS51112B - page 81

MPLAB-C17 USER’S GUIDE
Bit-Fields
Whether a ’plain’ int bit-field is treated as a signed int or as
an unsigned int bit-field (3.5.2.1)

A ’plain’ int bit-field is treated as an unsigned int bit-field.

The order of allocation of bit-fields within a unit (3.5.2.1)

Bit-fields are allocated from least significant bit to most significant bit in order
of occurrence.

Whether a bit-field can straddle a storage-unit boundary
(3.5.2.1)

A bit-field cannot straddle a storage unit boundary.

Enumerations
The integer type chosen to represent the values of an
enumeration type (3.5.2.2)

signed int is used to represent the values of an enumeration type.

Switch statement
The maximum number of case values in a switch statement
(3.6.4.2)

The maximum number of values is limited only by target memory.

Preprocessing directives
The method for locating includable source files (3.8.2)

Includable source files specified via the #include <filename> mechanism
are searched for in the path specified in the MCC_INCLUDE environment
variable. The MCC_INCLUDE environment variable contains a semi-colon
delimited list of directories to search.

The support for quoted names for includable source files
(3.8.2)

Includable source files specified via the #include "filename" mechanism
are searched for in the current directory and then in the path specified in the
MCC_INCLUDE environment variable. The MCC_INCLUDE environment
variable contains a semi-colon delimited list of directories to search.

The behavior on each recognized #pragma directive (3.8.6)

Each #pragma directive is listed in Chapter 3.
DS51112B - page 82  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
M
Chapter 8. Libraries
1.0 Introduction
This chapter documents functions that are in libraries and pre-compiled object
files that can be included in an application. The source code for all of these
functions is included with MPLAB-C17 in the \MCC\SRC directory. See the
"MPASM User's Guide with MPLINK and MPLIB” for more information about
libraries.

1.1 Highlights
This chapter consists of these sections:

• MPLAB-C17 Library Functions and Pre-Compiled Object Files
Overview

• Hardware, Software, Standard Libraries

• Math Libraries

• Interrupt Handler Code

• Register File Definitions

• Start Up Code

• Initialized Data Move Code

• Libraries

• Hardware Peripheral Library

• Software Peripheral Library

• General Software Library

• Math Library

1.2 MPLAB-C17 Library Functions and
Pre-Compiled Object Files Overview
The pre-compiled libraries are included in the \MCC\LIB directory. These can
be linked directly into an application with MPLINK. These files were
precompiled in the C:\MCC\SRC directory at Microchip. A warning message
will be generated by MPLINK if the compiler has been installed in a different
location. This warning means that source code from the libraries will not show
in the .LST file and can not be stepped through when using MPLAB., since the
debug info does not point to the location of the source files for the libraries.

To include the library code in the .LST file and to be able to single step through
library functions, use the batch file BUILDALL.BAT in the \MCC\SRC directory
to rebuild the files. Then execute the batch file COPY2LIB to copy the newly
compiled files into the \MCC\LIB directory.
 1998 Microchip Technology Inc. DS51112B-page 83

MPLAB-C17 USER’S GUIDE
When building an application, usually one file from each of the following
categories will be needed to successfully link.

1.2.1 Hardware, Software, Standard Libraries

1.3 Pre-Compiled Math Libraries

This file contains the math libraries. The source files can be found in
\MCC\SRC\MATH. This file is the same for all memory models and all
PIC17CXXX PICmicros™. See Section 5.0 in this chapter for more
information.

1.3.1 Interrupt Handler Code

These pre-compiled object files contain the interrupt code. These may be
customized for specific applications. The source code for these pre-compiled
objects is in \MCC\SRC\STARTUP.

1.3.2 Register File Definitions

These files contain the PICmicro special function register definitions for each
processor supported. These are the same for all memory models. The source
code can be found in \MCC\SRC\PROCESSOR

Memory
Model

PIC17C42A PIC17C43 PIC17C44 PIC17C756

Small PMC42AS.LIB PMC43S.LIB PMC44S.LIB PMC756S.LIB

Medium PMC42AM.LIB PMC43M.LIB PMC44M.LIB PMC756M.LIB

Compact PMC42AC.LIB PMC43C.LIB PMC44C.LIB PMC756C.LIB

Large PMC42AL.LIB PMC43L.LIB PMC44L.LIB PMC756L.LIB

These are the main library files as described in Section 2.0, 3.0 and 4.0 of
this chapter, and this file should be included by the linker when building a
project using any of these library functions described in this chapter except
the math libraries listed in Section 5.0. The source code for these libraries is
in \MCC\SRC\PMC.

All processors and memory models: CMATH17.LIB

Memory
Model

PIC17C42A PIC17C43 PIC17C44 PIC17C756

Small INT42AS.O INT43S.O INT44S.O INT756S.O

Medium INT42AM.O INT43M.O INT44M.O INT756M.O

Compact INT42AC.O INT43C.O INT44C.O INT756C.O

Large INT42AL.O INT43L.O INT44L.O INT756L.O
DS51112B-page 84  1998 Microchip Technology Inc.

Chapter 8. Libraries
1.3.3 Start Up Code

These files contain the start up code for the compiler. This code initializes the
C software stack, calls the routines in IDATA17.O to initialize data (see below),
and jumps to the start of the application function, main(). These files will work
for all PIC17CXXX PICmicros. The source code is in \MCC\SRC\STARTUP. If
the application uses more than one page (8k) of program memory, the Large
model should be used.

1.3.4 Initialized Data Move Code

This assembly code copies initialized data from ROM to RAM upon system
start up. This code is required if variables are set to a value when they are first
defined. This file is the same for all memory models and all PIC17CXXX
PICmicros. The source code is in \MCC\SRC\STARTUP.

Here is an example of data that will need to be initialized on system startup:

int my_data = 0x1234;
unsigned char my_char = "a";

To avoid the overhead of this initialization code, set variable values at run time:

int my_data;
unsigned char my_char;

Void main (void)
…
…
my_data = 0x1234;
my_char = "a";
…
…

PIC17C42A PIC17C43 PIC17C44 PIC17C756

P17C42A.O P17C43.O P17C44.O P17C756.O

Memory Model

Small C0S17.O

Large C0L17.O

All processors and memory models: IDATA17.O
 1998 Microchip Technology Inc. DS51112B-page 85

MPLAB-C17 USER’S GUIDE
2.0 Hardware Peripheral Library

2.1 A/D Convertor Functions

BusyADC

Device: PIC17C756

Function: Returns the value of the GO bit in the ADCON0 register.

Syntax: #include <adc16.h>
char BusyADC (void);

Remarks: This function returns the value of the GO bit in the
ADCON0 register. If the value is equal to 1, then the A/
D is busy converting. If the value is equal to 0, then the
A/D is done converting.

Return Value: This function returns a char with value either 0 (done)
or 1 (busy).

Filename: adcbusy.c

See also: None.

CloseADC

Device: PIC17C756

Function: This function disables the A/D convertor.

Syntax: #include <adc16.h>
void CloseADC (void);

Remarks: This function first disables the A/D convertor by clearing
the ADON bit in the ADCON0 register. It then disables the
A/D interrupt by clearing the ADIE bit in the PIE2
register.

Return Value: None.

Filename: adcclose.c

See also: None.

ConvertADC

Device: PIC17C756

Function: Starts an A/D conversion by setting the GO bit in the
ADCON0 register.
DS51112B-page 86  1998 Microchip Technology Inc.

Chapter 8. Libraries
Syntax: #include <adc16.h>
void ConvertADC (void);

Remarks: This function sets the GO bit in the ADCON0 register.

Return Value: None.

Filename: adcconv.c

See also: None.

OpenADC

Device: PIC17C756

Function: Configures the A/D convertor.

Syntax: #include <adc16.h>
void OpenADC (unsigned char config,
unsigned char channel);

Remarks: This function resets the A/D related Special Function
Registers to the POR state and then configures the
clock, interrupts, justification, voltage reference source,
number of analog/ digital I/Os, and current channel.

The value of config can be a combination of the
following values (defined in adc16.h):

A/D Interrupts
ADC_INT_ON Interrupts ON
ADC_INT_OFF Interrupts OFF

A/D clock source
ADC_FOSC_8 Fosc/8
ADC_FOSC_32 Fosc/32
ADC_FOSC_64 Fosc/64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification
ADC_RIGHT_JUST
ADC_LEFT_JUST

A/D voltage reference source
ADC_VREF_EXT Vref from I/O pins
ADC_VREF_INT Vref from AVdd pin

A/D analog/digital I/O configuration
ADC_ALL_ANALOG All channels analog
ADC_ALL_DIGITAL All channels digital
ADC_11ANA_1DIG 11 analog, 1 digital
ADC_10ANA_2DIG 10 analog, 2 digital
ADC_9ANA_3DIG 9 analog, 3 digital
ADC_8ANA_4DIG 8 analog, 4 digital
ADC_6ANA_6DIG 6 analog, 6 digital
ADC_4ANA_8DIG 4 analog, 8 digital
 1998 Microchip Technology Inc. DS51112B-page 87

MPLAB-C17 USER’S GUIDE
The value of channel can be one of the following values
(defined in adc16.h):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11

Return Value: None.

Filename: adcopen.c

See also: None.

Code Example:

#include <p17c756.h>
#include <adc16.h>
#include <stdlib.h>
#include <delays.h>
#include <usart16.h>

void main(void)
{

int result;
char str[7];
// configure A/D convertor
OpenADC(ADC_INT_OFF&ADC_FOSC_32&ADC_

 RIGHT_JUST&ADC_VREF_INT&ADC_
 ALL_ANALOG,ADC_CH0);

// configure USART
OpenUSART1(USART_TX_INT_

 OFF&USART_RX_
 INT_OFF&USART_ASYNCH_
 MODE&USART_EIGHT_
 BIT&USART_CONT_RX);

Delay10TCYx(5); // Delay for 50TCY
ConvertADC(); // Start Conversion
while(BusyADC()); // Done Converting?
result = ReadADC(); // read result
itoa(result,str); // convert to string
putsUSART1(str); // Write string to USART
CloseADC(); // Close Modules
DS51112B-page 88  1998 Microchip Technology Inc.

Chapter 8. Libraries
CloseUSART1();
return;

}

ReadADC

Device: PIC17C756

Function: Reads the result of an A/D conversion.

Syntax: #include <adc16.h>
int ReadADC (void);

Remarks: This function reads the 16-bit result of an A/D
conversion.

Return Value: This function returns the 16-bit signed result of the A/D
conversion. If the ADFM bit in ADCON1 is set, then the
result is always right justified leaving the MSbs cleared.
If the ADFM bit is cleared, then the result is left justified
where the LSbs are cleared.

Filename: adcread.c

See also: None

SetChanADC

Device: PIC17C756

Function: Selects a specific A/D channel.

Syntax: #include <adc16.h>
void SetChanADC (unsigned char channel);

Remarks: This function first clears the channel select bits in the
ADCON0 register, which selects channel 0. It then ORs
the value channel with ADCON0 register.

The value of channel can be one of the following values
(defined in adc16.h):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
 1998 Microchip Technology Inc. DS51112B-page 89

MPLAB-C17 USER’S GUIDE
Return Value: None.

Filename: adcset.c
DS51112B-page 90  1998 Microchip Technology Inc.

Chapter 8. Libraries
2.2 Input Capture Functions

CloseCapture1
CloseCapture2
CloseCapture3
CloseCapture4

Device: CloseCapture1 - PIC17C4X, PIC17C756
CloseCapture2 - PIC17C4X, PIC17C756
CloseCapture3 - PIC17C756
CloseCapture4 - PIC17C756

Function: This function disables the specified input capture.

Syntax: #include <captur16.h>
void CloseCapture1 (void);
void CloseCapture2 (void);
void CloseCapture3 (void);
void CloseCapture4 (void);

Remarks: This function simply disables the interrupt of the
specified input capture.

Return Value: None.

Filename: cp1close.c
cp2close.c
cp3close.c
cp4close.c

See also: None.

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4

Device: OpenCapture1 - PIC17C4X, PIC17C756
OpenCapture2 - PIC17C4X, PIC17C756
OpenCapture3 - PIC17C756
OpenCapture4 - PIC17C756

Function: This function configures the specified input capture.

Syntax: #include <captur16.h>
void OpenCapture1 (unsigned char config);
void OpenCapture2 (unsigned char config);
void OpenCapture3 (unsigned char config);
void OpenCapture4 (unsigned char config);
 1998 Microchip Technology Inc. DS51112B-page 91

MPLAB-C17 USER’S GUIDE
Remarks: This function first resets the capture module to the POR
state and then configures the specified input capture for
edge detection, i.e., every falling edge, every rising
edge, every fourth rising edge, or every sixteenth rising
edge.

Capture1 has the ability to become a period register for
Timer3.

The value of config can be a combination of the
following values (defined in captur16.h):

All OpenCapture functions
CAPTURE_INT_ONInterrupts ON
CAPTURE_INT_OFFInterrupts OFF

OpenCapture1
C1_EVERY_FALL_EDGE
C1_EVERY_RISE_EDGE
C1_EVERY_4_RISE_EDGE
C1_EVERY_16_RISE_EDGE
CAPTURE1_PERIOD
CAPTURE1_CAPTURE

OpenCapture2
C2_EVERY_FALL_EDGE
C2_EVERY_RISE_EDGE
C2_EVERY_4_RISE_EDGE
C2_EVERY_16_RISE_EDGE

OpenCapture3
C3_EVERY_FALL_EDGE
C3_EVERY_RISE_EDGE
C3_EVERY_4_RISE_EDGE
C3_EVERY_16_RISE_EDGE

OpenCapture4

C4_EVERY_FALL_EDGE
C4_EVERY_RISE_EDGE
C4_EVERY_4_RISE_EDGE
C4_EVERY_16_RISE_EDGE

The capture functions use a structure to indicate
overflow status of each of the capture modules. This
structure is called CapStatus and has the following bit
fields:

struct capstatus
{

unsigned Cap1OVF:1;
unsigned Cap2OVF:1;
unsigned Cap3OVF:1;
DS51112B-page 92  1998 Microchip Technology Inc.

Chapter 8. Libraries
unsigned Cap4OVF:1;
unsigned :4;

} CapStatus;

In addition to opening the capture,
Timer3 must also be opened with an
OpenTimer3 (...) statement before any of
the captures will operate.

Return Value: None.

Filename: cp1open.c
cp2open.c
cp3open.c
cpopen4.c

See also: Timer3.

Code Example:

#include <p17c756.h>
#include <captur16.h>
#include <timers16.h>
#include <usart16.h>

void main(void)
{

unsigned int result;
char str[7];
// Configure Capture1
OpenCapture1(C1_EVERY_4_RISE_EDGE
 &CAPTURE1_CAPTURE);
// Configure Timer3
OpenTimer3(TIMER_INT_OFF&T3_SOURCE_INT);
// Configure USART
OpenUSART1(USART_TX_INT_OFF&USART_RX_

 INT_OFF&USART_ASYNCH_MODE&
 USART_EIGHT_BIT&USART_CONT_RX);

while(!PIR1bits.CA1IF); // Wait for event
result = ReadCapture1(); // read result
uitoa(result,str);// convert to string
if(!CapStatus.Cap1OVF)
{

putsUSART1(str); // write string
CloseCapture1(); // to USART

}
CloseTimer3();
CloseUSART1();
return;
}

 1998 Microchip Technology Inc. DS51112B-page 93

MPLAB-C17 USER’S GUIDE
ReadCapture1
ReadCapture2
ReadCapture3
ReadCapture4

Device: ReadCapture1 - PIC17C4X, PIC17C756
ReadCapture2 - PIC17C4X, PIC17C756
ReadCapture3 - PIC17C756
ReadCapture4 - PIC17C756

Function: Reads the result of a capture event from the specified
input capture.

Syntax: #include <captur16.h>
unsigned int ReadCapture1 (void);
unsigned int ReadCapture2 (void);
unsigned int ReadCapture3 (void);
unsigned int ReadCapture4 (void);

Remarks: This function reads the value of the respective input
capture SFRs.

Capture1: CA1L,CA1H
Capture2: CA2L,CA2H
Capture3: CA3L,CA3H
Capture4: CA4L,CA4H

Return Value: This function returns the result of the capture event.
The value is a 16-bit unsigned integer.

Filename: cap1read.c
cap2read.c
cap3read.c
cap4read.c

See also: None.
DS51112B-page 94  1998 Microchip Technology Inc.

Chapter 8. Libraries
2.3 I2C Functions

AckI2C

Device: PIC17C756

Function: Generates I2C bus Acknowledge condition.

Syntax: #include <i2c16.h>
void AckI2C (void);

Remarks: This function generates an I2C bus Acknowledge
condition.

Return Value: None.

Filename: acki2c.c

See also: None.

CloseI2C

Device: PIC17C756

Function: Disables the SSP module.

Syntax: #include <i2c16.h>
void CloseI2C (void);

Remarks: Pin I/O returns under control Port register settings.

Return Value: None.

Filename: closei2c.c

See also: None.

DataRdyI2C

Device: PIC17C756

Function: Provides status back to user if the SSPBUF register
contains data.

Syntax: #include <i2c16.h>
unsigned char DataRdyI2C (void);

Remarks: Determines if there is a byte to be read from the SPBUF
register.

Return Value: This function returns 1 if there is data in the SSPBUF
register else returns 0 which indicates no data in
SSPBUF
register.

Filename: dtrdyi2c.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 95

MPLAB-C17 USER’S GUIDE
getsI2C

Device: PIC17C756

Function: This function is used to write a predetermined data
string length to the I2C bus.

Syntax: #include <i2c16.h>
unsigned char getsI2C (unsigned char far
*rdptr,unsigned char length);

Remarks: Master I2C mode: This routine writes a predefined data
string length to the I2C bus. Each byte is retrieved via a
call to the getcI2C function. The actual called function
body is termed ReadI2C. ReadI2C and getcI2C refer to
the same function via a #define statement in the
i2c16.h file.

Slave I2C mode: This routine writes a predefined data
string length to the I2C bus. Each byte is retrieved by
reading the SSPBUF register. There is a time-out period
which can be adjusted so as to prevent the slave from
waiting forever for data reception.

Return Value: Master I2C mode: This function returns 0 if all bytes
have been sent.

Slave I2C mode: This function returns -1 if the slave
device timed-out waiting for a data byte else it returns 0
if the master I2C device sent a Not Ack condition.

Filename: getsi2c.c

See also: ReadI2C

IdleI2C

Device: PIC17C756

Function: Generates wait condition until I2C bus is idle.

Syntax: #include <i2c16.h>

void IdleI2C (void);

Remarks: This function checks the R/W bit of the SSPSTAT
register and the SEN, RSEN, PEN, RCEN and ACKEN
bits of the SSPCON2 register. When the state of any of
these bits is a logic 1 the function loops on itself. When
all of these bits are clear the function terminates and
returns to the calling function. The IdleI2C function is
required since the hardware I2C peripheral does not
allow for spooling of bus sequences/actions. The I2C
DS51112B-page 96  1998 Microchip Technology Inc.

Chapter 8. Libraries
peripheral must be in an idle state before any I2C
operation can be initiated or a bus collision will be
generated.

Return Value: None.

Filename: idlei2c.c

See also: None.

NotAckI2C

Device: PIC17C756

Function: Generates I2C bus Not Acknowledge condition.

Syntax: #include <i2c16.h>
void NotAckI2C (void);

Remarks: This function generates an I2C bus Not Acknowledge
condition.

Filename: noacki2c.c

Return Value: None.

See also: None.

OpenI2C

Device: PIC17C756

Function: Configures the SSP module.

Syntax: #include <i2c16.h>
void OpenI2C (unsigned char sync_mode,
unsigned char slew);

Remarks: OpenI2C resets the SSP module to the POR state and
then configures the module for master/slave mode and
slew rate enable/disable.

The value of function parameter sync_mode can be one
of the following values defined in i2c16.h:

SLAVE_7 I2C Slave mode, 7-bit address
SLAVE_10 I2C Slave mode, 10-bit address
MASTER I2C Master mode

The value of function parameter slew can be one of the
following values defined in i2c16.h:

SLEW_OFF Slew rate disabled for 100kHz mode
SLEW_ON Slew rate enabled for 400kHz mode

Return Value: None.

Filename: openi2c.c
 1998 Microchip Technology Inc. DS51112B-page 97

MPLAB-C17 USER’S GUIDE
See also: None.

CODE EXAMPLES:

The following are simple code examples illustrating the SSP module
configured for I2C master communication. The routines illustrate I2C
communications with a Microchip 24LC01B I2C EE Memory Device. In all
the examples provided no error checking utilizing the function return value
is implemented.

The basic I2C routines for the hardware I2C module of the PIC17C756
such as StartI2C, StopI2C, AckI2C, NotAckI2C, RestartI2C, putcI2C,
getcI2C, putsI2C, getsI2C, etc., are utilized within the specialized EE I2C
routines such as EESequentialRead or EEPageWrite.

