MPLABYC17
User’'s Guide

Information contained in this publication regarding device applications and the like is intended through suggestion only
and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip
Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other
intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life
support systems is not authorized except with express written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any intellectual property rights.

The Microchip logo, name, PIC, PICMASTER, PICSTART and PRO MATE are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries. PICmicro, ICEPIC, microlD, Smart Serial and MPLAB are
trademarks of Microchip in the U.S.A. and other countries.

© Microchip Technology Incorporated 1998.

fuzzyTECH is a registered trademark of Inform Software Corporation.

Intel is a registered trademark of Intel Corporation.

DOS and IBM PC/AT are registered trademark of International Business Machines Corporation.
MS-DOS, Windows and Excel are registered trademarks of Microsoft Corporation.
CompusServe is a registered trademark of CompuServe Incorporated.

DriveWay is a trademark of Aisys Intelligent Systems.

Microwire is a registered trademark of National Semiconductor Corporation.

SPl is a trademark of Motorola Corporation.

All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

00 1998 Microchip Technology Inc. DS51112B

MPLAB-C17 USER’S GUIDE

NOTES:

DS51112B 00 1998 Microchip Technology Inc.

microcmie MPLAB-C17 USER'S GUIDE

Table of Contents

Chapter 1. About MPLAB-C17

TaTigoTo (U o1 T0] o IR RPN 1
[[0 0] e |] £ UPPP 1
ANSI Compatibilityccoovuiiiiiei e 1
SyStem REQUITEMENTSciiiiiiiiie e e e e e e ra e 1
About this Guide 2
Conventions Used in this Guide
Recommended ReadiNgccoovuuiiiiiiiiiiiiie e 3
Warranty RegISIrationoiiiiiiiiiiiiii e e e e aaans 4
(OFUS] (o]0 T=T g o] o o] o APPSR 4
Chapter 2. Getting Started with MPLAB-C17
TaTigoTo (U o1 0] o AR 5
[[0 0] e | | UPPP 5

Installing MPLAB-C17 5

Windows Environment 5
DOS Environment 5

Command Line INTErfacCeuuiiiiiiiiiiiii e 5
Creating Your First MPLAB-CL17 Projectcccoooveeiiiiiiiiie e 7
Using Multiple Files in @ Projectcccooiiviiiiiiiiiiicic e 9

Making Projects in the MPLAB Integrated Development Environment ... 10
Introduction 10
Highlights 10
Making a Project with MPLAB-C17 11
Adding Pre-Compiled Object Files 15

00 1998 Microchip Technology Inc. DS51112B-page i

MPLAB-C17 User’'s Guide

Chapter 3.

MPLAB-C17 Fundamentals

T e To 18 ox 1o o PP 19
HIghHGNLS ..o e 19
C FUNamMENtalSccooiiiiiiiiie e 19
Components of an MPLAB-C17 Programcccccceeeeeeevieiinnneeenn. 19
COMMENLES ...t e e e e e e e e e e ae s 20
C KEBYWOIAS ...t e e e e 21
Constants 21
PreproCesSor DIFECHVES.i i e e e eaees 23
#define 23
HENAIf e 24
2] (0] ST UP PRI 24
221 PP PPUPTT 25
2210 [PRSPPI 25
HITNAET e 26
HINCIUAE ... eraaaees 26
22 1] 0 PP PPURT 27

#pragma {code|udatalidatalromdata}
[&name] [{{gpr | ser N} | {=address}].......cccovieiiiiiiiiinneenn. 27
H#Pragma NOCONIEXEcevuiiiii e e e 28
HPragma NOSAVEIEUS ..cvvvuiieirneeeiiieeeieeeeeteeeati e eana e e e e e rarr e een s 28
HPragma liSt ... 28
HPragma NOLISTooovii i 29
HUNAET e 29
VariabIes ... 30
BasSIC Data TYPES ...ciiiiiiie ettt 30
Variable Declarationooouuiiiiiiiiiiiee e 31
Storage Class (extern, static, volatile)ccooviiiiiiiiiiiiin e, 33
ENUMEIAtION ...oeiiiiiiiie e 35
typedef 37
FUNCHIONS et e e et e e e e e e e eee s 37
Function Declarationsccooooeeiiiiiiiiiiiiici e 37
Function Prototypingccooeeiiiiiiiiieieiie et 38
Passing Arguments to FUNCLIONSccoooviiiiiiiciiii e 39
Returning Values from Functions 39
(@ 1= =] = P 40
ArthmetiC OPEratorsouiuuiiiiiiiiiiee e e 40
Relational OPeratorsccoccoeiviiiiiiiieeieeieee e 41
[IoTo][or= L@ 01T =1 (0] £ USSP 41