#include "p17cxx.h"
#include "i2c16.h"
// FUNCTION PROTOTYPES
void main(void);
// POINTERS and ARRAYS

unsigned char arraywr[] = {1,2,3,4,5,6,7,8,0};
//24LC01B page write

// unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,
// 11,12,13,14,15,16,0};
// 24LC04B page write
unsigned char far *wrptr = arraywr;
unsigned char arrayrd[80];
unsigned char far *rdptr = arrayrd;
unsigned char temp;

//***
#pragma code _main=0x100
void main(void)
{

OpenI2C(MASTER, SLEW_ON);//initialize I2C module
SSPADD = 9; //400Khz Baud clock(9)

@16MHz
//100khz Baud clock(39) @16MHz

temp = 0;
while(1)

{
temp = EEByteWrite(0xA0, 0x30, 0xA5);
temp = EEAckPolling(0xA0);
temp = EECurrentAddRead(0xA1);
temp = EEPageWrite(0xA0, 0x70, wrptr);
temp = EEAckPolling(0xA0);
temp = EESequentialRead(0xA0, 0x70, rdptr, 15);
temp = EERandomRead(0xA0,0x30);
CloseI2C();

}
}

DS51112B-page 98  1998 Microchip Technology Inc.

Chapter 8. Libraries
putsI2C

Device: PIC17C756

Function: This function is used to write out a data string to the I2C
bus.

Syntax: #include <i2c16.h>
unsigned char putsI2C (unsigned char far
*wrptr);

Remarks: Master I2C mode: This routine writes a data string to
the I2C bus until a null character is reached. Each byte
is written via a call to the putcI2C function. The actual
called function body is termed WriteI2C. WriteI2C and
putcI2C refer to the same function via a #define
statement in the i2c16.h file.

Slave I2C mode: This routine writes a string out to the
I2C bus until a null character is reached. Each byte is
placed directly in the SSPBUF register and the putcI2C
routine is not called.

Return Value: Master I2C Mode: This function returns 1 if the slave
I2C device responded with a Not Ack which terminated
the data transfer. The function returns 0 if the null
character was reached in the data string.

Slave I2C mode: This function returns -1 if the master
I2C device responded with a Not Ack which terminated
the data transfer. The function returns 0 if the null
character was reached in the data string

Filename: putsi2c.c

See also: WriteI2C

ReadI2C

Device: PIC17C756

Function: This function is used to read a single byte from the I2C
bus.

Syntax: #include <i2c16.h>
unsigned char ReadI2C (void);

Remarks: This function reads in a single byte from the I2C bus.

Return Value: The return value is the data byte read from the I2C bus.

Filename: readi2c.c

See also: getsI2C ;
 1998 Microchip Technology Inc. DS51112B-page 99

MPLAB-C17 USER’S GUIDE
RestartI2C

Device: PIC17C756

Function: Generates I2C bus restart condition.

Syntax: #include <i2c16.h>
unsigned char RestartI2C (void);

Remarks: This function generates an I2C bus restart condition.

Return Value: This function returns -1 if there was a bus collision error
or returns 0 if the bus restart condition completed
without error.

Filename: rstrti2c.c

See also: None.

StartI2C

Device: PIC17C756

Function: Generates I2C bus start condition.

Syntax: #include <i2c16.h>
unsigned char StartI2C (void);

Remarks: This function generates a I2C bus start condition.

Return Value: This function returns -1 if there was a bus collision error
or returns 0 if the bus start condition completed without
error.

Filename: starti2c.c

See also: None.

StopI2C

Device: PIC17C756

Function: Generates I2C bus stop condition.

Syntax: #include <i2c16.h>
unsigned char StopI2C (void);

Remarks: This function generates an I2C bus stop condition.

Return Value: This function returns -1 if there was a bus collision error
or returns 0 if the bus stop condition completed without
error.

Filename: stopi2c.c

See also: None.
DS51112B-page 100  1998 Microchip Technology Inc.

Chapter 8. Libraries
WriteI2C

Device: PIC17C756

Function: This function is used to write out a single data byte to
the I2C
bus device.

Syntax: #include <i2c16.h>
unsigned char WriteI2C (unsigned char
data_out);

Remarks: This function writes out a single data byte to the I2C bus
device.

Return Value: This function returns -1 if there was a write collision else
it returns a 0.

Filename: writei2c.c

See also: putsI2C

EEAckPolling

Device: PIC17C756

Function: This function is used to generate the acknowledge
polling sequence for Microchip EE I2C memory
devices.

Syntax: #include <i2c16.h> unsigned char
EEAckPolling (unsigned char
control);

Remarks: This function is used to generate the acknowledge
polling sequence for Microchip EE I2C memory
devices. This routine can be used for I2C EE memory
device which utilize acknowledge polling.

Return Value: The return value is -1 if there bus collision error else
return 0.

File name: i2ceeap.c

See also: None.

EEByteWrite

Note: The routines to follow are specialized and specific to EE I2C
memory devices such as, but not limited to, the Microchip
24LC01B. Each of the routines depicted below utilize the
previous basic ’C’ routines in a composite standalone function.
 1998 Microchip Technology Inc. DS51112B-page 101

MPLAB-C17 USER’S GUIDE
Device: PIC17C756

Function: This function is used to write a single byte to the I2C
bus.

Syntax: #include <i2c16.h>
unsigned char EEByteWrite (unsigned char
control,unsigned char address, unsigned
char data);

Remarks: This function writes a single data byte to the I2C bus.
This routine can be used for any Microchip I2C EE
memory device which requires only 1 byte of address
information.

Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns 0 if there
were no errors.

File name: i2ceebw.c

See also: None.

EECurrentAddRead

Device: PIC17C756

Function: This function is used to read a single byte from the I2C
bus.

Syntax: #include <i2c16.h>
unsigned char EECurrentAddRead (unsigned
char control);

Remarks: This function reads in a single byte from the I2C bus.
The address location of the data to read is that of the
current pointer within the I2C EE device. The memory
device contains an address counter that maintains the
address of the last word accessed, incremented by
one.

Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns the contents
of the SSPBUF register.

File name: i2ceecar.c

See also: EERandomRead
DS51112B-page 102  1998 Microchip Technology Inc.

Chapter 8. Libraries
EEPageWrite

Device: PIC17C756

Function: This function is used to write a string of data to the I2C
EEb device.

Syntax: #include <i2c16.h>
unsigned char EEPageWrite (unsigned char
control, unsigned char address, unsigned
char far *wrptr);

Remarks: This function writes a predetermined string length of
data to the I2C EE memory device. The length of the
data string to read is passed as a function parameter.

Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns 0 if there
were no errors.

File name: i2ceepw.c

See also: None.

EERandomRead

Device: PIC17C756

Function: This function is used to read a single byte from the I2C
bus.

Syntax: #include <i2c16.h>
unsigned char EERandomRead (unsigned char
control, unsigned char address);

Remarks: This function reads in a single byte from the I2C bus.
The routine can be used for Microchip I2C EE memory
devices which only require 1 byte of address
information.

Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns the contents
of the SSPBUF register.

File name: i2ceerr.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 103

MPLAB-C17 USER’S GUIDE
EESequentialRead

Device: PIC17C756

Function: This function is used to read in a string of data from the
I2C bus.

Syntax: #include <i2c16.h>
unsigned char EESequentialRead (unsigned
char control, unsigned char address,
unsigned char
far *rdptr, unsigned char length);

Remarks: This function reads in a predefined string length of data
from the I2C bus. The routine can be used for Microchip
I2C EE memory devices which only require 1 byte of
address information. The length of the data string to
read in is passed as a function parameter. The function
parameter ’control’ is the defining address of the I2C
memory device.

Return Value: The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns 0 if there
were no errors.

File name: i2ceesr.c

See also: None.
DS51112B-page 104  1998 Microchip Technology Inc.

Chapter 8. Libraries
2.4 Interrupt Functions

Disable

Device: PIC17C4X, PIC17C756

Function: Disables global interrupts.

Syntax: #include <int16.h>
void Disable (void);

Remarks: This function disables global interrupts by setting the
GLINTD bit of the CPUSTA register.

Return Value: None.

Filename: disable.c

See also: None.

Enable

Device: PIC17C4X, PIC17C756

Function: Enables global interrupts.

Syntax: #include <int16.h>
void Enable (void);

Remarks: This function enables global interrupts by clearing the
GLINTD bit of the CPUSTA register.

Return Value: None.

Filename: enable.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 105

MPLAB-C17 USER’S GUIDE
2.5 I/O Port Functions

ClosePORTB

Device: PIC17C4X, PIC17C756

Function: Disables the interrupts and internal pull-up resistors for
PORTB.

Syntax: #include <portb16.h>
void ClosePORTB (void);

Remarks: This function disables the PORTB interrupt on change
by clearing the RBIE bit in the PIE register. It also
disables the internal pull-up resistors by clearing the
NOT_RBPU bit in the PORTA register.

Return Value: None.

Filename: pbclose.c

See also: None.

CloseRA0INT

Device: PIC17C4X, PIC17C756

Function: Disables the RA0/INT pin interrupt.

Syntax: #include <int16.h>
void CloseRA0INT (void);

Remarks: This function disables the RA0/INT pin interrupt by
clearing the INTE bit in the INTSTA register.

Return Value: None.

Filename: ra0close.c

See also: None.
DS51112B-page 106  1998 Microchip Technology Inc.

Chapter 8. Libraries
DisablePullups

Device: PIC17C4X, PIC17C756

Function: Disables the internal pull-up resistors on PORTB.

Syntax: #include <portb16.h>
void DisablePullups (void);

Remarks: This function disables the internal pull-up resistors on
PORTB by clearing the NOT_RBPU bit in the PORTA
register.

Return Value: None.

Filename: pulldis.c

See also: None.

EnablePullups

Device: PIC17C4X, PIC17C756

Function: Enables the internal pull-up resistors on PORTB.

Syntax: #include <portb16.h>
void EnablePullups (void);

Remarks: This function enables the internal pull-up resistors on
PORTB by setting the NOT_RBPU bit in the PORTA
register.

Return Value: None.

Filename: pullen.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 107

MPLAB-C17 USER’S GUIDE
OpenPORTB

Device: PIC17C4X, PIC17C756

Function: Configures the interrupts and internal pull-up resistors
on PORTB.

Syntax: #include <portb16.h>
void OpenPORTB (unsigned char config);

Remarks: This function configures the interrupts and internal pull-
up resistors on PORTB.

The value of config can be a combination of the
following values (defined in portb16.h):

PORTB_CHANGE_INT_ON Interrupt ON
PORTB_CHANGE_INT_OFF Interrupt OFF
PORTB_PULLUPS_ON pull-up resistors

enabled
PORTB_PULLUPS_OFF pull-up resistors

disabled

Return Value: None.

Filename: pbopen.c

See also: None.

OpenRA0INT

Device: PIC17C4X, PIC17C756

Function: Configures the external interrupt pin RA0/INT.

Syntax: #include <int16.h>
void OpenRA0INT (unsigned char config);

Remarks: This function configures the RA0/INT pin for external
interrupt for interrupt on/off and edge select.

The value of config can be a combination of the
following values (defined in int16.h):

INT_ON Interrupt ON
INT_OFF Interrupt OFF
INT_RISE_EDGE Interrupt on rising edge
INT_FALL_EDGE Interrupt on falling edge

Return Value: None.

Filename: ra0open.c

See also: None.
DS51112B-page 108  1998 Microchip Technology Inc.

Chapter 8. Libraries
2.6 Microwire Functions

CloseMwire

Device: PIC17C756

Function: Disables the SSP module.

Syntax: #include <mwire16.h>
void CloseMwire (void);

Remarks: Pin I/O returns under control DDRx and PORTx register
settings.

Return Value: None.

Filename: closmwir.c

See also: None.

DataRdyMwire

Device: PIC17C756

Function: Provides status back to user if the Microwire device has
completed the internal write cycle.

Syntax: #include <mwire16.h>
unsigned char DataRdyMwire (void);

Remarks: Determines if Microwire device is ready.

Return Value: This function returns 1 if the Microwire device is ready
else returns 0 which indicates that the internal write
cycle is not complete or there could be a bus error.

Filename: drdymwir.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 109

MPLAB-C17 USER’S GUIDE
getsMwire

Device: PIC17C756

Function: This routine reads a string from the Microwire device.

Syntax: #include <mwire16.h>
void getsMwire (unsigned char far *rdptr,
unsigned char length);

Remarks: This function is used to read a predetermined length of
data from a Microwire device. User must first issue start
bit, opcode and address before reading a data string.

Return Value: None.

Filename: getsmwir.c

See also: None.

OpenMwire

Device: PIC17C756

Function: Configures the SSP module.

Syntax: #include <mwire16.h>
void OpenMwire (unsigned char sync_mode);

Remarks: OpenMwire resets the SSP module to the POR state
and then configures the module for Microwire
communications.

The value of the function parameter sync_mode can be
one of the following values defined in mwire16.h:

FOSC_4 clock = Fosc/4
FOSC_16 clock = Fosc/16
FOSC_64 clock = Fosc/64
FOSC_TMR2 clock = TMR2 output/2

Return Value: None.

Filename: openmwir.c

See also: None.

CODE EXAMPLES:

The following are simple code examples illustrating the SSP module
communicating with a Microchip 93LC66 Microwire EE Memory Device. In
all the examples provided no error checking utilizing the value returned
from a function is implemented.

#include "p17c756.h"
#include "mwire16.h"

// 93LC66 x 8
DS51112B-page 110  1998 Microchip Technology Inc.

Chapter 8. Libraries
// FUNCTION PROTOTYPES
void main(void);
void ew_enable(void);
void erase_all(void);
void busy_poll(void);
void write_all(unsigned char data);
void byte_read(unsigned char address);
void read_mult(unsigned char address, unsigned char
far *rdptr, unsigned char length);
void write_byte(unsigned char address, unsigned char
data);
unsigned char arrayrd[20];
unsigned char far *rdptr = arrayrd;
unsigned char var;

// DEFINE 93LC66 MACROS
#define READ 0x0C
#define WRITE 0x0A
#define ERASE 0x0E
#define EWEN1 0x09
#define EWEN2 0x80
#define ERAL1 0x09
#define ERAL2 0x00
#define WRAL1 0x08
#define WRAL2 0x80
#define EWDS1 0x08
#define EWDS2 0x00
#define W_CS PORTAbits.RA2
#pragma code _main=0x100
void main(void)
{

W_CS = 0; //ensure CS is negated
OpenMwire(FOSC_16); //enable SSP perpiheral
ew_enable(); //send erase/write enable
write_byte(0x13, 0x34); //write byte

(address,data)
busy_poll();
Nop();
byte_read(0x13); //read single byte

(address)
read_mult(0x10, rdptr, 10); //read multiple bytes
erase_all(); //erase entire array
CloseMwire(); //disable SSP peripheral
}

void busy_poll(void)
{

W_CS = 1;
do
 1998 Microchip Technology Inc. DS51112B-page 111

MPLAB-C17 USER’S GUIDE
{
var = DataRdyMwire();//test for busy/ready

} while(var != 0);
W_CS = 0;

}
void write_byte(unsigned char address, unsigned char
data)
{

W_CS = 1;
putcMwire(WRITE);//write command
putcMwire(address);//address
putcMwire(data);//write single byte
W_CS = 0;

}

void byte_read(unsigned char address)
{

W_CS = 1;
getcMwire(READ,address);//read one byte
W_CS = 0;

}

void read_mult(unsigned char address, unsigned char
far *rdptr, unsigned char length)
{

W_CS = 1;
putcMwire(READ); //read command
putcMwire(address); //address (A7 - A0)
getsMwire(rdptr, length);//read multiple bytes

W_CS = 0;
}

void ew_enable(void)
{

W_CS = 1;//assert chip select
putcMwire(EWEN1);//enable write command byte 1
putcMwire(EWEN2);//enable write command byte 2
W_CS = 0;//negate chip select

}

void erase_all(void)
{

W_CS = 1;
putcMwire(ERAL1);//erase all command byte 1
putcMwire(ERAL2);//erase all command byte 2
W_CS = 0;

}

DS51112B-page 112  1998 Microchip Technology Inc.

Chapter 8. Libraries
ReadMwire

Device: PIC17C756

Function: This function is used to read a single byte from a
Microwire device.

Syntax: #include <mwire16.h>
unsigned char ReadMwire (unsigned char
high_byte, unsigned char low_byte);

Remarks: This function reads in a single byte from a Microwire
device. The start bit, opcode and address compose the
high and low bytes passed into this function.

Return Value: The return value is the data byte read from the
Microwire device.

Filename: readmwir.c

See also: None.

WriteMwire

Device: PIC17C756

Function: This function is used to write out a single data byte.

Syntax: #include <mwire16.h>
unsigned char WriteMwire (unsigned char
data_out);

Remarks: This function writes out single data byte to a Microwire
device utilizing the SSP module.

Return Value: This function returns -1 if there was a write collision else
it returns a 0.

Filename: writmwir.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 113

MPLAB-C17 USER’S GUIDE
2.7 Pulse Width Modulation Functions

ClosePWM1
ClosePWM2
ClosePWM3

Device: ClosePWM1 - PIC17C4X, PIC17C756
ClosePWM2 - PIC17C4X, PIC17C756
ClosePWM3 - PIC17C756

Function: This function disables the specified PWM channel.

Syntax: #include <pwm16.h>
void ClosePWM1 (void);
void ClosePWM2 (void);
void ClosePWM3 (void);

Remarks: This function simply disables the specified PWM
channel by clearing the PWMxON bit in the respective
TCON2 or TCON3
registers.

Return Value: None.

Filename: pw1close.c
pw2close.c
pw3close.c

See also: None.

OpenPWM1
OpenPWM2
OpenPWM3

Device: OpenPWM1 - PIC17C4X, PIC17C756
OpenPWM2 - PIC17C4X, PIC17C756
OpenPWM3 - PIC17C756

Function: Configures the specified PWM channel.

Syntax: #include <pwm16.h>
void OpenPWM1 (char period);
void OpenPWM2 (unsigned char config,
 char period);
void OpenPWM3 (unsigned char config,
 char period);

Remarks: This function configures the specified PWM channel for
period and for time base. PWM1 uses only Timer1.
PWM2 and PWM3 can use either Timer1 or Timer2.
Timer1 and Timer2 must be set up as individual 8-bit
timers for PWM mode to work correctly.
DS51112B-page 114  1998 Microchip Technology Inc.

Chapter 8. Libraries
The value of period can be any value from 0x00 to 0xff.
This value determines the PWM frequency by using the
following formula:

Period1 = [(PR1)+1] x 4 x Tosc

Period2 = [(PR1)+1] x 4 x Tosc
= [(PR2)+1] x 4 x Tosc

Period3 = [(PR1)+1] x 4 x Tosc
= [(PR2)+1] x 4 x Tosc

The value of config can be one of the following values
(defined in captur16.h):

OpenPWM2
OpenPWM3

T1_SOURCETimer1 is clock source
T2_SOURCETimer2 is clock source

In addition to opening the PWM, Timer1 or Timer2 must
also be opened with an OpenTimer1(...) or
OpenTimer2(...) statement before any of the PWMs
will operate.

Return Value: None.

Filename: pw1open.c
pw2open.c
pw3open.c

See also: Timer1, Timer2.

Code Example:

#include <p17c756.h>
#include <pwm16.h>
#include <timers16.h>
void main(void)
{

int i;
SetDCPWM2(0); //set duty cycle
OpenPWM2(T1_SOURCE,0xff); //open PW2
OpenTimer1(TIMER_INT_OFF&T1_SOURCE_
 INT&T1_T2_8BIT); //open timer
for(i=0;i<1024;i++)
{

while(!PIR1bits.TMR1IF);
PIR1bits.TMR1IF = 0;
SetDCPWM2(i); //slowly increment
 duty cycle

}
ClosePWM2(); //close modules
CloseTimer1();
return;
}

 1998 Microchip Technology Inc. DS51112B-page 115

MPLAB-C17 USER’S GUIDE
SetDCPWM1
SetDCPWM2
SetDCPWM3

Device: SetDCPWM1 - PIC17C4X, PIC17C756
SetDCPWM2 - PIC17C4X, PIC17C756
SetDCPWM3 - PIC17C756

Function: Writes a new dutycycle value to the specified PWM
channel dutycycle registers.

Syntax: #include <pwm16.h>
void SetDCPWM1 (unsigned int dutycycle);
void SetDCPWM2 (unsigned int dutycycle);
void SetDCPWM3 (unsigned int dutycycle);

Remarks: This function writes the new value for dutycycle to the
specified PWM channel dutycycle registers.

PWM1: PW1DCL,PW1DCH

PWM2: PW2DCL,PW2DCH

PWM3: PW3DCL,PW3DCH

The value of dutycycle can be any 10-bit number. Only
the lower 10-bits of dutycycle are written into the
dutycycle registers.

The dutycycle, or more specifically the high time of the
PWM waveform, can be calculated from the following
formula:

PWMx Dutycycle = (DCx<9:0>) x Tosc

where DCx<9:0> is the 10-bit value from the
PWxDCH:PWxDCL registers.

The maximum resolution of the PWM waveform can be
calculated from the period using the following formula:

Resolution (bits) = log(Fosc/Fpwm) / log(2)

Return Value: None.

Filename: pw1set.c
pw2set.c
pw3set.c

See also: None.
DS51112B-page 116  1998 Microchip Technology Inc.

Chapter 8. Libraries
2.8 Reset Functions

isBOR

Device: PIC17C756

Function: Detects a reset condition due to the Brown-out Reset
circuit.

Syntax: #include <reset16.h>
char isBOR (void);

Remarks: This function detects if the microcontroller was reset
due to the Brown-out Reset circuit. This condition is
indicated by the following status bits:

POR = 1
BOR = 0
TO = don’t care
PD = don’t care

Include the statement #define BOR_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2 of
this manual (DS51112A) for information on compilers.
Refer to the MPASM User’s Guide with MPLINK and
MPLIB (DS33014F) for information on linking.

Return Value: This function returns 1 if the reset was due to the
Brown- out Reset circuit, otherwise 0 is returned.

Filename: reset16.c

See also: None.

isMCLR

Device: PIC17C756

Function: Detects if a MCLR reset during normal operation
occurred.

Syntax: #include <reset16.h>
char isMCLR (void);

Remarks: This function detects if the microcontroller was reset via
the MCLR pin while in normal operation. This situation
is indicated by the following status bits:

POR = 1
BOR = 1 if Brown-out is enabled
TO = 1 if WDT is enabled
PD = 1

Return Value: This function returns 1 if the reset was due to MCLR
during normal operation, otherwise 0 is returned.
 1998 Microchip Technology Inc. DS51112B-page 117

MPLAB-C17 USER’S GUIDE
Filename: reset16.c

See also: None.

isPOR

Device: PIC17C4X, PIC17C756

Function: Detects a Power-on Reset condition.

Syntax: #include <reset16.h>
char isPOR (void);

Remarks: This function detects if the microcontroller just left a
Power-on Reset. This condition is indicated by the
following status bits:

PIC17C4X
TO = 1
PD = 1

This condition also for MCLR reset during normal
operation and CLRWDT instruction executed

PIC17C756
POR = 0
BOR = 0
TO = 1
PD = 1

Return Value: This function returns 1 if the device just left a Power-on
Reset, otherwise 0 is returned.

Filename: reset16.c

See also: None.

isWDTTO

Device: PIC17C4X, PIC17C756

Function: Detects a reset condition due to the WDT during normal
operation.

Syntax: #include <reset16.h>
char isWDTTO (void);

Remarks: This function detects if the microcontroller was reset
due to the WDT during normal operation. This condition
is indicated by the following status bits:

PIC17C4X
TO = 0
PD = 1
DS51112B-page 118  1998 Microchip Technology Inc.

Chapter 8. Libraries
PIC17C756
POR = 1
BOR = 1
TO = 0
PD = 1

Include the statement #define WDT_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2 of
this manual (DS51112) for information on compilers.
Refer to the MPASM User’s Guide with MPLINK and
MPLIB (DS33014F) for information on linking.

Return Value: This function returns 1 if the reset was due to the WDT
during normal operation, otherwise 0 is returned.

Filename: reset16.c

See also: None.

isWDTWU

Device: PIC17C4X, PIC17C756

Function: Detects when the WDT wakes up the device from
SLEEP.

Syntax: #include <reset16.h>
char isWDTWU (void);

Remarks: This function detects if the microcontroller was brought
out of SLEEP by the WDT. This condition is indicated by
the following status bits:

PIC17C4X
TO = 0
PD = 0

PIC17C756
POR = 1
BOR = 1
TO = 0
PD = 0

Include the statement #define WDT_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2 of
this manual (DS51112B) for information on compilers.
Refer to the MPASM User’s Guide with MPLINK and
MPLIB (DS33014F) for information on linking.

Return Value: This function returns 1 if device was brought out of
SLEEP by the WDT, otherwise 0 is returned.

Filename: reset16.c
 1998 Microchip Technology Inc. DS51112B-page 119

MPLAB-C17 USER’S GUIDE
See also: None.

sWU

Device: PIC17C4X, PIC17C756

Function: Detects if the microcontroller was just waken up from
SLEEP via the MCLR pin or interrupt.

Syntax: #include <reset16.h>
char isWU (void);

Remarks: This function detects if the microcontroller was brought
out of SLEEP by the MCLR pin or an interrupt. This
condition is indicated by the following status bits:

PIC17C4X
TO = 1
PD = 0

PIC17C756
POR = 1
BOR = 1
TO = 1
PD = 0

Return Value: This function returns 1 if the device was brought out of
SLEEP by the MCLR pin or an interrupt, otherwise 0 is
returned.

Filename: reset16.c

See also: None.

StatusReset

Device: PIC17C756

Function: Sets the POR and BOR bits in the CPUSTA register.

Syntax: #include <reset16.h>
void StatusReset (void);

Remarks: This function sets the POR and BOR bits in the CPUSTA
register. These bits must be set in software after a
Power-on Reset has occurred.

Return Value: None.

Filename: reset16.c

See also: None.
DS51112B-page 120  1998 Microchip Technology Inc.

Chapter 8. Libraries
2.9 i SPI™ Functions

CloseSPI

Device: PIC17C756

Function: Disables the SSP module.

Syntax: #include <spi16.h>
void CloseSPI (void);

Remarks: This function disables the SSP module. Pin I/O returns
under the control of the DDRx and PORTx Registers.

Return Value: None.

Filename: closespi.c

See also: None.

DataRdySPI

Device: PIC17C756

Function: Determines if the SSPBUF contains data.

Syntax: #include <spi16.h>
unsigned char DataRdySPI (void);

Remarks: This function determines if there is a byte to be read
from the SSPBUF register.

Return Value: This function returns 1 if there is data in the SSPBUF
register else returns a 0.

Filename: dtrdyspi.c

See also: None.

getsSPI

Device: PIC17C756

Function:Reads in data string from the SPI bus.

Syntax: #include <spi16.h>
void getsSPI (unsigned char far *rdptr,
unsigned char length);

Remarks: This function reads in a predetermined data string
length from the SPI bus. The length of the data string to
read in is passed as a function parameter. Each byte is
retrieved via a call to the getcSPI function. The actual
called function body is termed ReadSPI. ReadSPI and
getcSPI refer to the same function via a #define
statement in the spi16.h file.
 1998 Microchip Technology Inc. DS51112B-page 121

MPLAB-C17 USER’S GUIDE
Return Value: None.

Filename: getsspi.c

See also: ReadSPI

OpenSPI

Device: PIC17C756

Function: Initializes the SSP module.

Syntax: #include <spi16.h>
void OpenSPI (unsigned char sync_mode,
unsigned
char bus_mode, unsigned char smp_phase);

Remarks: This function setups the SSP module for use with a SPI
bus device.

Return Value: None.

Filename: openspi.c

See also: None.

The value of sync_mode, bus_mode and smp_phase
parameters can be one of the following values defined
in spi16.h:

sync_mode:
FOSC_4 SPI Master mode, clock = Fosc/4
FOSC_16 SPI Master mode, clock = Fosc/16
FOSC_64 SPI Master mode, clock = Fosc/64
FOSC_TMR2 SPI Master mode, clock = TMR2

output/2
SLV_SSON SPI Slave mode, /SS pin control

enabled
SLV_SSOFF SPI Slave mode, /SS pin control

disabled

bus_mode:
MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

smp_phase:
SMPEND Input data sample at end of data

out
SMPMID Input data sample at

middle of data out
DS51112B-page 122  1998 Microchip Technology Inc.

Chapter 8. Libraries
CODE EXAMPLE:

The following are simple code examples illustrating the SSP module
communicating with a Microchip 24C080 SPI EE Memory Device. In all the
examples provided no error checking utilizing the value returned from a
function is implemented.

#include <p17c756.h>
#include <spi16.h>
// FUNCTION PROTOTYPES
void main(void);
void set_wren(void);
void busy_polling(void);
unsigned char status_read(void);
void status_write(unsigned char data);
void byte_write(unsigned char addhigh, unsigned char
 addlow, unsigned char data);
void page_write(unsigned char addhigh, unsigned char
 addlow, unsigned char far *wrptr);
void array_read(unsigned char addhigh, unsigned char
 addlow, unsigned char far *rdptr,
 unsigned char count);
 unsigned char byte_read
 (unsigned char addhigh,
 unsigned char addlow);
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,11,
 12,13,14,15,16,0};
 //24C040/080/160 page write size
unsigned char far *wrptr = arraywr;
unsigned char arrayrd[32];
unsigned char far *rdptr = arrayrd;
unsigned char var;
#define SPI_CS PORTAbits.RA2
//**
#pragma code _main=0x100
void main(void)
{
SPI_CS = 1; //ensure SPI memory device Chip
 Select is reset
OpenSPI(FOSC_16, MODE_00, SMPEND);
set_wren();
status_write(0);
busy_polling();
set_wren();
byte_write(0x00, 0x61, ’E’);
busy_polling();
var = byte_read(0x00, 0x61);
set_wren();
page_write(0x00, 0x30, wrptr);
busy_polling();
 1998 Microchip Technology Inc. DS51112B-page 123

MPLAB-C17 USER’S GUIDE
array_read(0x00, 0x30, rdptr, 16);
var = status_read();
CloseSPI();
while(1);

}
void set_wren(void)
{
SPI_CS = 0; //assert chip select
var = putcSPI(WREN); //send write enable command
SPI_CS = 1; //negate chip select

}
void page_write (unsigned char addhigh, unsigned char
 addlow, unsigned char far *wrptr)
{
SPI_CS = 0; //assert chip select
var = putcSPI(WRITE); //send write command
var = putcSPI(addhigh); //send high byte of address
var = putcSPI(addlow); //send low byte of address
putsSPI(wrptr); //send data byte
SPI_CS = 1; //negate chip select

}
void array_read (unsigned char addhigh, unsigned char
 addlow, unsigned char far
 *rdptr,nsigned char count)
{
SPI_CS = 0; //assert chip select
var = putcSPI(READ); //send read command
var = putcSPI(addhigh); //send high byte of address
var = putcSPI(addlow); //send low byte of address
getsSPI(rdptr, count); //read multiple bytes
SPI_CS = 1;

}
void byte_write (unsigned char addhigh, unsigned char
 addlow, unsigned char data)
{
SPI_CS = 0; //assert chip select
var = putcSPI(WRITE); //send write command
var = putcSPI(addhigh); //send high byte of address
var = putcSPI(addlow); //send low byte of address
var = putcSPI(data); //send data byte
SPI_CS = 1; //negate chip select

}
unsigned char byte_read (unsigned char addhigh,
 unsigned
 char addlow)
{
SPI_CS = 0; //assert chip select
var = putcSPI(READ); //send read command
var = putcSPI(addhigh); //send high byte of address
DS51112B-page 124  1998 Microchip Technology Inc.

Chapter 8. Libraries
var = putcSPI(addlow); //send low byte of address
var = getcSPI(); //read single byte
SPI_CS = 1;
return (var);

}
unsigned char status_read (void)
{
SPI_CS = 0; //assert chip select
var = putcSPI(RDSR); //send read status command

var = getcSPI(); //read data byte
SPI_CS = 1; //negate chip select
return (var);

}
void status_write (unsigned char data)
{
SPI_CS = 0;
var = putcSPI(WRSR); //write status command
var = putcSPI(data); //status byte to write
SPI_CS = 1; //negate chip select

}
void busy_polling (void)
{
do

{
SPI_CS = 0; //assert chip select
var = putcSPI(RDSR); //send read status command
var = fetcSPI(); //read data byte
SPI_CS = 1; //negate chip select

}while (var & 0x01); //stay in loop until
 notbusy
}

putsSPI

Device: PIC17C756

Function: Writes data string out to the SPI bus.

Syntax: #include <spi16.h>
void putsSPI (unsigned char far *wrptr);

Remarks: This function writes out a data string to the SPI bus
device. The routine is terminated by reading a null
character in the data string.

Return Value: None.

Filename: putsspi.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 125

MPLAB-C17 USER’S GUIDE
ReadSPI

Device: PIC17C756

Function: Reads a single byte from the SSPBUF register.

Syntax: #include <spi16.h>
unsigned char ReadSPI (void);

Remarks: This function initiates a SPI bus cycle for the acquisition
of a byte of data. ReadSPI and getcSPI refer to the
same function via a #define statement in the spi16.h
file.

Return Value: This function returns a byte of data read during a SPI
read cycle.

Filename: readspi.c

See also: None.

WriteSPI

Device: PIC17C756

Function: Writes a single byte of data out to the SPI bus.

Syntax: #include <spi16.h>
unsigned char WriteSPI (unsigned char
data_out);

Remarks: This function writes a single data byte out and then
checks for a write collision. WriteSPI and putcSPI refer
to the same function via a #define statement in the
spi16.h file.

Return Value: This function returns -1 if a write collision occurred else
a 0 if no write collision.

Filename: writespi.c

See also: None.
DS51112B-page 126  1998 Microchip Technology Inc.

Chapter 8. Libraries
2.10 Timer Functions

CloseTimer0
CloseTimer1
CloseTimer2
CloseTimer3

Device: PIC17C4X, PIC17C756

Function: This function disables the specified timer.

Syntax: #include <timers16.h>
void CloseTimer0 (void);
void CloseTimer1 (void);
void CloseTimer2 (void);
void CloseTimer3 (void);

Remarks: This function simply disables the interrupt and the
specified timer.

Return Value: None.

Filename: t0close.c
t1close.c
t2close.c
t3close.c

See also: None.

OpenTimer0
OpenTimer1
Opentimer2
OpenTimer3

Device: PIC17C4X, PIC17C756

Function: Configures the specified timer.

Syntax: #include <timers16.h>
void OpenTimer0 (unsigned char config);
void OpenTimer1 (unsigned char config);
void OpenTimer2 (unsigned char config);
void OpenTimer3 (unsigned char config);

Remarks: This function configures the specified timer for
interrupts, internal/external clock source, prescaler, etc.

Timer0 -> 16-bit
Timer1 -> 8-bit
Timer2 -> 8-bit
Timer3 -> 16-bit
 1998 Microchip Technology Inc. DS51112B-page 127

MPLAB-C17 USER’S GUIDE
Timer0 has a programmable prescaler from 1:1 to
1:256. Timer1 and Timer2 can be concatenated to be a
16-bit timer.

The value of config can be a combination of the
following values (defined in timers16.h):

All OpenTimer functions
TIMER_INT_ON Interrupts ON
TIMER_INT_OFF Interrupts OFF

OpenTimer0
T0_EDGE_FALL External clock on falling edge
T0_EDGE_RISE External clock on rising edge

T0_SOURCE_EXT External clock source (I/O pin)
T0_SOURCE_INT Internal clock source (Tosc)

T0_PS_1_1 Prescale -> 1:1
T0_PS_1_2 1:2
T0_PS_1_4 1:4
T0_PS_1_8 1:8
T0_PS_1_16 1:16
T0_PS_1_32 1:32
T0_PS_1_64 1:64
T0_PS_1_128 1:128
T0_PS_1_256 1:256

OpenTimer1
T1_SOURCE_EXT External clock source (I/O pin)
T1_SOURCE_INT Internal clock source (Tosc)
 T1_T2_8BIT Timer1 and Timer2 individual

 8-bit timers
T1_T2-16BIT Timer1 and Timer2 one 16-bit

timer

OpenTimer2
T2_SOURCE_EXT External clock source (I/O pin)
T2_SOURCE_INT Internal clock source (Tosc)

OpenTimer3
T3_SOURCE_EXT External clock source (I/O pin)
T3_SOURCE_INT Internal clock source (Tosc)

Return Value: None.

Filename: t0open.c
t1open.c
t2open.c
3open.c

See also: None.
DS51112B-page 128  1998 Microchip Technology Inc.

Chapter 8. Libraries
CODE EXAMPLE:

#include <p17c756.h>
#include <timers16.h>
#include <usart16.h>
void main (void)
{

int result;
char str[7];
// configure timer0

OpenTimer0(TIMER_INT_OFF&T0_SOURCE_NT&T0_PS_1_32);
// configure USART
OpenUSART1(USART_TX_INT_OFF&USART_RX_
 INT_OFF&USART_ASYNCH_MODE&
 USART_EIGHT_BIT&USART_CONT_RX);
while(1)
{

while(!PORTBbits.RB3);//wait for RB3 high
result = ReadTimer0();//read timer
if(result>0xc000)
break;
WriteTimer0(0);//write new value
uitoa(result,str);//convert to string
putsUSART1(str);//print string
}

CloseTimer0();//close modules
CloseUSART1();
return;
}

ReadTimer0
ReadTimer1
ReadTimer2
ReadTimer3
ReadTimer1_2

Device: PIC17C4X, PIC17C756

Function: Reads the contents of the specified timer register(s).

Syntax: #include <timers16.h>
unsigned int ReadTimer0 (void);
unsigned char ReadTimer1 (void);
unsigned char ReadTimer2 (void);
unsigned int ReadTimer3 (void);
unsigned int ReadTimer1_2 (void);
 1998 Microchip Technology Inc. DS51112B-page 129

MPLAB-C17 USER’S GUIDE
Remarks: This function reads the value of the respective timer
register(s).

Timer0: TMR0L,TMR0H
Timer1: TMR1
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer1_2: TMR2:TMR1

Return Value: These functions returns the value of the timer
register(s) which may be 8-bits or 16-bits.

Timer0: int (16-bits)
Timer1: char (8-bits)
Timer2: char (8-bits)
Timer3: int (16-bits)
Timer1_2: int (16-bits)

Filename: t0read.c
t1read.c
t2read.c
t3read.c

See also: None.

WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3
WriteTimer1_2

Device: PIC17C4X, PIC17C756

Function: Reads the contents of the specified timer register(s).

Syntax: #include <timers16.h>
void WriteTimer0 (unsigned int timer);
void WriteTimer1 (unsigned char timer);
void WriteTimer2 (unsigned char timer);
void WriteTimer3 (unsigned int timer);
void WriteTimer1_2 (unsigned int timer);

Remarks: This function writes the value timer to the respective
timer register(s).

Timer0: TMR0L,TMR0H
Timer1: TMR1
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer1_2: TMR2:TMR1

These functions write a value to the timer register(s)
which may be 8-bits or 16-bits.

Timer0: int (16-bits)
DS51112B-page 130  1998 Microchip Technology Inc.

Chapter 8. Libraries
Timer1: char (8-bits)
Timer2: char (8-bits)
Timer3: int (16-bits)
Timer1_2: int (16-bits)

Return Value: None.

Filename: t0write.c
t1write.c
t2write.c
t3write.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 131

MPLAB-C17 USER’S GUIDE
2.11 USART Functions

BusyUSART1
BusyUSART2

Device: BusyUSART1: PIC17C4X, PIC17C756
BusyUSART2: PIC17C756

Function: Returns the status of the TRMT flag bit in the TXSTA?
register.

Syntax: #include <usart16.h>
char BusyUSART1 (void);
Char BusyUSART2 (void);

Remarks: This function returns the status of the TRMT flag bit in
the TXSTA? register.

Return Value: If the USART transmitter is busy, a value of 1 is
returned. If the USART receiver is idle, then a value of 0
is returned.

Filename: u1busy.c
u2busy.c

See also: None.

CloseUSART1
CloseUSART2

Device: CloseUSART1: PIC17C4X, PIC17C756
CloseUSART2: PIC17C756

Function: Disables the specified USART.

Syntax: #include <usart16.h>
void CloseUSART1 (void);
void CloseUSART2 (void);

Remarks: This function disables the specified USARTs interrupts,
transmitter, and receiver.

Return Value: None.

Filename: u1close.c
u2close.c

See also: None.
DS51112B-page 132  1998 Microchip Technology Inc.

Chapter 8. Libraries
DataRdyUSART1
DataRdyUSART2

Device: DataRdyUSART1: PIC17C4X, PIC17C756
DataRdyUSART2: PIC17C756

Function: Returns the status of the RCIF flag bit in the PIR
register.

Syntax: #include <usart16.h>
char DataRdyUSART1 (void);
char DataRdyUSART2 (void);

Remarks: This function returns the status of the RCIF flag bit in
the PIR
register.

Return Value: If data is available, a value of 1 is returned. If data is not
available, then a value of 0 is returned.

Filename: u1drdy.c
u2drdy.c

See also: None.

getcUSART1
getcUSART2

Device: getcUSART1: PIC17C4X, PIC17C756
getcUSART2: PIC17C756

Function: Reads one character from the specified USART.

Syntax: #include <usart16.h>
char getcUSART1 (void);
char getcUSART2 (void);

Remarks: This function performs the same function as
ReadUSARTx. Please refer to the description of that
function.