DS51112B-page ii

00 1998 Microchip Technology Inc.

Table of Contents

Chapter 4.

Bitwise Operators 42

ASSIgNMENt OPEIALOISceviiiiii e 42
Increment and Decrement Operatorscccceevvvvieeeieiiiiieeeeeeennnn. 43
Conditional OPEratorccuviiiiieiiieie e 44
Precedence of OPeratorsc.viiiiiiiiiiiii e 44
Program Control Statementscccoooeviiiiiiii i 45
If STAtEMENT ... e 46
If-elSe StatemMEeNtSccooviiiiiii 46
fOr StAtEMENTic e 47
While Statement ... 47
do-while Statementccooviiii i 47
SWItCh Statementcoiiiiiiii e 48
break Statementoooiiiiiiiiiii 49
CoNtinUEe StateMENTcooiiiiiii e 50
AITays and SEHHNGS ...ovvviiiieeeie e 50
N 1 = NV TP 50
SHINGS oot e 51
INIHANZING AITAYS ooviiiieieee et 51
P OINTEIS . 54
INtroduction t0 POINLEISouuiiiiiiiii e 55
Pointer ArthMetiCooovviiiiiiii e 55
Passing Pointers to FUNCLIONSccooiiiiiiiiiii e 56
Structures and UNIONSiiiiiiiiii e 56
INtroduction tO SEFUCLUIESiiiiiiiiie e 57
Introduction to Unions 59
Nesting Structures 60
BIt-fIRldS ovvieeeee e 61
MPLAB-C17 and PICmicro™ MCU Programming
T (oo {8 Tox 1 o o P UPPPTOS 63
HIGhHGNLS <. 63
Processor Header and Assembly Definition Filescccccooooeiiiiinn.n. 63
Software StacK........coooviiiiiiii 66
C Startup CoUE ...oovviiiiieeeei e 66
T Y (=T 4 (U] £ TP 68
Internal ASSEMDBIETiiiii 71

00 1998 Microchip Technology Inc. DS51112B-page iii

MPLAB-C17 User’'s Guide

Chapter 5.

Chapter 6.

Chapter 7.

Using MPLAB-C17 with Other Microchip Tools 73
[T oo [o3 1o o ISP 73
HIghHGNLS ..o e 73
MPLAB IDE ..ottt 73
MPLAB-SIM SIMUIALOLuvuiiiiiieiie e 74
PROGCMD ..ottt e 75
PICSTART Plus and PRO MATE Il .coovviiiiiieicceeieeeeeeeeie e 75
Mixing Assembly Language and C Modules
[T oo L8 o3 1 o o ISP 77
HIGhHGNLS ..o e e aaees 77
C calling conVENtiONcooiiiiiiiiiie e 77
Mixing assembly language and C variables and functions 78
ANSI Implementation Issues
[T oo L8 o3 1 o o ISP 79
[1o] o | 1SRRI 79
[AENLIFIEIS .. e 79
O = 1= Tod (=] £ SUPPTPPRIPN 80
[T =T 0 [T £ PP TRUPPRRPPIIN 80
Floating Point 80
AIrays and POINTEISouuiiiiiiiii e e 81
REGISTEIS .ot e e e e e e e aaaane 81
Structures and UNIONS ... e e 81
BI-FIEIAS ..o e 82
ENUMEIALIONS ... e e e e e e e e e 82
SWILCh StatEMENTe e 82
Preprocessing dir€CHVESiiiiiiiiiiii e 82

DS51112B-page iv

00 1998 Microchip Technology Inc.

Table of Contents

Chapter 8. Libraries

1.0

2.0

3.0

4.0

5.0

[Yoo [U o110 o T 83
1.1 HIghlIghtS ... 83
1.2 MPLAB-C17 Library Functions and

Pre-Compiled Object Files Overviewcccoeeevvvvennnnnn. 83
1.3 Pre-Compiled Math Librariesccccviiiiiiiiiiiiinn, 84
Hardware Peripheral Librarycccccoooiiiiiiiiiiii i 86
2.1 A/D Convertor FUNCLIONSoovvieiiiiiiiecceeee e, 86
2.2 Input Capture FUNCLIONScoovviiiiiiiiciieiie e 91
2.3 2 O | [1 0] £ 95
2.4 Interrupt FUNCLIONScooiiiic e, 105
2.5 [/O POrt FUNCLIONSiieiiiiieeeeeeee et 106
2.6 Microwire, FUNCLIONScoovviiiiiiicceeece e 109
2.7 Pulse Width Modulation FUNCLIONSccooceveeiiiniiinnnnen. 114
2.8 RESEt FUNCLIONS ..cvviiiiiiie e 117
2.9 I SPI™ FUNCLIONS ..oviiiiiiecee e 121
2.10 TIMEr FUNCLIONS ... 127
2.11 USART FUNCLIONS ... 132
Software Peripheral Librarycccoooiiiiiiiiiiiiieieeeeee 139
3.1 External LCD FUNCLIONSoivviiiiiciieieeceeeeee e, 139
3.2 Software 12C FUNCLONS ..o, 147
3.3 Software SPI FUNCLIONSc.viviiiiiiciceeeeeeeeev e, 153
34 Software UART FUNCLIONSovveviiiiiiiiieiceceee e, 157
General Software Libraryccooooieiiiiiiiiiii e 161
4.1 Character Classification FUNCLiONScoeevvviiineeennn. 161
4.2 Number and Text Conversion FUnctions 165
4.3 Delay FUNCLIONScooiiiiiiiiic e 171
4.4 Memory and String Manipulation Functions 174
Math LIDraryooooooiiiii e 178

5.1 32-bit Integer and 32-bit Floating
Point Math Libraries 178

00 1998 Microchip Technology Inc. DS51112B-page v

MPLAB-C17 User’'s Guide

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

INEFOUCTION ... e e e e e e e e e e e e e eeeeanans 181
External DIfferenCes ... 181
Internal DIffereNCEScoooeiiiiiiiii e 181

POItiNG COUE ..uuiiiii e e 182

DaAta TYPES et 182
DItS data tYPE . .ceeeeei e 183

Variable AlIOCAtIONuuiiiiiiii e 183
GENEIAL e 183
Using @ to allocate variables at absolute locations 183
Using @ to allocate local variables in

global scratch locations no longer needed 184
Function arguments using shared global variables 185
Use #PRAGMA IDATA, UDATA, ROMDATA

to allocate specific addresses for datac..ccce 186

(oo [N |[oTor= 1 1o o ISR 187
AIIocatin%code at a specific address using

RG or #pragma memory ROMccoooiiiiiiiiiiiiieiiieeee, 187
Access to pre-loaded code in ROM 187

Header Files and LIDraries ... 188
Header file inclusion 188
Libraries 188
THE USE Of CONSL ...ueiiii e 189
Inline assembler SUPPOITcovviiiiiii i 189
Switch..case support 190

HPragma dIFECHIVESuuiiiiiiii e e 192

Porting Code from MPLAB-C to MPLAB-C17 Checksheet 193

Example Code Ported from MPLAB-C to MPLAB-C17ccccvvvvnneee.. 194
MPLAB-C Portion of Header File Examplecccccooiviiiiiinnnn.n. 194
MPLAB-C17 Portion of Header File Examplecccccooeeeiiinnnnin. 195
MPLAB-C Source File Examplecccoooiviiiiiiiiiiiiie e 196
MPLAB-C17 Source File Exampleccooiiiiiiiiiiiiiecceeiieee 197

Appendix B. ASCII Character Set

INEFOAUCTION oo aeaees 199
ASCH CharaCter SEOLUoniieee e e 199

DS51112B-page vi 00 1998 Microchip Technology Inc.