Return Value: The next received character from the specified USART.

Filename: #define in usart16.h

See also: ReadUSART1, ReadUSART2.
 1998 Microchip Technology Inc. DS51112B-page 133

MPLAB-C17 USER’S GUIDE
getsUSART1
getsUSART2

Device: getsUSART1: PIC17C4X, PIC17C756
getsUSART2: PIC17C756

Function: Reads a string of characters until the specified number
of characters have been read.

Syntax: #include <usart16.h>
void getsUSART1 (char *buffer, unsigned

 char len);
void getsUSART2 (char *buffer, unsigned

 char len);

Remarks: This function waits for and reads len number of
characters out of the specified USART. There is no
timeout when waiting for characters to arrive. After len
characters have been written to the string, a null
character is appended to the end of the string.

The value of buffer is a pointer to the string where
incoming characters are to be stored. The length of this
string should be at least len + 1.

The value of len is limited to the available amount of
RAM locations remaining in any one bank - 1. There
must be one extra location to store the null character.

Return Value: None.

Filename: u1gets.c
u2gets.c

See also: None.

OpenUSART1
OpenUSART2

Device: OpenUSART1: PIC17C4X, PIC17C756
OpenUSART2: PIC17C756

Function: Configures the specified USART module.

Syntax: #include <usart16.h>
void OpenUSART1 (unsigned char config,

char spbrg);
void OpenUSART2 (unsigned char config,

char spbrg);
DS51112B-page 134  1998 Microchip Technology Inc.

Chapter 8. Libraries
Remarks: This function configures the USART module for
interrupts, baud rate, sync or async operation, 8- or 9-
bit mode, master or slave mode, and single or
continuous reception.

The value of config can be a combination of the
following values (defined in usart16.h):

USART_TX_INT_ON Transmit interrupt ON
USART_TX_INT_OFF Transmit interrupt OFF
USART_RX_INT_ON Receive interrupt ON
USART_RX_INT_OFF Receive interrupt OFF

USART_ASYNCH_MODE Asynchronous Mode
USART_SYNCH_MODE Synchronous Mode

USART_EIGHT_BIT 8-bit transmit/receive
USART_NINE_BIT 9-bit transmit/receive

USART_SYNC_SLAVE Synchronous slave mode
USART_SYNC_MASTER Synchronous master mode

USART_SINGLE_RX Single reception
USART_CONT_RX Continuous reception

The value of spbrg determines the baud rate of the
USART. The formulas for baud rate are:

asynchronous mode: FOSC/(64 (spbrg + 1))
synchronous mode: FOSC/(4 (spbrg + 1))

Return Value: None.

Filename: u1open.c
u2open.c

See also: None.

Code Example:
#include <p17c756.h>
#include <usart16.h>
void main(void)
{

// configure USART
OpenUSART1(USART_TX_INT_OFF&USART_RX_

 INT_OFF&USART_ASYNCH_MODE&
 USART_EIGHT_BIT&USART_
 CONT_RX);
while(1)
{

while(!PORTAbits.RA0) //wait for RA0 high
WriteUSART1(PORTD); //write value of PORTD
if(PORTD == 0x80)
break;

}

 1998 Microchip Technology Inc. DS51112B-page 135

MPLAB-C17 USER’S GUIDE
CloseUSART1();
return;

}

putcUSART1
putcUSART2

Device: putcUSART1: PIC17C4X, PIC17C756
putcUSART2: PIC17C756

Function: Writes one character to the specified USART.

Syntax: #include <usart16.h>
void putcUSART1 (char data);
void putcUSART2 (char data);

Remarks: This function performs the same function as
WriteUSARTx. Please refer to the description of that
function.

Return Value: None.

Filename: #define in usart16.h

See also: WriteUSART1, WriteUSART2.

putsUSART1
putsUSART2

Device: putsUSART1: PIC17C4X, PIC17C756
putsUSART2: PIC17C756

Function: Writes a string of characters to the USART including the
null character.

Syntax: #include <usart16.h>
void putsUSART1 (char *data);
void putsUSART2 (char *data);

Remarks: This function writes a string of data to the USART
including the null character.

The value of data is a pointer to a string in contiguous
RAM locations within the same bank.

Return Value: None.

Filename: u1puts.c
u2puts.c

See also: None.
DS51112B-page 136  1998 Microchip Technology Inc.

Chapter 8. Libraries
ReadUSART1
ReadUSART2

Device: ReadUSART1: PIC17C4X, PIC17C756
ReadUSART2: PIC17C756

Functio Reads a byte out of the USART receive buffer, including
the 9th bit if enabled.

Syntax: #include <usart16.h>
char ReadUSART1 (void);
char ReadUSART2 (void);

Remarks: This function reads a byte out of the USART receive
buffer. The 9th bit is recorded as well as the status bits.
The status bits and the 9th data bits are saved in a
union named USART_Status with the following
declaration:

union USART
{
unsigned char val;
struct
{

unsigned RX1_NINE:1;
unsigned TX1_NINE:1;
unsigned FRAME_ERROR1:1;
unsigned OVERRUN_ERROR1:1;
unsigned RX2_NINE:1;
unsigned TX2_NINE:1;
unsigned FRAME_ERROR2:1;
unsigned OVERRUN_ERROR2:1;

} ;
};

The 9th bit is recorded only if 9-bit mode is enabled.
The status bits are always recorded.

Return Value: This function returns the next character in the USART’s
receive buffer.

Filename: u1read.c
u2read.c

See also: getcUSART1, getcUSART2.
 1998 Microchip Technology Inc. DS51112B-page 137

MPLAB-C17 USER’S GUIDE
WriteUSART1
WriteUSART2

Device: WriteUSART1: PIC17C4X, PIC17C756
WriteUSART2: PIC17C756

Function: Writes a byte to the USART transmit buffer, including
the 9th bit if enabled.

Syntax: #include <usart16.h>
void WriteUSART1 (char data);
void WriteUSART2 (char data);

Remarks: This function writes a byte to the USART transmit
buffer. The
9th bit is written as well. The 9th data bits are saved in a
union named USART_Status with the following
declaration:
union USART

{
unsigned char val;
struct
{
unsigned RX1_NINE:1;
unsigned TX1_NINE:1;
unsigned FRAME_ERROR1:1;
unsigned OVERRUN_ERROR1:1;
unsigned RX2_NINE:1;
unsigned TX2_NINE:1;
unsigned FRAME_ERROR2:1;
unsigned OVERRUN_ERROR2:1;
} ;
};

The 9th bit is used only if 9-bit mode is enabled.

The value of data can be any number from 0x00 to 0xff.

Return Value: None.

Filename: u1write.c
u2write.c

See also: putcUSART1, putcUSART2.
DS51112B-page 138  1998 Microchip Technology Inc.

Chapter 8. Libraries
3.0 Software Peripheral Library

3.1 External LCD Functions

BusyXLCD

Device: PIC17C4X, PIC17C756

Function: Returns the status of the busy flag of the Hitachi
HD44780 LCD controller.

Syntax: #include <xlcd.h>
unsigned char BusyXLCD (void);

Remarks: This function returns the status of the busy flag of the
Hitachi HD44780 LCD controller.

Return Value: This function returns 0 if the LCD controller is not busy,
otherwise 1 is returned.

Filename: xlcd.c

See also: None.

OpenXLCD

Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins and initializes the Hitachi
HD44780 LCD controller.

Syntax: #include <xlcd.h>
void OpenXLCD (unsigned char lcdtype);

Remarks: This function configures the I/O pins used to control the
Hitachi HD44780 LCD controller. It also initializes this
controller.

The I/O pin definitions that must be made to ensure that
the external LCD operates correctly are:

Control I/O pin definitions
RW_PIN PORTxbits.Rx?
TRIS_RW DDRxbits.Rx?
RS_PIN PORTxbits.Rx?
TRIS_RS DDRxbits.Rx?
E_PIN PORTxbits.Rx?
TRIS_E DDRxbits.Rx?
x is the PORT, ? is the pin number

Data Port definitions
DATA_PORT PORTx

TRIS_DATA_PORTDDRx
 1998 Microchip Technology Inc. DS51112B-page 139

MPLAB-C17 USER’S GUIDE
The control pins can be on any port and are not
required to be on the same port. The data interface
must be defined as either 4-bit or 8-bit. The 8-bit
interface is defined when a #define BIT8 is included
in the header file xlcd.h. If no define is included, then
the 4-bit interface is included. When in 8-bit data
interface mode, all 8 pins must be on the same port.
When in 4-bit data interface mode, the 4 pins must be
either the high or low nibble of a single port. When in 4-
bit interface mode, the high nibble is specified by
including #define UPPER in the header file xlcd.h.
Otherwise, the lower nibble is specified by commenting
this line out.

After these definitions have been made, the user must
compile xlcd.c into an object to be linked.
Please refer to Chapter 2 of this manual (DS51112A)
for information on compilers. Please refer to the
MPASM User’s Guide with MPLINK and MPLIB
(DS33014F) for information on linking.

The value of lcdtype can be one of the following values
(defined in xlcd.h):

Function Set defines

FOUR_BIT 4-bit data interface mode

EIGHT_BIT 8-bit data interface mode

LINE_5X7 5x7 characters, single line
display

LINE_5X10 5x10 characters display

LINES_5X7 5x7 characters, multiple line
display

This function also requires three external routines to be
provided by the user for specific delays:

DelayFor18TCY() 18 Tcy delay

DelayPORXLCD() 15ms delay

DelayXLCD() 5ms delay

Return Value: None.

Filename: xlcd.c

See also: None.

Code Example:
#include <p17c756.h>
#include <xlcd.h>
#include <delays.h>
#include <usart16.h>
DS51112B-page 140  1998 Microchip Technology Inc.

Chapter 8. Libraries
void DelayFor18TCY(void)
{

Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
return;

}
void DelayPORXLCD(void)
{

Delay1KTCYx(60); //Delay of 15ms
return;

}
void DelayXLCD(void)
{

Delay1KTCYx(20); //Delay of 5ms
return;

}
void main(void)
{

char data;
// configure external LCD
OpenXLCD(EIGHT_BIT&LINES_5X7);
// configure USART
OpenUSART1(USART_TX_INT_OFF&
 USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_
 EIGHT_BIT&USART_CONT_RX);

while(1)
{

while(!DataRdyUSART1()); //wait for data
data = ReadUSART1(); //read data
WriteDataXLCD(data); //write to LCD
if(data==’Q’)
 break;

}
CloseADC(); //close modules
CloseUSART1();
return;

}

 1998 Microchip Technology Inc. DS51112B-page 141

MPLAB-C17 USER’S GUIDE
putcXLCD

Device: PIC17C4X, PIC17C756

Function: Writes one byte of data to the Hitachi HD44780 LCD
controller.

Syntax: #include <xlcd.h>
void putcXLCD (char data);

Remarks: This function performs the same function as
WriteDataXLCD. Please refer to the description of that
function.

Return Value: None.

Filename: #define in xlcd.h

See also: None.

putsXLCD

Device: PIC17C4X, PIC17C756

Function: Writes a string of characters to the Hitachi HC44780
LCD controller.

Syntax: #include <xlcd.h>
void putsXLCD (char *buffer);

Remarks: This functions writes a string of characters located in
buffer to the Hitachi HD44780 LCD controller. It stops
transmission after the character before the null
character, i.e. the null character is not sent.

Return Value: None.

Filename: xlcd.c

See also: None.

ReadAddrXLCD

Device: PIC17C4X, PIC17C756

Function: Reads the address byte from the Hitachi HD44780 LCD
controller.

Syntax: #include <xlcd.h>
unsigned char ReadAddrXLCD (void);

Remarks: This function reads the address byte from the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the
BusyXLCD() function.
DS51112B-page 142  1998 Microchip Technology Inc.

Chapter 8. Libraries
The address read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was
called.

Return Value:This function returns an 8-bit which is the
7-bit address in the lower 7-bits of the byte and the
BUSY status flag in the 8th bit.

Filename: xlcd.c

See also: SetCGRamAddr, SetDDRamAddr.

ReadDataXLCD

Device: PIC17C4X, PIC17C756

Function: Reads a data byte from the Hitachi HD44780 LCD
controller.

Syntax: #include <xlcd.h>
char ReadDataXLCD (void);

Remarks: This function reads a data byte from the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the
BusyXLCD() function.

The data read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was called.

Return Value: This function returns the 8-bit data value.

Filename: xlcd.c

See also: SetCGRamAddr, SetDDRamAddr.

Bit7 Bit0

BF A6 A5 A4 A3 A2 A1 A0
 1998 Microchip Technology Inc. DS51112B-page 143

MPLAB-C17 USER’S GUIDE
3.1.1 SetCGRamAddr

Device: PIC17C4X, PIC17C756

Function: Sets the character generator address.

Syntax: #include <uart16.h>
void SetCGRamAddr (unsigned char CGaddr);

Remarks: This function sets the character generator address of
the Hitachi HD44780 LCD controller. The user must first
check to see if the controller is busy by calling the
BusyXLCD() function.

Return Value: None.

Filename: xlcd.c

See also: None.

SetDDRamAddr

Device: PIC17C4X, PIC17C756

Function: Sets the display data address.

Syntax: #include <uart16.h>
void SetDDRamAddr (unsigned char DDaddr);

Remarks: This function sets the display data address of the
Hitachi HD44780 LCD controller. The user must first
check to see if the controller is busy by calling the
BusyXLCD() function.

Return Value: None.

Filename: xlcd.c

See also: None.

WriteCmdXLCD

Device: PIC17C4X, PIC17C756

Function: Writes a command to the Hitachi HD44780 LCD
controller.

Syntax: #include <xlcd.h>
void WriteCmdXLCD (unsigned char cmd);

Remarks: This function writes the command byte to the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the
BusyXLCD() function.

The value of cmd can be one of the following values
(defined in xlcd.h):
DS51112B-page 144  1998 Microchip Technology Inc.

Chapter 8. Libraries
Function Set defines

FOUR_BIT 4-bit data interface mode
EIGHT_BIT 8-bit data interface mode
LINE_5X7 5x7 characters, single line

display
LINE_5X10 5x10 characters display
LINES_5X7 5x7 characters, multiple line

display

Display ON/OFF control defines

DON Display on
DOFF Display off
CURSOR_ON Cursor on
CURSOR_OFF Cursor off
BLINK_ON Blinking cursor on
BLINK_OFF Blinking cursor off

Cursor or Display shift defines

SHIFT_CUR_LEFT Cursor shifts to the left
SHIFT_CUR_RIGHT Cursor shifts to the right
SHIFT_DISP_LEFT Display shifts to the left
SHIFT_DISP_RIGHT Display shifts to the right

The above defines can not be mixed. The only
commands that can be issued are function set, display
control, and cursor/display shift control.

Return Value: None.

Filename: xlcd.c

See also: None.

WriteDataXLCD

Device: PIC17C4X, PIC17C756

Function: Writes a data byte from the Hitachi HD44780 LCD
controller.

Syntax: #include <xlcd.h>
void WriteDataXLCD (char data);

Remarks: This function writes a data byte to the Hitachi HD44780
LCD controller. The user must first check to see if the
LCD controller is busy by calling the BusyXLCD()
function.

The data read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was
called.
 1998 Microchip Technology Inc. DS51112B-page 145

MPLAB-C17 USER’S GUIDE
The value of data can be any 8-bit value, but should
correspond to the character RAM table of the HD44780
LCD controller.

Return Value: None.

Filename: xlcd.c

See also: SetCGRamAddr, SetDDRamAddr.
DS51112B-page 146  1998 Microchip Technology Inc.

Chapter 8. Libraries
3.2 Software I2C Functions

Clock_test

Device: PIC17CXXX

Function: Generates delay for slave clock stretching.

Syntax: #include <swi2c16.h>
void Clock_test (void);

Remarks: This function is called to allow for slave clock stretching.
The delay time may need to be adjusted per application
requirements. If at the end of the delay period the clock
line is low, a bit field in the global structure
BUS_STATUS (BUS_STATUS.clk) is set to 1. If the
clock line is high at the end of the delay, this bit field is
a 0.
far ram union i2cbus_state
{
struct
{

unsigned busy :1; bus state is busy
unsigned clk :1; clock timeout or

failure
unsigned ack :1; acknowledge error

or not ACK
unsigned :5; bit padding

};
unsigned char dummy;dummy variable

} BUS_STATUS; efine union/struct

Return Value: None.

Filename: swckti2c.c

See also: None.

SWAckI2C

Device: PIC17CXXX

Function: Generates I2C bus acknowledge condition.

Syntax: #include <swi2c16.h>
void SWAckI2C (void);

Remarks: This function is called to generate an I2C bus
acknowledge sequence. A bit field in the global
structure BUS_STATUS (BUS_STATUS.ack) is set to 1
if the slave device did not ack. This error condition
could also indicate a bus error on the SDA line. If no
error occurred this bit field is a 0.
 1998 Microchip Technology Inc. DS51112B-page 147

MPLAB-C17 USER’S GUIDE
far ram union i2cbus_state
{
struct
{
unsigned busy :1; bus state is busy
unsigned clk :1; clock timeout or

failure
unsigned ack :1; acknowledge error or

not ACK
unsigned :5; bit padding
};
unsigned char dummy;dummy variable

} BUS_STATUS; define union/struct

Return Value: None.

Filename: swacki2c.c

See also: None.

SWGetsI2C

Device: PIC17CXXX

Function: Reads in data string via software I2C implementation.

Syntax: #include <swi2c16.h>
unsigned char SWGetsI2C (unsigned char far *rdptr,
unsigned char length);

Remarks: This function reads in a predetermined data string
length. Each byte is retrieved via a call to the
SWGetcI2C function. SWGetcI2C and SWReadI2C
refer to the same function via a #define statement in
the swi2c16.h file.

Return Value: This function returns -1 if all bytes have been received
and the master generated a not ack bus condition.

Filename: swgtsi2c.c

See also: None.

SWPutsI2C

Device: PIC17CXXX

Function: Writes out data string via software I2C implementation.

Syntax: #include <swi2c16.h>
unsigned char SWPutsI2C (unsigned char
far *wrdptr);
DS51112B-page 148  1998 Microchip Technology Inc.

Chapter 8. Libraries
Remarks: This function writes out a data string until a null
character is evaluated. Each byte is written via a call to
the SWPutcI2C function. The actual called function
body is termed SWWriteI2C. SWPutcI2C and
SWWriteI2C refer to the same function via a #define
statement in the swi2c16.h file.

Return Value: This function returns -1 if there was an error else
returns a 0.

Filename: swptsi2c.c

See also: None.

CODE EXAMPLES:

The following are simple code examples illustrating a software I2C
implementation communicating with a Microchip 24LC01B I2C EE
Memory Device. In all the examples provided no error checking utilizing
the value returned from a function is implemented. The port pins used are
defined in the swi2c16.h file and must be set per application requirments.
#include <p17cxx.h>
#include <swi2c16.h>
#include <delays.h>
extern far ram union i2cbus_state
{

struct
{
unsigned busy :1; // bus state is busy
unsigned clk :1; // clock timeout or

failure
unsigned ack :1; // acknowledge error or

not ACK
unsigned :5; // bit padding
};
unsigned char dummy;

} BUS_STATUS;

// FUNCTION PROTOTYPES
void main(void);
void byte_write(void);
void page_write(void);
void current_address(void);
void random_read(void);
void sequential_read(void);
void ack_poll(void);
unsigned char warr[] = {8,7,6,5,4,3,2,1,0};
unsigned char rarr[15];
unsigned char far *rdptr = rarr;
unsigned char far *wrptr = warr;
unsigned char var;
#define W_CS PORTA.2
 1998 Microchip Technology Inc. DS51112B-page 149

MPLAB-C17 USER’S GUIDE
//**
#pragma code _main=0x100
void main(void)
{

byte_write();
ack_poll();
page_write();
ack_poll();
Nop();
sequential_read();
Nop();
while (1);

}

void byte_write(void)
{

SWStartI2C();
var = SWPutcI2C(0xA0); // control byte
swAckI2C();
var = SWPutcI2C(0x10); // word address
swAckI2C();
var = SWPutcI2C(0x66); // data
SWAckI2C();
SWStopI2C();

}

void page_write(void)
{

SWStartI2C();
var = SWPutcI2C(0xA0); // control byte
SWAckI2C();
var = SWPutcI2C(0x20); // word address
SWAckI2C();
var = SWPutsI2C(wrptr); // data
SWStopI2C();

}

void sequential_read(void)
{

SWStartI2C();
var = SWPutcI2C(0xA0); // control byte
SWAckI2C();
var = SWPutcI2C(0x00); // address to read from
SWAckI2C();
SWRestartI2C();
var = SWPutcI2C(0xA1);
SWAckI2C();
DS51112B-page 150  1998 Microchip Technology Inc.