Table of Contents

Appendix

Appendix

Appendix

Appendix

Index

C. Detailed MPLAB-C17 Example

Ta] oTo [¥ ox i o] o U UPRUUPPPTRPPTPPPIN 201
HIgGhHGNLS <. 201
FIAaShing LEDSccoooiiiiii e 201
Linker File to Link Flashing LEDs Examplecccccoooviiiiiiiiniciiiiiennn, 207

D. PIC17CXXX Instruction Set

INEFOAUCTION e e e e 209
HIgGhHGNLS <. 209
PICL7CXXX INSIUCLION SL ..o, 209

PIC17CXXX Special Control Instructions 212

E. References

INEFOAUCTION e e e e 213
HIgGhHGNLS ..o 213
R CIENCES . 213

F. On-Line Support

INTFOTUCTION «.eeeeee et e e e e e e e e e e e eaaa s 215
Connecting to the Microchip Internet Web Sitecccccoeiiiiiiiiinnn. 215
SOftWare REICASEScoveviiiii e 215

Intermediate Release 216

Production Release 216
Systems Information and Upgrade Hot Lineccccooeoviiiiiiiiciiiiniinnn, 216
[L0 (= PP UPPOR PRSPPI 219

Worldwide Sales and Service

Sales Office LIStINGS.....cccovuuiiiii e 224

00 1998 Microchip Technology Inc. DS51112B-page vii

MPLAB-C17 User’'s Guide

DS51112B-page viii 00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Chapter 1. About MPLAB-C17

Introduction

Highlights

This chapter describes the MPLAB-C17 ANSI-based C Compiler and
suggests recommended reading.

This chapter covers the following topics:
e ANSI Compatibility

e System Requirements

* About this Guide

« Recommended Reading

e Warranty Registration

e Customer Support

ANSI Compatibility

MPLAB-C17 is a free-standing ANSI C implementation except where
specifically noted elsewhere in this User's Guide. The compiler deviates from
the ANSI standard only where the standard and efficient PICmicro MCU
support conflict.

System Requirements

MPLAB-C17 requires:
* PC compatible machine: 386 or higher.

e MS-DOS/PC-DOS version 5.0 or greater or
Windows 95 or Windows NT

Since MPLAB-C17 is integrated with the MPLAB Integrated Development
Environment, it is recommended that you install the current version of MPLAB
software (MPLAB.EXE) on a host computer having the additional minimum
configuration:

* VGA required. Super VGA recommended

* Microsoft? WindowsU version 3.1 or greater operating in
386 enhanced mode

4 MB of Memory, 16 MB Recommended
e 8 MB of Hard Disk Space, 20 MB Recommended

* Mouse or other pointing device

(11998 Microchip Technology Inc.

DS51112B - page 1

MPLAB-C17 USER’S GUIDE

About this Guide

This document describes how to use MPLAB-C17 to write C code for PICmicro
microcontroller applications. For a detailed discussion about basic MPLAB
functions, refer to the MPLAB User’'s Guide, Document Number DS51025.

The User's Guide layout is as follows:

MPLAB-C17 Preview - describes the benefits of using MPLAB-C17 to write C
code for PICmicro microcontroller applications.

Chapter 1: About MPLAB-C17 - describes MPLAB-C17 ANSI-based C
Compiler and suggests recommended reading.

Chapter 2: Getting Started with MPLAB-C17 - discusses how to use
MPLAB-C17 with the MPLAB IDE and as a stand-alone compiler.

Chapter 3: MPLAB-C17 Fundamentals - describes the MPLAB-C17
programming language including functions, statements, operators, variables,
and other elements.

Chapter 4: MPLAB-C17 and PICmicro Programming -

Chapter 5: Using MPLAB-C17 with Other Tools - describes how to use
MPLAB-C17 with Microchip development tools.

Chapter 6: Mixing C with Assembly Language Modules - provides
guidelines to using C with MPASM assembly language modules.

Chapter 7: ANSI Implementation Issues - details MPLAB-C17 specific
parameters described as implementation defined in the ANSI standard.

Chapter 8: Libraries - includes Hardware Peripheral, Software Peripheral
and General Software libraries.

Appendix A: Migrating from MPLAB-C to MPLAB-C17 - provides
guidelines for migrating from MPLAB-C to MPLAB-C17.

Appendix B: ASCII Character Set - contains the ASCII character set.

Appendix C: Detailed MPLAB-C17 Examples - gives examples of actual
working source code with comments included.

Appendix D: PIC17CXXX Instruction Set - gives the instruction set for the
PIC17CXXX device family.

Appendix E: On-Line Support - Information on Microchip’s electronic
support services.

Appendix F: References - gives references that may be helpful in
programming with MPLAB-C17.

Worldwide Sales and Service - gives the address, telephone and fax number
for Microchip Technology Inc. sales and service locations throughout the
world.

DS51112B - page 2

00 1998 Microchip Technology Inc.

Chapter 1. About MPLAB-C17

Conventions Used in this Guide

This User’'s Guide follows these documentation conventions:

Table 1: Documentation Conventions

Character Represents

Angle Brackets (< >) Delimiters for special keys or values:
<TAB>, <ESC>, <symbol> etc.

Pipe Character (|) Choice of mutually exclusive arguments;
an OR selection

Square Brackets ([]) Optional argument (unless specified
otherwise)

Courier Font User entered code or sample code

Underlined, Italics Text with Defines a menu selection from the menu

Right Arrow > bar: File > Save

Oxnnn Oxnnn represents a hexadecimal number

where n is a hexadecimal digit

In-text Bold Characters Designates a button such as OK

Recommended Reading

README.MCC For the latest information on using MPLAB-C17, read the
README.MCC file (an ASCII text file) included with the MPLAB-C17 software.
README.MCC contains update information that may not be included in the
MPLAB-C17 User’s Guide.

PICmicro Microcontroller Data Book Contains comprehensive data sheets
for Microchip PICmicro microcontroller devices available at print time.
Document Number DS00158, Microchip Technology Inc., Chandler, AZ.

Embedded Control Handbook Contains a wealth of information about
microcontroller applications. Document Number DS00092, Microchip
Technology Inc., Chandler, AZ. The application notes described in this User’s
Guide are also available from the Microchip Internet Home Page. See
Appendix E: On Line Support, for more information.

MPLAB User’s Guide Comprehensive guide that describes installation and
features of Microchip’s MPLAB Integrated Development Environment, as well
as the editor and simulator functions in the MPLAB environment. Document

Number DS30421, Microchip Technology Inc., Chandler AZ.

MPASM User’s Guide with MPLINK & MPLIB Describes how to use
Microchip Universal PICmicro Microcontroller Assembler (MPASM), the Linker
and Librarian (MPLINK & MPLIB). Document Number DS33014, Microchip
Technology Inc., Chandler, AZ.

00 1998 Microchip Technology Inc.

DS51112B - page 3

MPLAB-C17 USER’S GUIDE

Midrange Architectural and Peripheral Module Reference

PIC17C4X Data Sheet Document Number DS30412, Microchip Technology
Inc., Chandler, AZ.

PIC17C75X Data Sheet Document Number DS30264, Microchip Technology
Inc., Chandler, AZ.

All of the above documents are available from your local sales office or your
Microchip Field Application Engineer (FAE).

This User's Guide assumes that you are familiar with Microsoft Windows 3.x
software systems. Many excellent references exist for this software program,
and should be consulted for general operation of Windows.

Warranty Registration

Sending in your Warranty Registration Card ensures that you receive new
product updates and notification of interim software releases that may become
available.