Chapter 8. Libraries
var = SWGetsI2C(rdptr,9);
SWStopI2C();

}

void current_address(void)
{

SWStartI2C();
SWPutcI2C(0xA1); // control byte
SWAckI2C();
SWGetcI2C(); // word address
SWNotAckI2C();
SWStopI2C();

}

void ack_poll(void)
{

SWStartI2C();
var = SWPutcI2C(0xA0); // control byte
SWAckI2C();
while (BUS_STATUS.ack)
{
BUS_STATUS.ack = 0;
SWRestartI2C();
var = SWPutcI2C(0xA0); // data
SWAckI2C();
}
SWStopI2C();

}

SWReadI2C

Device: PIC17CXXX

Function: Reads a single data byte via software I2C
implementation.

Syntax: #include <swi2c16.h>
unsigned char SWReadI2C (void);

Remarks: This function reads in a single data byte by generating
the appropriate signals on the predefined I2C clock line.

Return Value: This function returns the acquired I2C data byte. If there
was an error in this function, the return value will be -1.
This condition can be evaluated by testing the bit field
BUS_STATUS.clk. If this bit field is 1, then there was
an error, else it is a 0.

Filename: swgtci2c.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 151

MPLAB-C17 USER’S GUIDE
SWRestartI2C

Device: PIC17CXXX

Function: Generates I2C restart bus condition.

Syntax: #include <swi2c16.h>
void SWRestartI2C (void);

Remarks: This function is called to generate an I2C bus restart
condition.

Return Value: None.

Filename: swrsti2c.c

See also: None.

SWStartI2C

Device: PIC17CXXX

Function: Generates I2C bus start condition.

Syntax: #include <swi2c16.h>
void SWStartI2C (void);

Remarks: This function is called to generate an I2C bus start
condition.

Return Value: None.

Filename: swstri2c.c

See also: None.

SWStopI2C

Device: PIC17CXXX

Function: Generates I2C bus stop condition.

Syntax: #include <swi2c16.h>
void SWStopI2C (void);

Remarks: This function is called to generate an I2C bus stop
condition.

Return Value: None.

Filename: swstpi2c.c

See also: None.
DS51112B-page 152  1998 Microchip Technology Inc.

Chapter 8. Libraries
SWWriteI2C

Device: PIC17CXXX

Function: Writes out single data byte via software I2C
implementation.

Syntax: #include <swi2c16.h>
unsigned char SWWriteI2C (unsigned char
data_out);

Remarks: This function writes out a single data byte to the
predefined data pin. The clock and data pins are user
defined in the swi2c16.h file and must be set per
application requirements. SWWriteI2C and
SWPutcI2C refer to the same function via a #define
statement in the swi2c16.h file.

Return Value: This function returns -1 if there was an error condition
else returns a 0.

Filename: swptci2c.c

See also: None.

3.3 Software SPI Functions

SWClearCSSPI

Device: PIC17C4X, PIC17C756

Function: Clears the chip select (CS) pin that is specified in the
swspi16.h header file.

Syntax: #include <swspi16.h>
void SWClearCSSPI (void);

Remarks: This function clears the I/O pin that is specified in
swspi16.h to be the chip select (CS) pin for the software
SPI.

Return Value: None.

Filename: swspi16.c

See also: SWSetCSSPI.
 1998 Microchip Technology Inc. DS51112B-page 153

MPLAB-C17 USER’S GUIDE
SWOpenSPI

Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins for the software SPI.

Syntax: #include <swspi16.h>
void SWOpenSPI (void);

Remarks: This function configures the I/O pins used for the
software SPI to the correct input or ouput state and
logic level. The I/O pins used for chip select (CS), data
in (DIN), data out (DOUT), and serial clock (SCK) must
be defined in the header file swspi16.h.

The definitions that must be made to ensure that the
software SPI operates correctly are:

I/O pin definitions
SW_CS_PIN PORTxbits.Rx?
TRIS_SW_CS_PIN DDRxbits.Rx?
SW_DIN_PIN PORTxbits.Rx?
TRIS_SW_DIN_PIN DDRxbits.Rx?
SW_DOUT_PIN PORTxbits.Rx?
TRIS_SW_DOUT_PIN DDRxbits.Rx?
SW_SCK_PIN PORTxbits.Rx?
TRIS_SW_SCK_PIN DDRxbits.Rx?
x is the PORT, ? is the pin number

SPI Mode
#define MODE0 or
#define MODE1 or
#define MODE2 or
#define MODE3
Only one of the MODEx can be defined.

After these definitions have been made, compile the
software SPI files into an DS51112B) for information on
compilers. Refer to the MPASM User’s Guide with
MPLINK and MPLIB (DS33014F) for information on
linking.

Return Value: None.

Filename: swspi16.c

See also: None.

Code Example:

#include <p17c756.h>
#include <swspi16.h>
#include <delays.h>
void main(void)
{

DS51112B-page 154  1998 Microchip Technology Inc.

Chapter 8. Libraries
char address;
// configure software SPI
OpenSWSPI();
for(address=0;address<0x10;address++)
{

ClearCSSWSPI(); //clear CS pin
WriteSWSPI(0x02); //send write cmd
WriteSWSPI(address);//send address h
WriteSWSPI(address);//send address low
SetCSSWSPI(); //set CS pin
Delay10KTCYx(50); //wait 5000,000TCY

}
return;

}

SWputcSPI

Device: PIC17C4X, PIC17C756

Function: Reads/writes one byte of data out the software SPI.

Syntax: #include <swspi16.h>
char SWputcSPI (char data);

Remarks: This function performs the same function as
SWWriteSPI(). Refer to the description of that function.

Return Value: None.

Filename: swspi16.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 155

MPLAB-C17 USER’S GUIDE
SWSetCSSPI

Device: PIC17C4X, PIC17C756

Function: Sets the chip select (CS) pin that is specified in the
swspi16.h header file.

Syntax: #include <swspi16.h>
void SWSetCSSPI (void);

Remarks: This function sets the I/O pin that is specified in
swspi16.h to be the chip select (CS) pin for the software
SPI.

Return Value: None.

Filename: swspi16.c

See also: SWClearCSSPI.

SWWriteSPI

Device: PIC17C4X, PIC17C756

Function: Reads/writes one byte of data out the software SPI.

Syntax: #include <swspi16.h>
char SWWriteSPI (char data);

Remarks: This function writes the specified byte of data out the
software SPI and returns the byte of data that was read.
This function does not provide any control of the chip
select pin (CS).

Return Value: This function returns the byte of data that was read from
the data in (DIN) pin of the software SPI.

Filename: swspi16.c

See also: None.
DS51112B-page 156  1998 Microchip Technology Inc.

Chapter 8. Libraries
3.4 Software UART Functions

getcUART

Device: PIC17C4X, PIC17C756

Function: Reads one byte of data from the software UART.

Syntax: #include <uart16.h>
char getcUART (void);

Remarks: This function performs the same function as
ReadUART(). Please refer to the description of that
function.

Return Value: None.

Filename: uart16.c

See also: ReadUART

getsUART

Device: PIC17C4X, PIC17C756

Function: Reads a string of characters from the software UART.

Syntax: #include <uart16.h>
void getsUART (char *buffer, unsigned
char len);

Remarks: This function reads a string of characters from the
software UART and places them in buffer. The number
of characters read is given in the variable len.

The value of len can be any 8-bit value, but is restricted
to the maximum size of an array within any bank of
RAM.

Return Value: None.

Filename: uart16.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 157

MPLAB-C17 USER’S GUIDE
OpenUART

Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins for the software UART.

Syntax: #include <uart16.h>
void OpenUART (void);

Remarks: This function configures the I/O pins used for the
software UART to the correct input or ouput state and
logic level. The I/O pins used for receive data (RXD)
and transmit data (TXD) must be defined in the header
file uart16_a.asm.

The definitions that must be made to ensure that the
software UART operates correctly are:

I/O pin definitions
SWTXDequPORTx
SWTXDpinequ?
TRIS_SWTXDequDDRx
SWRXDequPORTx
SWRXDpinequ?
TRIS_SWRXDequDDRx
UART_PORT_BSRequb
x is the PORT, ? is the pin number,
b is the PORTx bank

After these definitions have been made, compile the
software ART files into an object to be linked. Refer to
Chapter 2 of this manual (DS51112A) for information on
compilers. Refer to the MPASM User’s Guide with
MPLINK and MPLIB (DS33014F) for information on
linking.

Return Value: None.

Filename: uart16.c

See also: None.

Code Example:

#include <p17c756.h>
#include <uart16.h>

void main(void)
{

char data
// configure software UART
OpenUART();
while(1)
{
data = ReadUART();//read a byte
WriteUART(data);//bounce it back
DS51112B-page 158  1998 Microchip Technology Inc.

Chapter 8. Libraries
}
return;

}

putcUART

Device: PIC17C4X, PIC17C756

Function: Writes one byte of data out the software UART.

Syntax: #include <uart16.h>
void putcUART (char data);

Remarks: This function performs the same function as
WriteUART(). Refer to the description of that function.

Return Value: None.

Filename: uart16.c

See also: WriteUART

putsUART

Device: PIC17C4X, PIC17C756

Function: Writes a string of characters to the software UART.

Syntax: #include <uart16.h>
void getsUART (char *buffer);

Remarks: This function writes a string of characters to the
software UART. The entire string including the null is
sent to the UART.

Return Value: None.

Filename: uart16.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 159

MPLAB-C17 USER’S GUIDE
ReadUART

Device: PIC17C4X, PIC17C756

Function: Reads one byte of data out the software UART.

Syntax: #include <uart16.h>
char ReadUART (void);

Remarks: This function reads a byte of data out the software
UART and returns the byte of data.

Return Value: This function returns the byte of data that was read from
the receive data (RXD) pin of the software UART.

Filename: uart16.c

See also: getcUART

WriteUART

Device: PIC17C4X, PIC17C756

Function: Writes one byte of data out the software UART.

Syntax: #include <uart16.h>
void WriteUART (char data);

Remarks: This function writes the specified byte of data out the
software UART.

The value of data can be any 8-bit value.

Return Value: None.

Filename: uart16.c

See also: putcUART
DS51112B-page 160  1998 Microchip Technology Inc.

Chapter 8. Libraries
4.0 General Software Library

4.1 Character Classification Functions

isalnum

Device: PIC17C4X, PIC17C756

Function: Alphanumeric character classification.

Syntax: #include <ctype.h>
char isalnum (char ch);

Remarks: This function determines if ch is an alphanumeric
character in the ranges of:

A to Z (0x41 to 0x5A)
a to z (0x61 to 0x7A)
0 to 9 (0x30 to 0x39)

Return Value: This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: isalnum.c

See also: None.

isalpha

Device: PIC17C4X, PIC17C756

Function: Alphabetical character classification.

Syntax: #include <ctype.h>
char isalpha (char ch);

Remarks: This function determines if ch is a valid character of the
alphabet in the ranges of:

A to Z (0x41 to 0x5A)
a to z (0x61 to 0x7A)

Return Value: This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: isalpha.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 161

MPLAB-C17 USER’S GUIDE
isascii

Device: PIC17C4X, PIC17C756

Function: ASCII character classification.

Syntax: #include <ctype.h>
char isascii (char ch);

Remarks: This function determines if ch is an ASCII
character which has a range of 0x00 to 0x7F.

Return Value: This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: isascii.c

See also: None.

iscntrl

Device: PIC17C4X, PIC17C756

Function: Control character classification.

Syntax: #include <ctype.h>
char iscntrl (char ch);

Remarks: This function determines if ch is a control character in
the ranges of:

0x00 to 0x1F
0x7f

Return Value: This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: iscntrl.c

See also: None.
DS51112B-page 162  1998 Microchip Technology Inc.

Chapter 8. Libraries
isdigit

Device: PIC17C4X, PIC17C756

Function: Numeric character classification.

Syntax: #include <ctype.h>
char isdigit (char ch);

Remarks: This function determines if ch is an numeric
character in the ranges of:

0 to 9 (0x30 to 0x39)

Return Value: This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: isdigit.c

See also: None.

islower

Device: PIC17C4X, PIC17C756

Function: Lower-case alphabetical character classification.

Syntax: #include <ctype.h>
char isalnum (char ch);

Remarks: This function determines if ch is a lower-case
alphabetical character in the ranges of:

a to z(0x61 to 0x7A)

Return Value: This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: islower.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 163

MPLAB-C17 USER’S GUIDE
isupper

Device: PIC17C4X, PIC17C756

Function: Upper-case alphabetical character classification.

Syntax: #include <ctype.h>
char isupper (char ch);

Remarks: This function determines if ch is an upper-case
alphabetical character in the ranges of:

A to Z (0x41 to 0x5A)

Return Value: This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: isupper.c

See also: None.

isxdigit

Device: PIC17C4X, PIC17C756

Function: Hexadecimal character classification.

Syntax: #include <ctype.h>
char isalnum (char ch);

Remarks: This function determines ifch is a hexadecimal
character in the ranges of:

A to F (0x41 to 0x46
a to f (0x61 to 0x66)
0 to 9 (0x30 to 0x39)

Return Value: This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: isxdig.c

See also: None.
DS51112B-page 164  1998 Microchip Technology Inc.

Chapter 8. Libraries
4.2 Number and Text Conversion Functions

atob

Device: PIC17C4X, PIC17C756

Function: Converts a string to an 8-bit signed byte.

Syntax: #include <stdlib.h>
char atob (char *string);

Remarks: This function converts the ASCII string into an 8-bit
signed byte. It first finds the length of the string by
searching for the null character. If the string length is
greater than 5 characters, this function returns 0. It then
starts processing the string into the 8-bit signed byte (-
128 to 127).

Return Value: 8-bit signed byte for all strings with 5 characters or less
(-128 to 127). 0 for all strings greater than 5 characters.

Filename: atob.c

See also: None.

atoi

Device: PIC17C4X, PIC17C756

Function: Converts a string to an 16-bit signed integer.

Syntax: #include <stdlib.h>
int atoi(char *string);

Remarks: This function converts the ASCII string into an 16-bit
signed integer. It first finds the length of the string by
searching for the null character. If the string length is
greater than 7 characters, this function returns 0. It then
starts processing the string into the 16-bit signed
integer (-32768 to 32767).

Return Value: 16-bit signed integer for all strings with 7 characters or
less (-32768 to 32767). 0 for all strings greater than 7
characters.

Filename: atoi.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 165

MPLAB-C17 USER’S GUIDE
atoub

Device: PIC17C4X, PIC17C756

Function: Converts a string to an 8-bit unsigned byte.

Syntax: #include <stdlib.h>
unsigned char atoub (char *string);

Remarks: This function converts the ASCII string into an 8-bit
unsigned byte. It first finds the length of the string by
searching for the null character. If the string length is
greater than 4 characters, this function returns 0. It then
starts processing the string into the 8-bit unsigned byte
(0 to 255).

Return Value: 8-bit unsigned byte for all strings with 4 characters or
less (0 to 255). 0 for all strings greater than 4
characters.

Filename: atoub.c

See also: None.

atoui

Device: PIC17C4X, PIC17C756

Function: Converts a string to an 16-bit unsigned integer.

Syntax: #include <stdlib.h>
unsigned int atoui (char *string);

Remarks: This function converts the ASCII string into an 16-bit
unsigned integer. It first finds the length of the string by
searching for the null character. If the string length is
greater than 6 characters, this function returns 0. It then
starts processing the string into the 16-bit unsigned
integer. (0 to 65535)

Return Value: 16-bit unsigned integer for all strings with 6 characters
or less (0 to 65535). 0 for all strings greater than 6
characters

Filename: atoui.c

See also: None.
DS51112B-page 166  1998 Microchip Technology Inc.

Chapter 8. Libraries
btoa

Device: PIC17C4X, PIC17C756

Function: Converts an 8-bit signed byte to string.

Syntax: #include <stdlib.h>
void btoa (char value, char *string);

Remarks: This function converts the 8-bit signed byte in the
argument value to a ASCII string representation. The
string must be long enough to hold the ASCII
representation which is:

number(3) + sign(1) + null(1) = 5

The conversion process uses the minimum amount of
characters in the string. Some examples are:

-120 5 characters
-57 4 characters
-6 3 characters
0 2 characters
29 3 characters
107 4 characters

Return Value: None.

Filename: btoa.c

See also: None.

itoa

Device: PIC17C4X, PIC17C756

Function: Converts an 16-bit signed integer to string.

Syntax: #include <stdlib.h>
void itoa (int value, char *string);

Remarks: This function converts the 16-bit signed integer in the
argument value to a ASCII string representation. The
string must be long enough to hold the ASCII
representation which is:

number(5) + sign(1) + null(1) = 7

The conversion process uses the minimum amount of
characters in the string. Some examples are:

-24290 7 characters
-6183 6 characters
-120 5 characters
-57 4 characters
-6 3 characters
0 2 characters
 1998 Microchip Technology Inc. DS51112B-page 167

MPLAB-C17 USER’S GUIDE
29 3 characters
107 4 characters
1187 5 characters
32000 6 characters

Return Value: None.

Filename: itoa.c

See also: None.

toascii

Device: PIC17C4X, PIC17C756

Function: Converts a character to an ASCII character

Syntax: #include <ctype.h>
char toascii (char ch);

Remarks: This function converts ch to a valid ASCII character by
setting the MSB bit7 to a zero.

Return Value: This function returns the converted ASCII character.

Filename: toascii.c

See also: None.

tolower

Device: PIC17C4X, PIC17C756

Function: Converts a character to a lower-case alphabetical
ASCII character.

Syntax #include <ctype.h>
char tolower (char ch);

Remarks: This function converts ch to a lower-case alphabetical
ASCII character provided that the argument is a valid
upper-case alphabetical character.

Return Value: This function returns a lower-case character if the
argument was upper-case to begin with, otherwise the
original character is returned.

Filename: tolower.c

See also: None.
DS51112B-page 168  1998 Microchip Technology Inc.

Chapter 8. Libraries
toupper

Device: PIC17C4X, PIC17C756

Function: Converts a character to a upper-case alphabetical
ASCII character.

Syntax: #include <ctype.h>
char toupper (char ch);

Remarks: This function converts ch to a upper-case alphabetical
ASCII character provided that the argument is a valid
lower-case alphabetical character.

Return Value: This function returns a lower-case character if the
argument was upper-case to begin with, otherwise the
original character is returned.

Filename: toupper.c

See also: None.

ubtoa

Device: PIC17C4X, PIC17C756

Function: Converts an 8-bit unsigned byte to string.

Syntax: #include <stdlib.h>
void ubtoa (unsigned char value, char
*string);

Remarks: This function converts the 8-bit unsigned byte in the
argument value to a ASCII string representation. The
string must be long enough to hold the ASCII
representation which is:

number(3) + null(1) = 4

The conversion process uses the minimum amount of
characters in the string. Some examples are:

0 2 characters
29 3 characters
107 4 characters
255 4 characters

Return Value: None.

Filename: ubtoa.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 169

MPLAB-C17 USER’S GUIDE
uitoa

Device: PIC17C4X, PIC17C756

Function: Converts an 16-bit unsigned integer to string.

Syntax: #include <stdlib.h>
void uitoa (unsigned int value, char
*string);

Remarks: This function converts the 16-bit unsigned integer in
the argument value to a ASCII string representation.
The string must be long enough to hold the ASCII
representation which is:

number(2) + null(1) = 6

The conversion process uses the minimum amount of
characters in the string. Some examples are:

0 2 characters
29 3 characters
107 4 characters
3481 5 characters
57912 6 characters

Return Value: None.

Filename: uitoa.c

See also: None.
DS51112B-page 170  1998 Microchip Technology Inc.

Chapter 8. Libraries
4.3 Delay Functions

Delay1TCY

Device: PIC17C4X, PIC17C756

Function: Delay of 1 instruction cycle (Tcy).

Syntax: #include <delays.h>
void Delay1TCY (void);

Remarks: This function is actually a #define for the Nop()
instruction. When encountered in the source code, the
compiler simply inserts a Nop().

Return Value: None.

Filename: #define in delays.h

See also: None.

Delay10TCY

Device: PIC17C4X, PIC17C756

Function: Delay of 10 instruction cycles (Tcy).

Syntax: #include <delays.h>
void Delay10TCY (void);

Remarks: This function creates a delay of 10 instruction cycles.

Return Value: None.

Filename: dy1otcy.c

See also: None.

Delay10TCYx

Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 10 instruction cycles (Tcy).

Syntax: #include <delays.h>
void Delay10TCYx (unsigned char unit);

Remarks: This function creates delays of multiples of 10
instruction cycles.

The value of unit can be any 8-bit value from 2 to 255 or
0. A value of 0 represents sending 256 to the function.

Return Value: None.

Filename: dy1otcyx.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 171

MPLAB-C17 USER’S GUIDE
Delay100TCYx

Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 100 instruction cycles (Tcy).

Syntax: #include <delays.h>
void Delay100TCYx (unsigned char unit);

Remarks: This function creates delays of multiples of 100
instruction cycles.

The value of unit can be any 8-bit value from 0 to 255. A
value of 0 represents sending 256 to the function.

Return Value: None.

Filename: dy100tcx.c

See also: None.

Delay1KTCYx

Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 1000 instruction cycles (Tcy).

Syntax: #include <delays.h>
void Delay1KTCYx (unsigned char unit);

Remarks: This function creates delays of multiples of 1000
instruction cycles.

The value of unit can be any 8-bit value from 0 to 255.
A value of 0 represents sending 256 to the function.

Return Value: None.

Filename: dy1ktcyx.c

See also: None.
DS51112B-page 172  1998 Microchip Technology Inc.

Chapter 8. Libraries
Delay10KTCYx

Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 10000 instruction cycles (Tcy).

Syntax: #include <delays.h>
void Delay10KTCYx (unsigned char unit);

Remarks: This function creates delays of multiples of 10000
instruction cycles.

The value of unit can be any 8-bit value from 0 to 255. A
value of 0 represents sending 256 to the function.

Return Value: None.

Filename: dy10ktcx.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 173

MPLAB-C17 USER’S GUIDE
4.4 Memory and String Manipulation Functions

memcmp

Device: PIC17C4X, PIC17C756

Function: Compares the contents of two arrays of bytes.

Syntax: #include <mem.h>
signed char memcmp (char *buf1, char
*buf2, unsigned char memsize);

Remarks: This function compares the first memsize number of
elements in buf1 to the first memsize number of
elements in buf2 and returns if the buffers are less than,
equal to, or greater than each other.

Return Value: -1 if buf1 < buf2
0 if buf1 == buf2
1 if buf1 > buf2

Filename: memcmp.c

See also: None.

memcpy

Device: PIC17C4X, PIC17C756

Function: Copies the contents of the source buffer into the
destination buffer.

Syntax: #include <mem.h>
void memcmp (char *dest, char *src,
unsigned char memsize);

Remarks: This function copies the first memsize number of
elements in src to the array dest.

Return Value: None.

Filename: memcpy.c

See also: None.

memset

Device: PIC17C4X, PIC17C756

Function: Copies the specified character into the destination
array.

Syntax: #include <mem.h>
void memcmp (char *dest, char value,
unsigned char memsize);
DS51112B-page 174  1998 Microchip Technology Inc.

Chapter 8. Libraries
Remarks: This function copies the character value into the first
memsize elements of the array dest.

Return Value: None.

Filename: memset.c

See also: None.

strcat

Device: PIC17C4X, PIC17C756

Function: Concatenates the source string to the end of the
destination string.

Syntax: #include <string.h>
void strcat (char *dest, char *src);

Remarks: This function copies the string in src to the end of the
string in dest. The src string starts at the null in dest. A
null character is added to the end of the resulting string
in dest.

Return Value: None.

Filename: strcat.c

See also: None.

strcmp

Device: PIC17C4X, PIC17C756

Function: Compares two strings.

Syntax: include <string.h>
signed char strcmp (char *str1, char
*str2);

Remarks: This function compares the string in str1 to the string in
str2 and returns if str1 is less than, equal to, or greater
than str2.

Return Value: -1 if str1 < str2
0 if str1 == str2
1 if str1 > str2

Filename: strcmp.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 175

MPLAB-C17 USER’S GUIDE
strcpy

Device: PIC17C4X, PIC17C756

Function: Copies the source string into the destination string.

Syntax: #include <string.h>
void strcpy (char *dest, char *src);

Remarks: This function copies the string in src to dest. Characters
in src are copied until the null character is reached. The
string dest is null terminated.

Return Value: None.

Filename: strcpy.c

See also: None.

strlen

Device: PIC17C4X, PIC17C756

Function: Returns the length of the string.

Syntax: #include <string.h>
unsigned char strlen (char *str);

Remarks: This function determines the length of the string minus
the null character.

Return Value: This function returns the length of the string in an
unsigned 8-bit byte.

Filename: strlen.c

See also: None.

strlwr

Device: PIC17C4X, PIC17C756

Function: Converts all upper-case characters in a string to lower-
case.

Syntax: #include <string.h>
void strlwr (char *str);

Remarks: This function converts all upper-case characters in str
to lower-case characters. All characters that are not
upper-case (A to Z) are not affected.

Return Value: None.

Filename: strlwr.c

See also: None.
DS51112B-page 176  1998 Microchip Technology Inc.

Chapter 8. Libraries
strset

Device: PIC17C4X, PIC17C756

Function: Copies the specified character into all characters in a
string.

Syntax: #include <string.h>
void memcmp (char *str, char ch);

Remarks: This function copies the character in ch to all characters
in the string up to the null character.

Return Value: None.

Filename: strset.c

See also: None.

strupr

Device: PIC17C4X, PIC17C756

Function: Converts all lower-case characters in a string to upper-
case.

Syntax: #include <string.h>
void strupr (char *str);

Remarks: This function converts all lower-case characters in str to
upper-case characters. All characters that are not
lower-case (a to z) are not affected.

Return Value: None.

Filename: strupr.c

See also: None.
 1998 Microchip Technology Inc. DS51112B-page 177

MPLAB-C17 USER’S GUIDE
5.0 Math Library

5.1 32-bit Integer and 32-bit Floating Point Math
Libraries
The math libraries are included in the \MCC\SRC\MATH folder. These are
assembly language routines and can be included and linked with your
application. Use the BUILD.BAT file to build a library of all routines.

5.1.1 Functions

FXM3232U 32-bit unsigned integer multiplication

FXM3232S 32-bit signed integer multiplication

FXD3232U 32-bit unsigned integer division

FXD3232S 32-bit signed integer division

FPM32 32-bit floating point multiplication

FPD32 32-bit floating point division

FLO3232U 32-bit unsigned integer to 32-bit floating point conversion

FLO3232S 32-bit signed integer to 32-bit floating point conversion

FLO1632U 16-bit unsigned integer to 32-bit floating point conversion

FLO1632S 16-bit signed integer to 32-bit floating point conversion

FLO0832U 8-bit unsigned integer to 32-bit floating point conversion

FLO0832S 8-bit signed integer to 32-bit floating point conversion

INT3232 32-bit floating point to 32-bit integer conversion

5.1.2 Calling Convention

The math libraries expect arguments to be provided in the locations AARG and
BARG and provide their results in AARG. For example, an integer argument in
AARG uses AARG0, AARG1, AARG2, and AARG3. A floating point argument
in AARG uses AEXP, AARG0, AARG1, and AARG2. Integer division functions
provide the remainder in REM0, REM1, REM2, and REM3.
DS51112B-page 178  1998 Microchip Technology Inc.

Chapter 8. Libraries
5.1.3 Example

Given two 32-bit signed integers, int1 and int2, the following code will
multiply the two numbers and place the result in int1. Banking and paging
considerations have been omitted for clarity.

MOVFP int1, WREG ; Load AARG
MOVWF AARG0
MOVFP int1+1, WREG
MOVWF AARG1
MOVFP int1+2, WREG
MOVWF AARG2
MOVPF int1+3, WREG
MOVWF AARG3
MOVFP int2, WREG
MOVWF BARG0 ; Load BARG
MOVFP int2+1, WREG
MOVWF BARG1
MOVFP int2+2, WREG
MOVWF BARG2
MOVPF int2+3, WREG
MOVWF BARG3
CALL FXM3232S ; Perform the multiply
MOVFP AARGB0, WREG ; Save the result
MOVWF int1
MOVFP AARGB1, WREG
MOVWF int1+1
MOVFP AARGB2, WREG
MOVWF int1+2
MOVFP AARGB3, WREG
MOVWF int1+3
 1998 Microchip Technology Inc. DS51112B-page 179

MPLAB-C17 USER’S GUIDE
NOTES:
DS51112B-page 180  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Appendix A. Porting Code from MPLAB-C to MPLAB-C17
Introduction
This appendix provides guidelines for migrating code from MPLAB-C to the
MPLAB-C17 compiler.

External Differences
These are the main differences that will require changes to the source code
when porting an application from MPLAB-C to MPLAB-C17:

• Software stack - Allows reuse of memory

• Pointers - Far RAM pointers are 16-bits, near RAM pointers are 8-bits,
word-aligned ROM pointers are 16-bits, and pointers to 8-bit wide data
in ROM are 24-bits.

• File Locations - File locations are searched in a more conventional
order.

• MPLIB - The librarian now can create true library modules.

• #pragmas are different.

• Bit fields are implemented as described in the ANSI standard, and
currently limited to one bit. Bits operator is no longer supported.

Internal Differences
Internally, MPLAB-C17 is radically different from MPLAB-C. Among the
differences:

• Software Stack - This allows more than two parameters to be passed
to a function, and allows re-use of memory.

• Pointers - Pointers are now 16 bits for RAM and 16 bits for ROM, with
24 bits used for byte data in ROM.

• Interrupts - Interrupts are handled in a more general way. Start up
code sets up interrupts and initialized data.

• The compiler uses and reserves the shared memory area in RAM

• The compiler runs as a 32-bit console application under Win 95 or NT
or as a 32-bit DOS Extended Program under Windows 3.x.
 1998 Microchip Technology Inc. DS51112B - page 181

MPLAB-C17 USER’S GUIDE
Porting Code
From the differences listed above, refer to the detailed sections below for more
information. For reference, there is an example at the end of this section which
shows an application written in MPLAB-C converted to MPLAB-C17.

Data Types
The table below outlines the differences between MPLAB-C and MPLAB-C17
data types.

Code written for MPLAB-C may require the following changes to variables:

• Change 'char' to 'unsigned char' since characters are signed by default.

• Change 'int' to 'char'. If the +i option was used in MPLAB-C (i.e. 16-bit
ints), then no change is needed.

• Change 'long' to 'int'.

• The types 'registerw' and 'registerx' are no longer supported. Use
WREG and FSR directly but note that they are extremely volatile.

Type MPLAB-C MPLAB-C17

char 8-bit (default: unsigned) 8-bit (default: signed)

int 8-bit (switchable to 16-bit) 16-bit

short 8-bit (switchable to 16-bit) 16-bit

long 16-bit 32-bit (future support)

float N/A 32-bit Microchip modified
IEEE754 (future support)

double N/A same as float

ANSI bit-fields no yes

registerw W register N/A

registerx FSR register N/A

bits 8-bit N/A
DS51112B - page 182  1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17
bits data type
If the ’bits’ data type is used, add the following structure definition at the top of
the file (or in a header file):

typedef struct bits_tag

{

 unsigned int b0: 1;
 unsigned int b1: 1;
 unsigned int b2: 1;
 unsigned int b3: 1;
 unsigned int b4: 1;
 unsigned int b5: 1;
 unsigned int b6: 1;
 unsigned int b7: 1;
} bits;

Then all references to variables of type bits must be as follows:

Use: x.b2 = 1;

This sets bit ’2’ of ’x’.

In place of: x.2 = 1;

This syntax is no longer supported.

Variable Allocation

General
MPLAB-C17 encourages the use of local variables instead of global variables
for RAM conservation. Local variables are allocated on the software stack.
Therefore, RAM locations used by local variables are reusable, conversely, the
use of global variables conserves ROM.

Using @ to allocate variables at absolute locations
The @ operator is not supported. To access memory at a specific location use
a pointer as follows:

char *p = 0x35; // ’p’ points to location 0x35

 *p = 0xF0; // send value 0xF0 to location 0x35

 p = 0x41; // ’p’ now points to location 0x41

The above code uses the same pointer to access more than one absolute
RAM location. To access a fixed location the following syntax can be used
since it generates a shorter machine code sequence.

#define FIXED35 (* ((char *) 0x35))

FIXED35 = 0xF0; // Location 35 now has 0xF0

More than one location can be referenced at a time. For example, to write the
value 0x1234 in locations 0x40 and 0x41, use the following construct:
 1998 Microchip Technology Inc. DS51112B - page 183

MPLAB-C17 USER’S GUIDE
#define LOC4041 (* ((int *) 0x40))

LOC4041 = 0x1234; // Now 0x40 contains 0x34 and location

 0x41 contains 0x12

Please note the following:

1. Locations defined using the above method bypass all variable
allocation error checking. Make sure that these locations are not used
by other variables.

2. Since these locations are defined as macros, they are not included in
the symbol table. Therefore these locations cannot be added to a watch
window in MPLAB.

Using @ to allocate local variables in global scratch
locations no longer needed
In MPLAB-C17 local variables follow proper scoping rules but are allocated as
’static’. To reuse the space allocated for local variables in MPLAB-C, the use of
the @ sign to reuse global RAM was suggested as follows:

unsigned char Temp; // Global variable

void main()

{

 unsigned char Counter @ Temp;

 .

 .

}

void function1()

{

 unsigned char Index @ Temp;

 .

 .

}

The above method is no longer needed or supported.
DS51112B - page 184  1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17
Function arguments using shared global variables
In MPLAB-C function arguments were allocated in RAM and were not reused.
A non-standard method for reusing those locations is to declare global
variables with the same names as the arguments as follows:

char a, b;

func1(a,b) { /* code for func1() */ }

func2(a,b) { /* code for func2() */ }

The above syntax is no longer supported nor needed since MPLAB-C17
allocates function arguments on the stack. The space used by these
arguments is reused once the function goes out of scope.
 1998 Microchip Technology Inc. DS51112B - page 185

MPLAB-C17 USER’S GUIDE
Use #PRAGMA IDATA, UDATA, ROMDATA to
allocate specific addresses for data
Variables can be located at fixed addresses in memory with the following
declarations:

#pragma idata GPR2

unsigned char temp1 = 0x40;

unsigned char temp2 = 0x80;

This will cause the two variables temp1 and temp2 to be allocated in the area
defined by GPR2, the second bank of general purpose registers and will
initialize their values on start up to 0x40 and 0x80.

To allocate variables with uninitialized data use:

#pragma udata GPR0

unsigned char temp4,temp5;

To allocate storage for data in ROM, use:

#pragma romdata

char temp[] = "This is a message";

This puts the string into the current code page.

(Refer to chapter 3 for the #pragma preprocessor directives.)
DS51112B - page 186  1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17
Code Allocation

Allocating code at a specific address using ORG or
#pragma memory ROM
MPLAB-C allowed the allocation of pieces of code at absolute locations. This
was done either by using the assembler directive ORG, or the compiler
directive #pragma memory ROM.

The method is no longer supported. To allocate code at a specific location,
compile it in a separate module. Then, in the linker script, specify that this
module is allocated in an absolute section. Specify the absolute address
where a section is to be allocated in the linker script file. Refer to MPASM with
MPLINK and MPLIB User’s Guide for further instructions on creating absolute
sections.

You can also change the code section by using

#pragma code mycode=0x300

This will change the allocation of subsequent code into the new section called
mycode which begins at address 0x300.

Access to pre-loaded code in ROM
MPLAB-C17 does not support using the @ sign with a function prototype to
enable access to code that is pre-loaded in program memory. To access code
that is hard-coded at specific locations (such as A/D calibration constants on
PIC14000 that are at address 0xFC0 and up), use function pointers:

unsigned char (*AtodCalibration)() ;

AtodCalibration = 0xFC0; // assign the address

k1 = AtodCalibration(); // Call and read first constant
 1998 Microchip Technology Inc. DS51112B - page 187

MPLAB-C17 USER’S GUIDE
Header Files and Libraries

Header file inclusion
In MPLAB-C17, the behavior of #include directive has changed to a more
conventional usage:

#include <filename.ext> searches the path defined by the environment
variable MCC_INCLUDE only. The compiler will not search for the file in the
DOS path like MPLAB-C.

#include "filename.ext" searches the current directory for the filename
and if it doesn’t find it, uses the path defined by the environment variable
MCC_INCLUDE.

Libraries
In MPLAB-C libraries were created by enclosing C code between a #pragma
library, and a #pragma endlibrary directives. Then include files were
created with prototypes to the library functions. To use the functions, use the
#include directive to include the header file at the top of the file, and include
the library at the end.

In MPLAB-C17 libraries are created using MPLIB, the librarian. Object
modules can be added or removed to libraries with MPLIB. MPLAB-C17
allows more conventional library access, so including the source library is no
longer required. To use a library function in an application, use the #include
directive to include the header file that contains the prototypes for that function
in the appropriate source file. Then the library will need to be linked with
MPLINK. Please refer to MPASM with MPLINK and MPLIB User’s Guide for
more information.
DS51112B - page 188  1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17
The use of const
The use of the keyword const has changed since version 1.2.1 MPLAB-C. It
no longer means that the data object is stored in ROM but rather it follows the
ANSI specification and specifics that its contents cannot be modified. To place
a data object in ROM, explicitly use the rom keyword. For example:

const char Msg[] = "Hello world!\n"; // Allocated in
// RAM.

const rom char Msg[] = "Hello world!\n"; // Allocated in
// ROM and
// cannot be

 // modified.

rom char Msg[]= "Hello world!\n"; // Allocated in
// ROM and
// can be
// modified.

Since program memory can be written on PIC17CXXX devices, placing an
object in ROM doesn’t necessarily mean it’s read-only. On such devices,
both the rom and const keywords must be used if the object is to be declared
read-only.

Inline assembler support
In MPLAB-C17 the inline assembler has a different syntax from MPLAB-C.

To assemble a single instruction, place that instruction after the _asm directive.
For example:

_asm MOVLW 0x01 // Put a comment following double

 // forward slashes

If code has multiple assembly instructions enclosed between #asm and
#endasm, change it to use _asm and _endasm instead.

 For example:

#asm

 MOVLW 9 ;Move 9 into W

 ADDWF 0x1A ;Add 26 to W

 MOVWF PORTB ;Move W to PORTB

#endasm

must be changed to:

_asm

 MOVLW 9 // Move 9 into W

 ADDWF 0x1A // Add 26 to W
 1998 Microchip Technology Inc. DS51112B - page 189

MPLAB-C17 USER’S GUIDE
 MOWVF PORTB // Move W to PORTB

_endasm

The MPASM assembler directives or labels cannot be used. GOTOs that jump
to a C label are valid.

For example:

_asm

 . . . // some assembler code

 goto MyLabel // jump to a C label

_endasm

MyLabel: // C label

 x++;

_asm

 // more assembly code

_endasm

For the features of a full-macro assembler, separate the assembly routines in
a separate file, assemble them using MPASM, and then link the resulting
object file with the C program. For more information, refer to Chapter 6 and the
MPASM with MPLINK and MPLIB User’s Guide.

Switch..case support
ANSI C switch..case statements are supported but MPLAB-C extensions
are not. Ranges, values separated by commas, and variables in ’case’
statements are not supported. Code that uses these extensions will need
to be modified.

For example:

switch(x)

{

 case 0..4: /* Range of numbers - not supported */

 ProcessNumbers();

 break;

 case ’a’,’b’: /* Values separated by commas - not supported */

 ProcessAB();

 break;

 case y: /* Variable - not supported */

 ProcessY();

 break;

}

must be changed to:
DS51112B - page 190  1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17
switch(x)

{

 case 0:
 case 1:
 case 2:
 case 3:
 case 4: /* Range of numbers */
 ProcessNumbers();
 break;

 case ’a’:
 case ’b’: /* Values separated by commas */
 ProcessAB();
 break;

 /* Variables in a ’case’ label expression
 are not allowed */
}

 1998 Microchip Technology Inc. DS51112B - page 191

MPLAB-C17 USER’S GUIDE
#pragma directives
#pragma directives are, by definition, implementation specific. None of the
#pragma directives defined in MPLAB-C are valid directives in MPLAB-C17.
These are the #pragmas for MPLAB-C17. Refer to Chapter 3 for more
details:

• nocontext - Disable stack frame code for following function.

• nosaveregs - Disable save/restore of working registers for the next
function.

• list - Turn on list file generation.

• nolist - Turn off list file generation

• code - For the following data, change to the specified code section

• idata - For the following data, change to the specified initialized data
section.

• udata - For the following data, change to the specified uninitialized
data section.

• romdata - For the following data, change to the specified ROM section.

• varlocate - For the following data, tell the compiler that it resides in
the specified bank.
DS51112B - page 192  1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17
Porting Code from MPLAB-C to MPLAB-C17
Checksheet

� Search for org statements and replace with section directives #pragma
code

� Change header file names to MPLAB-C17 standard

� Search for @ operator and replace with pointer or allow MPLINK to allocate
space

� Search for long and replace with int

� Remove library include references and add library to MPLINK

� Scan for bits directive and replace with ANSI bit structures

� Change bit access to SFR’s (PORTA.1) to ANSI format
(PORTAbits.RA1).

� Scan for int and short usage

� Does it require 16-bits? No, then change to char

� Does it require sign? No then change to unsigned

� Scan for char usage

� Does it require sign bit? No, then change to unsigned

� Scan for #asm and #endasm and change to _asm and _endasm

� Change ";" comments in #asm segments to "//" comments

� Check that switch..case statements do not have ranges or commas

� Search for const statements and add rom keyword to keep data in ROM
 1998 Microchip Technology Inc. DS51112B - page 193

MPLAB-C17 USER’S GUIDE
 Example Code Ported from MPLAB-C to MPLAB-C17
The following two listings are included as a reference for converting code from
MPLAB-C to MPLAB-C17. The first file compiles under MPLAB-C and the
second is a translated version that will compile under MPLAB-C17.