Customer Support

Microchip endeavors to provide the best service and responsiveness possible
to its customers. Technical support questions should first be directed to your
distributor and representative, local sales office, Field Application Engineer
(FAE), or Corporate Applications Engineer (CAE).

The Microchip Internet Home Page can provide you with technical information,
application notes, and promotional news on Microchip products and
technology. The Microchip Web address is http://www.microchip.com.

DS51112B - page 4

00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Chapter 2. Getting Started with MPLAB-C17

Introduction

Highlights

This chapter discusses how to use MPLAB-C17 as a stand-alone compiler or
as a fully integrated tool in the MPLAB Integrated Development Environment.

Getting Started with MPLAB-C17 includes:
* Installing MPLAB-C17

e MPLAB-C17 Project

MPLAB-C17 Command Line Interface
e Using Multiple Files in a Project

* Making projects in the MPLAB Integrated Development Environment

Installing MPLAB-C17

Windows Environment

To install MPLAB-C17, enter Windows, run the file MCCxxx.EXE on the
CD-ROM, and follow the prompts. The install program creates a directory
tree with five subdirectories BIN, H, LIB, SRC and examples. Note that
MPLAB-C17 will create an environment variable, MCC_INCLUDE in your
AUTOEXEC.BAT file. The MCC_INCLUDE environment variable specifies the
directories to search for included files. For more information, refer to the
#include directive. The install program will also add the compiler BIN directory
to your PATH so you can run the compiler from any other directory.

DOS Environment

To install MPLAB-C17 in a DOS environment, run the MCCxxx.EXE file on the
CD-ROM, and follow the prompts.

Command Line Interface

MPLAB-C17 can be invoked directly from the command line, independent of
the MPLAB IED. The command line interface of MPLAB-C17 is as follows:

MCCL7 [options] filenane

where
fil enane is the name of the file being compiled, and
options is zero or more command line options.

00 1998 Microchip Technology Inc.

DS51112B - page 5

MPLAB-C17 USER’S GUIDE

For example, if the file TEST.C exists in the current directory, it can be
compiled with the following command:

MCCL7 -P=17C756 TEST. C

When no command line parameters are specified, or with -?’ or '-h’, a help
screen is displayed describing the command line usage and options.

Options to MPLABC-17 can be specified with either '/’ or ’-'.

Table 2:
Option Default Description

?H N/A Help screen

Ipath N/A Add the semi-colon delimited path, path, to the
search path for include files.

FO=filename N/A Use filename as the name of the output object
file

FE=filename N/A Use filename as the name of the output error file

(@) N/A Optimize for smallest code Equivalent to:

-Or -Oc -Op

Oc[+|-] Enabled With this optimization on, the compiler will
intelligently determine the level of stack support
to include for each function.

Or[+]-] Enabled With this optimization on, the compiler will run an
optimization pass to remove extraneous bank
select and MOVLW instructions.

Ol[+]-] Enabled When this optimization is on, the default storage
class for local variables and function parameters
is 'static’

Op[+|-] Disable When this optimization in on, far pointers to
RAM are assumed to not point to SFRs. This
simplifies setting the bank for access.

M{s|m|c|l} S Select the memory model
s:small model (near ram, near rom)
m:medium model (near ram, far rom)
c:compact model (far ram, near rom)

I: large model (far ram, far rom)

P=processor 17C44 Select to compile for the PIC17CXX processor

Dmacro[=text] N/A Define a macro. Equivalent to placing the

following at the head of the file:
#define macro
text

DS51112B - page 6

00 1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17

Table 2:
Option Default Description

W{1|2|3} 2 Set compiler message level.
1 display errors only
2 display errors and warnings
3 display errors, warnings, and messages

NWn N/A Suppress message n, where n is the message
number. Error messages cannot be suppressed.

Q N/A Suppress the sign-on banner

Creating Your First MPLAB-C17 Project

Example Files

There are a number of
examples in the folder
MCC\EXAMPLES.
Execution of the batch file
should compile each
example after MPLAB-C17
is set up. You can use
these files as “cookbooks”
to begin development of
your application.