MPLAB-C Portion of Header File Example
/***
* from PICmicro C Libraries *
* Written and Tested using MPLAB-C *
**
* Filename: xlcd.h *
**

// DATA_PORT defines the port on which the LCD
// data lines are connected to
#define DATA_PORT PORTF
#define TRIS_DATA_PORT TRISF

// Control Signals
#define RS 1 // Register Select bit
#define RW 0 // Read/Write bit
#define E 6 // Clock bit

/ CTRL_PORT defines the port where the control
// lines are connected
#define RW_PIN PORTG.RW // Port for RW
#define TRIS_RW TRISG.RW // TRIS for RW
#define RS_PIN PORTG.RS // Port for RS
#define TRIS_RS TRISG.RS // TRIS for RS
#define E_PIN PORTF.E // PORT for E
#define TRIS_E TRISF.E // TRIS for E

// Display ON/OFF Control defines
#define DON 0b00001111 // Display on
#define DOFF 0b00001011 // Display off
#define CURSOR_ON 0b00001111 // Cursor on
#define CURSOR_OFF 0b00001101 // Cursor off
#define BLINK_ON 0b00001111 // Cursor Blink
#define BLINK_OFF 0b00001110 // Cursor No Blink
DS51112B - page 194  1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17
MPLAB-C17 Portion of Header File Example
**
* from PICmicro C Libraries *
* Written and Tested using MPLAB-C17 *
**
* Filename: xlcd.h *
**

// DATA_PORT defines the port on which the LCD
// data lines are connected to
#define DATA_PORT PORTF
#define TRIS_DATA_PORT DDRF

// Control Signals
#define RS 1 // Register Select bit
#define RW 0 // Read/Write bit
#define E 6 // Clock bit

// CTRL_PORT defines the port where the control
// lines are connected
#define RW_PIN PORTGbits.RG0 // Port for RW
#define TRIS_RW DDRGbits.RG0 // TRIS for RW
#define RS_PIN PORTGbits.RG1 // Port for RS
#define TRIS_RS DDRGbits.RG1 // TRIS for RS
#define E_PIN PORTFbits.RF6 // PORT for E
#define TRIS_E DDRFbits.RF6 // TRIS for E

// Display ON/OFF Control defines
#define DON 0b00001111 // Display on
#define DOFF 0b00001011 // Display off
#define CURSOR_ON 0b00001111 // Cursor on
#define CURSOR_OFF 0b00001101 // Cursor off
#define BLINK_ON 0b00001111 // Cursor Blink
#define BLINK_OFF 0b00001110 // Cursor No Blink
 1998 Microchip Technology Inc. DS51112B - page 195

MPLAB-C17 USER’S GUIDE
MPLAB-C Source File Example
#pragma library

#pragma option +l

/***
* Selected code from PICmicro C Libraries V1.00 (BETA)
* This demonstrates how the code would
* be written for MPLAB-C
* Some of the conditional assembly and comments from the original
* library file were removed for this example
***/

void SetCGRamAddr(char CGaddr)
{

// Lower nibble interface
TRIS_DATA_PORT = TRIS_DATA_PORT & 0xf0; // Make nibble input
DATA_PORT = DATA_PORT & 0xf0; // and write upper nibble
DATA_PORT = DATA_PORT | (((CGaddr |0b01000000)>>4) & 0x0f);

RW_PIN = 0; // Set control signals
RS_PIN = 0;
DelayFor18TCY();
E_PIN = 1; // Clock cmd and address in
DelayFor18TCY();
E_PIN = 0;

// Lower nibble interface
DATA_PORT = DATA_PORT & 0xf0; // Write lower nibble
DATA_PORT = DATA_PORT | (CGaddr&0x0f);

DelayFor18TCY();
E_PIN = 1; // Clock cmd and address in
DelayFor18TCY();
E_PIN = 0;

// Lower nibble interface
TRIS_DATA_PORT = TRIS_DATA_PORT | 0x0f; // Make inputs

return;

}

DS51112B - page 196  1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17
MPLAB-C17 Source File Example
#include <p17c756.h>

#include "xlcd.h"

/***
* Selected code from PICmicro C Libraries V2.00 (BETA) *

* Written and Tested using MPLABC V2.00 *
**

void SetCGRamAddr(char CGaddr)
{

// Lower nibble interface
TRIS_DATA_PORT &= 0xf0; // Make nibble input
DATA_PORT &= 0xf0; // and write upper nibble
DATA_PORT |= (((CGaddr |0b01000000)>>4) & 0x0f);

RW_PIN = 0; // Set control signals
RS_PIN = 0;
DelayFor18TCY();
E_PIN = 1; // Clock cmd and address in
DelayFor18TCY();
E_PIN = 0;

// Lower nibble interface
DATA_PORT &= 0xf0; // Write lower nibble
DATA_PORT |= (CGaddr&0x0f);

DelayFor18TCY();
E_PIN = 1; // Clock cmd and address in
DelayFor18TCY();
E_PIN = 0;

// Lower nibble interface
TRIS_DATA_PORT |= 0x0f; // Make inputs

return;
}

 1998 Microchip Technology Inc. DS51112B - page 197

MPLAB-C17 USER’S GUIDE
NOTES:
DS51112B - page 198  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Appendix B. ASCII Character Set
Introduction
This appendix contains the ASCII character set.

ASCII Character Set

Most Significant Character

L
ea

st
 S

ig
n

if
ic

an
t

C
h

ar
ac

te
r

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
 1998 Microchip Technology Inc. DS51112B - page 199

MPLAB-C17 USER’S GUIDE
NOTES:
DS51112B - page 200  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Appendix C. Detailed MPLAB-C17 Example
Introduction
This appendix gives an example of actual working source code with comments
included. This example is included on the distribution disk along with other
examples not included in this User’s Guide.

Highlights
This appendix presents the following example:

• Flashing LEDs

Flashing LEDs
// File: 17c42a.h

#ifndef __17C42A_H
#define __17C42A_H

extern unsigned char INDF0;
extern unsigned char FSR0;
extern unsigned char PCL;
extern unsigned char PCLATH;
extern unsigned char ALUSTA;
extern unsigned char T0STA;
extern unsigned char CPUSTA;
extern unsigned char INTSTA;
extern unsigned char INDF1;
extern unsigned char FSR1;
extern unsigned char WREG;
extern unsigned int TMR0; /* same location as TMR0L/H */
extern unsigned char TMR0L;
extern unsigned char TMR0H;
extern unsigned int TBLPTR; /* same location as TBLPTRL/H */
extern unsigned char TBLPTRL;
extern unsigned char TBLPTRH;
extern unsigned char BSR;

extern struct
{
 unsigned C:1;
 unsigned DC:1;
 unsigned Z:1;
 unsigned OV:1;
 unsigned FS0:1;
 unsigned FS1:1;
 unsigned FS2:1;
 unsigned FS3:1;
} ALUSTAbits;

/* Bank 0 SFR’s */
extern far unsigned char PORTA;
extern near unsigned char DDRB;
extern far unsigned char PORTB;
extern far unsigned char RCSTA;
extern far unsigned char RCREG;
 1998 Microchip Technology Inc. DS51112B - page 201

MPLAB-C17 USER’S GUIDE
extern far unsigned char TXSTA;
extern far unsigned char TXREG;
extern far unsigned char SPBRG;

extern far union
{
 struct
 {
 unsigned RA0:1; /* Bit 0 */
 unsigned RA1:1;
 unsigned RA2:1;
 unsigned RA3:1;
 unsigned RA4:1;
 unsigned RA5:1;
 unsigned :1;
 unsigned NOT_RBPU:1;
 };
 struct
 {
 unsigned INT:1; /* Alternate name for bit 0 */
 unsigned T0CKI:1; /* Alternate name for bit 1 */
 unsigned :6; /* pad it */
 };
} PORTAbits;
extern far union
{
 struct
 {
 unsigned RCD8:1;
 unsigned OERR:1;
 unsigned FERR:1;
 unsigned :1;
 unsigned CREN:1;
 unsigned SREN:1;
 unsigned RC8:1;
 unsigned SPEN:1;
 };
 struct
 {
 unsigned :6;
 unsigned RC9:1; /* Alternate name for bit 6 */
 };
} RCSTAbits;

extern far union
{
 struct
 {
 unsigned TXD8:1;
 unsigned TRMT:1;
 unsigned :1;
 unsigned :1;
 unsigned SYNC:1;
 unsigned TXEN:1;
 unsigned TX8:1;
 unsigned CSRC:1;
 };
 struct
 {
 unsigned :6;
 unsigned TX9:1; /* Alternate name for bit 6 */
 };
} TXSTAbits;
DS51112B - page 202  1998 Microchip Technology Inc.

Appendix C. Detailed MPLAB-C17 Example
/* Bank 1 SFR’s */
extern near unsigned char DDRC;
extern far unsigned char PORTC;
extern near unsigned char DDRD;
extern far unsigned char PORTD;
extern near unsigned char DDRE;
extern far unsigned char PORTE;
extern far unsigned char PIR;
extern far unsigned char PIE;

/* Bank 2 SFR’s */
extern far unsigned char TMR1;
extern far unsigned char TMR2;
extern far unsigned int TMR3; /* same location as TMR3L/H */
extern far unsigned char TMR3L;
extern far unsigned char TMR3H;
extern far unsigned char PR1;
extern far unsigned char PR2;
extern far unsigned int PR3; /* same location as PR3L/H */
extern far unsigned char PR3L;
extern far unsigned char PR3H;

/* Bank 3 SFR’s */
extern far unsigned char PW1DCL;
extern far unsigned char PW2DCL;
extern far unsigned char PW1DCH;
extern far unsigned char PW2DCH;
extern far unsigned int CA2; /* same location as CA2L/H */
extern far unsigned char CA2L;
extern far unsigned char CA2H;
extern far unsigned char TCON1;
extern far unsigned char TCON2;

#endif

; File: 17C42a.asm
LIST P=17C42A

SFR0 UDATA

GLOBAL INDF0, FSR0, PCL, PCLATH, ALUSTA, T0STA, CPUSTA
GLOBAL INTSTA, INDF1, FSR1, WREG, TMR0, TMR0L, TMR0H
GLOBAL TBLPTR, TBLPTRL, TBLPTRH
GLOBAL ALUSTAbits, T0STAbits, CPUSTAbits

INDF0 RES 1 ; 0x000
FSR0 RES 1 ; 0x001
PCL RES 1 ; 0x002
PCLATH RES 1 ; 0x003
ALUSTAbits
ALUSTA RES 1 ; 0x004
T0STAbits
T0STA RES 1 ; 0x005
CPUSTAbits
CPUSTA RES 1 ; 0x006
INTSTA RES 1 ; 0x007
INDF1 RES 1 ; 0x008
FSR1 RES 1 ; 0x009
WREG RES 1 ; 0x00A
TMR0
TMR0L RES 1 ; 0x00B
TMR0H RES 1 ; 0x00C
TBLPTR
TBLPTRL RES 1 ; 0x00D
 1998 Microchip Technology Inc. DS51112B - page 203

MPLAB-C17 USER’S GUIDE
TBLPTRH RES 1 ; 0x00E
BSR RES 1 ; 0x00F

;----- Bank 0 Special Function Registers --------------------

PORTA
PORTAbits RES 1 ; 0x010
DDRB RES 1 ; 0x011
PORTB RES 1 ; 0x012
RCSTAbits
RCSTA RES 1 ; 0x013
RCREG RES 1 ; 0x014
TXSTAbits
TXSTA RES 1 ; 0x015
TXREG RES 1 ; 0x016
SPBRG RES 1 ; 0x017

 GLOBAL PORTA, DDRB, PORTB, RCSTAbits, RCSTA, RCREG
 GLOBAL TXSTAbits, TXSTA, TXREG, SPBRG
 GLOBAL PORTAbits

;----- Bank 1 Special Function Registers --------------------

SFR1 UDATA

 GLOBAL DDRC, PORTC, PORTCbits, DDRD, PORTD, PORTDbits
 GLOBAL DDRE, PORTE, PORTEbits, PIR, PIE

DDRC RES 1 ; 0X110
PORTC
PORTCbits RES 1 ; 0x111
DDRD RES 1 ; 0X112
PORTD
PORTDbits RES 1 ; 0x113
DDRE RES 1 ; 0X114
PORTE
PORTEbits RES 1 ; 0x115
PIR RES 1 ; 0x116
PIE RES 1 ; 0x117

 END

// File: LED42.C

#include "17C42A.H"

#define ROLF(Bank, Address) _asm movlb Bank _endasm \
 _asm rlcf Address _endasm

#define SetBank _asm movlb 0x01 _endasm

/* Prototypes */
void main(void);
void delay(void);
void WriteToPORTA(void);
void WriteToPORTB(void);
void WriteToPORTC(void);
void WriteToPORTD(void);
void FlashAll(unsigned char *);

unsigned char i;
unsigned char count1;
unsigned char count2;
unsigned char flashcount;
DS51112B - page 204  1998 Microchip Technology Inc.

Appendix C. Detailed MPLAB-C17 Example
#pragma nocontext
#pragma nosaveregs

void main(void)
{

PORTB = 0xff; // CLEAR PORT B register
DDRB = 0x00; // Set Port B as Output
PORTC = 0xff; // Clear Port C Register
DDRC = 0x00; // Set Port C as output
PORTD = 0xff; // Clear Port D Register
DDRD = 0x00; // Set Port D as output

FlashAll(&flashcount);

goto main;

} /* end main */

#pragma nocontext
#pragma nosaveregs

void WriteToPORTA()
{

 for(i = 2; i < 4; i++)
{

PORTA = 0xff;
PORTA = ~(1 << i);
delay();

} /* end for */

 PORTA = 0xff;
} /* WriteToPORTA */

#pragma nocontext
#pragma nosaveregs

void WriteToPORTB()
{

for(i = 1; i != 0; i += i)
{

PORTB = 0xff;
PORTB = ~i;
delay();

} /* end for */

PORTB = 0xff;
} /* end WriteToPORTB */

#pragma nocontext
#pragma nosaveregs

void WriteToPORTC()
{

PORTC = 0xfe;

do
{

delay();
ALUSTA |= 0x01;

 ROLF(1, PORTC);
}while(ALUSTAbits.C);

} /* end WriteToPORTC */
 1998 Microchip Technology Inc. DS51112B - page 205

MPLAB-C17 USER’S GUIDE
#pragma nocontext
#pragma nosaveregs

void WriteToPORTD()
{

 for(i = 0; i < 8; i++)
{

PORTD = 0xff;
PORTD = ~(1 << i);
delay();

} /* end for */

 PORTD = 0xff;
} /* end WriteToPORTD */

void FlashAll(unsigned char *flashcount)
{

 for(*flashcount = 0; *flashcount < 5; *flashcount++)
 {
 PORTB = 0X00;
 PORTC = 0X00;
 PORTD = 0X00;
 delay();

 PORTB = 0XFF;
 PORTC = 0XFF;
 PORTD = 0XFF;
 delay();
 } /* end for */

} /* end FlashAll */
DS51112B - page 206  1998 Microchip Technology Inc.

Appendix C. Detailed MPLAB-C17 Example
Linker File to Link Flashing LEDs Example
// File: led42.lkr
// Example Linker Command File For a PIC17C42A
//
// The Linker supports the following command line options:
// -o <filename> : specify output file ’filename’
// -m <filename> : create map file ’filename’
// -L <libpath> : additional library directory for

 search path
// -s : strip symbol table and line info

 from output
//
// The linker command file is used:
// 1) To specify an additional directory for the library

 search path
// 2) To specify the object files for linking
// 3) To include additional linker command files
// 4) To define the target’s memory architecture
// 5) To locate sections within the target’s memory
//
// The following statement specifies an additional directory
// for the library search path:
// LIBPATH ’libpath’ [’libpath’...]
// where,
// ’libpath’ is an absolute path to the directory containing
// a library. Note, more than one path can specified in a
 single
// LIBPATH statement.
//
//
// The following statement specifies object files for linking:
// FILES ’objfile’ [’objfile’...]
// where,
// ’objfile’ is an object file. Note, more than one object
 file can be
// specified in a single FILES statement.
//
//
// The following statement includes an additional linker
 command file:
// INCLUDE ’cmdfile’
// where,
// ’cmdfile’ is the name of the linker cmd file to include.
 Note,
// command line options in an included linker cmd file are
 ignored.
//
//
// The following statements define portions of the target’s
 memory
// by specifiying a name for a block of memory, its starting
 address,
// and its ending address:
// DATABANK NAME=’memName’ START=’addr’ END=’addr’
// CODEPAGE NAME=’memName’ START=’addr’ END=’addr’
// SHAREBANK NAME=’memName’ START=’addr’ END=’addr’
// where,
// ’memName’ is any ASCII string used to identify a
 DATABANK,
// CODEPAGE, or SHAREBANK
// ’addr’ is a decimal or hexadecimal number
 1998 Microchip Technology Inc. DS51112B - page 207

MPLAB-C17 USER’S GUIDE
 specifying an address
// The SHAREBANK statement identifies a region in RAM which
 is mapped across
// mulitple banks. Note, a SHAREBANK statement should be
 given for each bank that
// shares a region and each of these statements should have
 the same NAME.
//
//
// The following statement defines a section by specifying
 its name,
// the block of memory in which to load the section, and
 optionally,
// the block of memory in which to run the section:
// SECTION NAME=’secName’ LOAD=’memName’ RUN=’memName’
// where,
// ’secName’ is an ASCII string used to identify a
 SECTION, this is the
// same name for the section in the COFF file
// ’memName’ is a previously defined DATABANK or CODEPAGE
// The optional run block allows sections which contain
 initialized data
// to be stored in a CODEPAGE (ROM) and copied to a DATABANK
 (RAM) at runtime.

CODEPAGE NAME=reset_vector START=0x0000 END=0x0007
// Reset Vector
CODEPAGE NAME=page0 START=0x0022 END=0x1FFF
// On chip memory

DATABANK NAME=sfr0 START=0x00 END=0x1F
PROTECTED
DATABANK NAME=sfr1 START=0x0110 END=0x117
PROTECTED
DATABANK NAME=gpr0 START=0x20 END=0x7F
// GPRs Bank 0
DATABANK NAME=stack START=0x80 END=0xFF
// Stack RAM

SECTION NAME=SFR0 RAM=sfr0
// Data segments defined
SECTION NAME=SFR1 RAM=sfr1
// in 17C42A.asm
SECTION NAME=.bss_t.o RAM=gpr0
// .bss section resides in RAM
STACK SIZE=0x7F RAM=stack
DS51112B - page 208  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Appendix D. PIC17CXXX Instruction Set
Introduction
This appendix gives the instruction set for the PIC17CXXX device family.

Highlights
This appendix presents the following reference information:

• PIC17CXXX Instruction Set

PIC17CXXX Instruction Set
The PIC17CXXX, Microchip’s high-performance 8-bit microcontroller family,
uses a 16-bit wide instruction set. The PIC17CXXX instruction set consists of
58 instructions, each a single 16-bit wide word. Most instructions operate on a
file register, f, and the working register, W (accumulator). The result can be
directed either to the file register or the W register or to both in the case of
some instructions. Some devices in this family also include hardware multiply
instructions. A few instructions operate solely on a file register (BSF for
example).

Table D.1: PIC17CXXX Literal and Control Operations

Mnemonic Description Function

MOVFP f,p Move f to p f → p

MOVLB k Move literal to BSR k → BSR

MOVLP k Move literal to RAM
page select

k → BSR <7:4>

MOVPF p,f Move p to f p → W

MOVWF f Move W to F W → f

TABLRD t,i,f Read data from table
latch into file f, then
update table latch with
16-bit contents of
memory location
addressed by table
pointer

TBLATH → f if t=1, TBLATL
→ f if t=0;
ProgMem(TBLPTR)
→TBLAT
TBLPTR+1 →TBLPTR if i=1
 1998 Microchip Technology Inc. DS51112B - page 209

MPLAB-C17 USER’S GUIDE
TABLWT t,i,f Write data from file f to
table latch and then
write 16-bit table latch
to program memory
location addressed

f → TBLATH if t = 1,
f → TBLATL if t = 0;
TBLAT
→ProgMem(TBLPTR);
TBLPTR+1 → TBLPTR if i=1

TLRD t,f Read data from table
latch into file f (table
latch unchanged)

TBLATH → f if t = 1
TBLATL → f if t =

TLWT t,f Write data from file f f → TBLATH if t = 1
f → TBLATL if t = 0

ADDLW k Add literal to W (W + k) → W

ADDWF f,d Add W to F (W + f) → d

ADDWFC f,d Add W and Carry to f (W + f + C) → d

ANDLW k AND Literal and W (W .AND. k) → W

ANDWF f,d AND W with f (W .AND. f) → d

CLRF f,d Clear f and Clear d 0x00 → f,0x00 → d

COMF f,d Complement f .NOT. f → d

DAW f,d Dec. adjust W, store
in f,d

W adjusted → f and d

DECF f,d Decrement f (f - 1) → f and d

INCF f,d Increment f (f + 1) → f and d

IORLW k Inclusive OR literal
with W

(W .OR. k) → W

IORWF f,d Inclusive or W with f (W .OR. f) → d

MOVLW k Move literal to W k → W

MULLW k Multiply literal and W (k x W) → PH, PL

MULWF f Multiply W and f (W x f) → PH, PL

NEGW f,d Negate W, store in f
and d

(W + 1) → f,(W + 1) → d

RLCF f,d Rotate left through carry

RLNCF f,d Rotate left (no carry)

Table D.1: PIC17CXXX Literal and Control Operations (Continued)

Mnemonic Description Function
DS51112B - page 210  1998 Microchip Technology Inc.

Appendix D. PIC17CXXX Instruction Set
Table D.2: PIC17CXXX Bit Handling Instructions

RRCF f,d Rotate right through
carry

RRNCF f,d Rotate right (no carry)

SETF f,d Set f and Set d 0xff → f,0xff → d

SUBLW k Subtract W from literal (k - W) → W

SUBWF f,d Subtract W from f (f - W) → d

SUBWFB f,d Subtract from f with (f - W - c) → d

SWAPF f,d Swap ff (0:3) → d(4:7),
f(4:7) → d(0:3)

XORLW k Exclusive OR literal (W .XOR. k) → W

XORWF f,d Exclusive OR W
with f

(W .XOR. f) → d

Mnemonic Description Function

BCF f,b Bit clear f 0 → f(b)

BSF f,b Bit set f 1 → f(b)

BTFSC f,b Bit test, skip if clear skip if f(b) = 0

BTFSS f,b Bit test, skip if set skip if f(b) = 1

BTG f,b Bit toggle f .NOT. f(b) → f(b)

Table D.3: PIC17CXXX Program Control Instructions

Mnemonic Description Function

CALL k Subroutine call
(within 8k page)

PC+1 → TOS,k →
PC(12:0),
k(12:8) → PCLATH(4:0),
PC(15:13) → PCLATH(7:5)

CPFSEQ f Compare f/w, skip if
 f = w

f-W, skip if f = W

CPFSGT f Compare f/w, skip if
f > w

f-W, skip if f > W

Table D.1: PIC17CXXX Literal and Control Operations (Continued)

Mnemonic Description Function
 1998 Microchip Technology Inc. DS51112B - page 211

MPLAB-C17 USER’S GUIDE
 PIC17CXXX Special Control Instructions

CPFSLT f Compare f/w, skip if f<
w

f-W, skip if f < W

DECFSZ f,d Decrement f, skip if 0 (f-1) → d, skip if 0

DCFSNZ f,d Decrement f, skip if not
0

(f-1) → d, skip if not 0

GOTO k Unconditional branch
(within 8k)

k → PC(12:0)
k(12:8) → f3(4:0),

INFSNZ f,d Increment f, skip if not
zero

(f+1) → d, skip if not 0

LCALL k Long Call (within 64k) (PC+1) → TOS; k → PCL,

RETFIE Return from interrupt,
enable interrupt

(f3) → PCH:k → PCL

RETLW k Return with literal in W k → W, TOS → PC,
(f3 unchanged)

RETURN Return from subroutine TOS → PC

TSTFSZ f Test f, skip if zero skip if f = 0

Mnemonic Description Function

CLRWDT Clear watchdog timer 0 → WDT,0 → WDT
prescaler,
1 → PD, 1 → TO

NOP No operation None

SLEEP Enter Sleep Mode Stop oscillator,
power down, 0 → WDT,
0 → WDT Prescaler
1 → PD, 1 → TO

Table D.3: PIC17CXXX Program Control Instructions (Continued)

Mnemonic Description Function
DS51112B - page 212  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Appendix E. References
Introduction
This appendix gives references that may be helpful in programming with
MPLAB-C17.

Highlights
This appendix lists the following reference types:

• General C Information

• C Standards Information

References
American National Standard for Information Systems – Programming

Language – C. American National Standards Institute (ANSI), 11 West
42nd. Street, New York, New York, 10036.

This standard specifies the form and establishes the interpretation of
programs expressed in the programming language C. Its purpose is to
promote portability, reliability, maintainability, and efficient execution of C
language programs on a variety of computing systems.

Harbison, Samuel P., and Steele, Guy L., C A Reference Manual,
Fourth Edition, Prentice-Hall, Englewood Cliffs, New Jersey 07632

A best selling authoritative reference for the C programming language.

Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language,
Second Edition. Prentice Hall, Englewood Cliffs, New Jersey 07632

Presents a concise exposition of C as defined by the ANSI standard.
This book is an excellent reference for C programmers.
 1998 Microchip Technology Inc. DS51112B - page 213

MPLAB-C17 USER’S GUIDE
NOTES:
DS51112B - page 214  1998 Microchip Technology Inc.

MPLAB-C17 USER’S GUIDE
Appendix F. On-Line Support
Introduction
Microchip provides on-line support via the Microchip World Wide Web
(WWW) site.

The web site is used by Microchip as a means to make files and information
easily available to customers. To view the site, the user must have access to
the Internet and a web browser, such as Netscape Navigator or Microsoft
Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site
The Microchip web site is available by using your favorite Internet browser to
attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may
download files for the latest Development Tools, Datasheets, Application
Notes, User’s Guides, Articles and Sample Programs.

In addition to technical documentation, a variety of Corporate information is
also available:

• Microchip Sales Offices, Distributors and Factory Representatives

• Latest Microchip Press Releases

• Technical Support Section with Frequently Asked Questions

• Design Tips

• Device Errata

• Job Postings

• Microchip Consultant Program Member Listing

• Links to other useful Web Sites related to Microchip Products

Software Releases
Software products released by Microchip are referred to by version numbers.
Version numbers use the form:

xx.yy.zz

Where xx is the major release number, yy is the minor number, and zz is the
intermediate number.
 1998 Microchip Technology Inc. DS51112B - page 215

MPLAB-C17 USER’S GUIDE
Intermediate Release
Intermediate released software represents changes to a released software
system and is designated as such by adding an intermediate number to the
version number. Intermediate changes are represented by:

• Bug Fixes

• Special Releases

• Feature Experiments

Intermediate released software does not represent our most tested and stable
software. Typically, it will not have been subject to a thorough and rigorous test
suite, unlike production released versions. Therefore, customers should use
these versions with care, and only in cases where the features provided by an
intermediate release are required.

Intermediate releases are primarily available through the Microchip Web Site.

Production Release
Production released software is software shipped with tool products. Example
products are PRO MATE II, PICSTART Plus, and PICMASTER. The Major
number is advanced when significant feature enhancements are made to the
product. The minor version number is advanced for maintenance fixes and
minor enhancements. Production released software represents Microchip’s
most stable and thoroughly tested software.

There will always be a period of time when the Production Released software
is not reflected by products being shipped until stocks are rotated. You should
always check the Microchip Web Site for the current production release.

Systems Information and Upgrade Hot Line
The Systems Information and Upgrade Line provides system users a listing of
the latest versions of all of Microchip’s development systems software
products. Plus, this line provides information on how customers can receive
any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada

1-602-786-7302 for the rest of the world

These phone numbers are also listed on the "Important Information" sheet that
is shipped with all development systems. The hot line message is updated
whenever a new software version is added to the Microchip Web Site, or when
a new upgrade kit becomes available.
DS51112B - page 216  1998 Microchip Technology Inc.

 1998 Microchip Technology Inc. DS51112B - page 217

Appendix F. On-Line Support

NOTES:

MPLAB-C17 USER’S GUIDE

DS51112B - page 218  1998 Microchip Technology Inc.

NOTES:

MPLAB-C17 USER’S GUIDE
Index
Symbols
 ..41, 42
! ... 42
- ... 41
!= ... 41
#define 23
#elif .. 24
#else 24
#endif 24
#error 24
#if .. 25
#ifdef 25
#ifndef 26
#include 26
#line 27
#pragma

code 27
directives 192
idata27, 186
list 28
nocontext 28
nolist 29
nosaveregs 28
romdata27, 186
udata27, 186

#pragma varlocate {gpr | sfr} n .. 29
#undef 29
% ... 41
& .. 42
&& ... 42
’*/ ... 20
’/*’ .. 20
’//’ ... 20
) ... 3
* .. 41
+ .. 41
/ ... 41
= .. 42
== .. 41
> .. 41
>= .. 41
>> .. 42
@ .. 183
^ .. 42
__STARTUP 66
_asm 71
_endasm 71
| ... 42
|| .. 42
~ .. 42

A
absolute section 27
Add Node 14
addition 40
Address spaces

ROM and RAM 53
Alphabetical character 161
 1998 Microchip Technology Inc.
Alphanumeric character161
ALUSTA68
AND41
Angle Brackets3
ANSI79
Arithmetic Operators40
ARRAYS98
Arrays 50, 81
ASCII 162, 166, 199
assembler 71, 189
assembly language78
Assignment Operators42
asynchronous mode135
auto ..30
AUTOEXEC.BAT5

B
Basic Data Types30
Binary21
Bit-fields 61, 82, 182
bits data type182
Bitwise Operators42
break49
Brown-out Reset117
BSR ..68

C
C Keywords21
C0L17.ASM66
C0S17.ASM66
calling convention77
capture92
case 48, 190
char 30, 31, 182
Characters80
ClrWDT65
COD file8
Code

initialize data move85
interrupt handler84
startup85

CODEPAGE207
Command Line Interface5
Comments 20, 71
Conditional Operator44
const 30, 189
Constants

Character 21, 22
Numeric 21, 22
String 22, 29

continue50
Control character162
Customer Support4

D
data ..67
Data Types 31, 182
DATABANK207
Decrement43
default48
Definition Files63
Delay Functions171
division40
DOS ...5
double 30, 31, 182
do-while47

E
else ..46
Embedded Control Handbook3
endlibrary188
Enumerations 35, 82
environment variable27
epilogue code28
error file8
escape sequences21
Example Code 194, 201
Executable directory7
extern 30, 64
external declaration63

F
far 30, 64
float 30, 31, 182
Floating Point80
for ..47
FSR ..71
FSR071
FTP215
Function Declarations37
Function Prototyping38

G
global31
Global variables32
GOTO190

H
Hardware libraries84
Header Files 63, 188
HEX file8
Hexadecimal21

I
I2C, Software 95, 147
Identifiers79
if ...46
Include directory7
Increment43
Initialized Data67
Initialized data move code85
Initializing Arrays51
Input Capture Functions91
Install MPLAB-17 Language Tool 11
Install_INT65
Install_PIV65
Install_T0CKI65
Install_TMR065
DS51112B - page 219

MPLAB-C17 USER’S GUIDE
Installing MPLAB-C17 5
int30, 31, 182
Integers 80
Internet 215
Interrupt handler code 84
Interrupts ... 65, 68, 71, 105, 181

L
LCD 139
Librarian 3
Libraries 188

hardware 84
pre-compiled math 84
software 84
standard 84

Library directory 7
Linker 3
Linker Command File 207
Linker Script 16
list .. 28
local 31
Local variables 32
Logical Operators 41
long30, 31, 182
lower-case 176

M
main 67
Make Project 17
Math Libraries 178
MCC_INCLUDE5, 7, 27, 188
MCLR 117
Memory 123
memory devices 101
Memory Functions 174
Microwire Functions 109
modulus 40
MPLAB1, 73
MPLAB-SIM 74
MPLIB 181
MPLINK8, 13
Multiple Files in a Project 9
multiplication 40

N
near 30
nested interrupts 68
Nesting Structures 60
New Project 12
Nop .. 65
NOT 41
Number Conversion 165
Numeric character 163

O
Octal 21
Operators 40
OR ... 41
ORG 187

P
paged/banked data 30
Passing Arguments to Functions 39
DS51112B - page 220
Passing Pointers to Functions ...56
Passing Variables38
PCLATH68
PIC17CXX Instruction Set209
PICSTART Plus75
Pipe Character (|)3
Pointer Arithmetic55
Pointers 54, 81, 98, 181
Port Functions106
Porting Code181
post-decrement44
Precedence of Operators44
Pre-Compiled Math Libraries84
pre-decrement43
pre-increment43
Preprocessor Directives 23, 82
PRO MATE II75
processor assembly file63
processor definition file20
Processor Header63
PROCMD75
PROD71
PRODL 69, 70, 71
Program Control Statements45
program memory187
Project manager10
Project Window18
prologue28
prototype38
Pulse Width Modulation Functions .

114
PWM114

R
README.MCC3
recursive functions38
register 30, 182
Register file definitions84
Registers81
registerx182
Relational Operators41
Reset Functions117
return 28, 39
Returning Values from Functions 39
Rlcf ...65
Rlncf65
ROM and RAM address spaces .53
ROM and RAM pointers54
ROM string53
Rrcf ..65

S
SECTION 27, 208
Set ...13
Set Project Options13
SHAREBANK207
shared global variables185
short 30, 31, 182
signed30
size ..66
Sleep 65, 119
Software libraries84
Software Releases215
Software Stack181
Software stack181
Special Function Registers63
SPI Functions121
SPI, Software153
SSP ..95
Stack66
stack frame28
Stack initialization66
STACK SIZE208
Standard libraries84
Start up code85
Startup Code66
static30
Static strings52
Storage Class

extern33
static33
volatile33

Strings 51, 166, 174
struct57
Structures 57, 81
subtraction40
Support215
Swapf65
Switch 48, 82, 190
synchronous mode135
System Requirements1

T
TBLPTR71
TBLPTRL71
Text Conversion165
Timer Functions127
typedef37

U
UART, Software157
Unions 59, 81
unsigned30
upper-case characters176
USART Functions132
USE_INITDATA67
USE_STARTUP67

V
Variable Allocation183
Variable Declaration31
Variables30
void 30, 31
volatile 34, 63, 64

W
Warranty4
WDT118
Web Site215
while 47, 48
WREG 68, 71
 1998 Microchip Technology Inc.

 1998 Microchip Technology Inc. DS51112B 221

MPLAB-C17 USER’S GUIDE
DS51112B 222  1998 Microchip Technology Inc.

 1998 Microchip Technology Inc. DS51112B 223

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property
rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the
property of their respective companies.

DS51112B-page 224  1998 Microchip Technology Inc.

All rights reserved. © 3/98, Microchip Technology Incorporated, USA. 3/98 Printed on recycled paper.

M
AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602-786-7200 Fax: 602-786-7277
Technical Support: 602-786-7627
Web: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 972-991-7177 Fax: 972-991-8588

Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 714-263-1888 Fax: 714-263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 516-273-5305 Fax: 516-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong
Microchip Asia Pacific
RM 3801B, Tower Two
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431

India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700
Fax: 86 21-6275-5060

Singapore
Microchip Technology Taiwan
Singapore Branch
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850

ASIA/PACIFIC (CONTINUED)

Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-1189-21-5858 Fax: 44-1189-21-5835

France
Arizona Microchip Technology SARL
Zone Industrielle de la Bonde
2 Rue du Buisson aux Fraises
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Müchen, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-39-6899939 Fax: 39-39-6899883

1/13/98

WORLDWIDE SALES AND SERVICE

Microchip received ISO 9001 Quality
System certification for its worldwide
headquarters, design, and wafer
fabrication facilities in January 1997.
Our field-programmable PICmicro™ 8-
bit MCUs, Serial EEPROMs, related
specialty memory products and devel-
opment systems conform to the strin-
gent quality standards of the
International Standard Organization
(ISO).

	MPLAB‰C17 User's Guide
	Chapter 1. About MPLAB-C17
	Introduction
	Highlights
	ANSI Compatibility
	System Requirements
	About this Guide
	Conventions Used in this Guide

	Recommended Reading
	Warranty Registration
	Customer Support

	Chapter 2. Getting Started with MPLAB-C17
	Introduction
	Highlights
	Installing MPLAB-C17
	Windows Environment
	DOS Environment

	Command Line Interface
	Creating Your First MPLAB-C17 Project
	Using Multiple Files in a Project
	Making Projects in the MPLAB Integrated Developmen...
	Introduction
	Highlights
	Making a Project with MPLAB-C17
	Adding Pre-Compiled Object Files

	Chapter 3. MPLAB-C17 Fundamentals
	Introduction
	Highlights
	C Fundamentals
	Components of an MPLAB-C17 Program
	Comments
	C Keywords
	Constants

	Preprocessor Directives
	#define
	#endif
	#error
	#if
	#ifdef
	#ifndef
	#include
	#line
	#pragma {code|udata|idata|romdata} [[name] [{{gpr ...
	#pragma nocontext
	#pragma nosaveregs
	#pragma list
	#pragma nolist
	#undef

	Variables
	Basic Data Types
	Variable Declaration
	Storage Class (extern, static, volatile)
	Enumeration
	typedef

	Functions
	Function Declarations
	Function Prototyping
	Passing Arguments to Functions
	Returning Values from Functions

	Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Increment and Decrement Operators
	Conditional Operator
	Precedence of Operators

	Program Control Statements
	if Statement
	if-else Statements
	for Statement
	while Statement
	do-while Statement
	switch Statement
	break Statement
	continue Statement

	Arrays and Strings
	Arrays
	Strings
	Initializing Arrays

	Pointers
	Introduction to Pointers
	Pointer Arithmetic
	Passing Pointers to Functions

	Structures and Unions
	Introduction to Structures
	Introduction to Unions
	Nesting Structures
	Bit-fields

	Chapter 4. MPLAB-C17 and PICmicro™ MCU Programming...
	Introduction
	Highlights
	Processor Header and Assembly Definition Files
	Software Stack
	C Startup Code
	Interrupts
	Internal Assembler

	Chapter 5. Using MPLAB-C17 with Other Microchip To...
	Introduction
	Highlights
	MPLAB IDE
	MPLAB-SIM Simulator
	PROCMD

	PICSTART Plus and PRO MATE II

	Chapter 6. Mixing Assembly Language and C Modules
	Introduction
	Highlights
	C calling convention
	Mixing assembly language and C variables and funct...

	Chapter 7. ANSI Implementation Issues
	Introduction
	Highlights
	Identifiers
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures and Unions
	Bit-Fields
	Enumerations
	Switch statement
	Preprocessing directives

	Chapter 8. Libraries
	1.0 Introduction
	1.1 Highlights
	1.2 MPLAB-C17 Library Functions and Pre-Compiled O...
	1.3 Pre-Compiled Math Libraries

	2.0 Hardware Peripheral Library
	2.1 A/D Convertor Functions
	2.2 Input Capture Functions
	2.3 I2C Functions
	2.4 Interrupt Functions
	2.5 I/O Port Functions
	2.6 Microwire‚ Functions
	2.7 Pulse Width Modulation Functions
	2.8 Reset Functions
	2.9 i SPI™ Functions
	2.10 Timer Functions
	2.11 USART Functions

	3.0 Software Peripheral Library
	3.1 External LCD Functions
	3.2 Software I2C Functions
	3.3 Software SPI Functions
	3.4 Software UART Functions

	4.0 General Software Library
	4.1 Character Classification Functions
	4.2 Number and Text Conversion Functions
	4.3 Delay Functions
	4.4 Memory and String Manipulation Functions

	5.0 Math Library
	5.1 32-bit Integer and 32-bit Floating Point Math ...

	Appendix A. Porting Code from MPLAB-C to MPLAB-C17...
	Introduction
	External Differences
	Internal Differences

	Porting Code
	Data Types
	bits data type

	Variable Allocation
	General
	Using @ to allocate variables at absolute location...
	Using @ to allocate local variables in global scra...
	Function arguments using shared global variables
	Use #PRAGMA IDATA, UDATA, ROMDATA to allocate spec...

	Code Allocation
	Allocating code at a specific address using ORG or...
	Access to pre-loaded code in ROM

	Header Files and Libraries
	Header file inclusion
	Libraries
	The use of const
	Inline assembler support
	Switch..case support

	#pragma directives
	Porting Code from MPLAB-C to MPLAB-C17 Checksheet
	Example Code Ported from MPLAB-C to MPLAB-C17
	MPLAB-C Portion of Header File Example
	MPLAB-C17 Portion of Header File Example
	MPLAB-C Source File Example
	MPLAB-C17 Source File Example

	Appendix B. ASCII Character Set
	Introduction
	ASCII Character Set

	Appendix C. Detailed MPLAB-C17 Example
	Introduction
	Highlights
	Flashing LEDs
	Linker File to Link Flashing LEDs Example

	Appendix D. PIC17CXXX Instruction Set
	Introduction
	Highlights
	PIC17CXXX Instruction Set
	PIC17CXXX Special Control Instructions

	Appendix E. References
	Introduction
	Highlights
	References

	Appendix F. On-Line Support
	Introduction
	Connecting to the Microchip Internet Web Site
	Software Releases
	Intermediate Release
	Production Release

	Systems Information and Upgrade Hot Line