This section demonstrates how to compile and link a few small projects. It
starts with a simple project with only one C source file. For the purpose of this
discussion it is assumed the compiler is installed on your C: drive in a directory
called MCC. Therefore the following will apply:

Include directory: C\MCCQ\H
Library directory: c.\McQ\ LI B
Executable directory: C.\MCQ BI N

The include directory is where the compiler stores all its system header files.
The MCC_INCLUDE environment variable should point to that directory (from
the DOS command prompt, type "set" to check this). The library directory is
where the libraries and startup code files reside. The executable directory is
where the compiler programs are located.

The following is a very simple program that adds two numbers.

1. Type the following program and save it as EX1.C in a directory called
(for example) C:\PROJO.

#i ncl ude <P17C756. B>
unsi gned char Add(unsi gned char a, unsigned char b);
char x, vy, z;

voi d main()

{
X = 2;
y = 5;
= Add(x,Yy);
}

unsi gned char Add(unsi gned char a, unsigned char b)
{ return a+b; }

00 1998 Microchip Technology Inc.

DS51112B - page 7

MPLAB-C17 USER’S GUIDE

The first line of the program includes the header file P17C756.H which
provides definitions for all special function registers on that part. For
more information on header files see the section "MPLAB-C17
Specifics” in chapter 4.

Compile the program by typing the following command:
ncc exl.c /P=17c756

This tells the compiler to compile the program for the PIC17C756.

The compiler generates two files by default. EX1.0 is the object file that
the linker will use to generate (among other files) the executable
(.HEX) file to program your PICmicro. The second file is EX1.ERR which
is the error file containing any error messages and/or warnings that the
compiler generates during compilation. These messages are also
displayed on the screen. The EX1 program will produce a warning since
the function main() was called without a prototype. To suppress the
warning add the /NW1200 switch on the command line.

The C object file must be linked with the compiler startup code to work
MPLINK. When using MPLINK, use the linker script for the desired
target processor. Copy the linker script from the MPLAB directory

into your project directory and customize as needed. Copy the script
as follows:

copy c:\nplab\17¢756. | kr
Now the linker script is in the current directory.

The startup code is described in detail in the section “MPLAB-C17
Specifics” in chapter 4. Link the startup code file, COS17.0, with the
project. Link the processor definition file P17C756. Oto reference any
special function registers and i dat al7. 0, which is required for
initialized data. Here is the linker command to produce the executable:

mplink -K . c0sl1l7.0 idatal7.o pl7c756.0 exl.0 -L
c:\nmce\lib -mexl.map -0 exl.out 17c756. | kr

(Although shown on two lines here, this should be on one line when
executed.) The first option tells the linker that the linker script is in the
current directory. The object files to be linked together are c0s17. o,

i datal7. o0, pl7c756.0, andexl. o. The library directory where the
startup object files are located is specified after the - L directive. A map
file called 'ex1. map’ is generated with the - mdirective. The - o directive
tells the linker to generate an executable called ex1. cof . The linker
script to use for this link session is 17¢756. | kr.

The linker produces the files ex1. out , ex1. cod, and ex1. hex. The
.COD file is required by MPLAB for source-level debugging. The .HEX
file is used by device programmers such as PRO MATE and PICSTART
Plus to program a PICmicro MCU device.

DS51112B - page 8

00 1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17

Using Multiple Files in a Project
Move the Add() function into a file called Add.C to demonstrate the use of
multiple files in a project.

/* EX1.C */
#i ncl ude <P17C756. H>

unsi gned char Add(unsigned char a, unsigned char b);
char x, vy, z;

void mai n()

{

X = 2;

y =5;

z = Add(x,y);
}
/* ADD.C */

#i ncl ude <pl7c756. h>

unsi gned char Add(unsigned char a, unsigned char b)
{ return a+b; }

To compile these two files, the command lines would be:

ncc exl.c /P=17c756
ncc add. c /P=17c756

Then link the resulting object files with the startup code as follows:

mplink -K . c0sl7.0 idatal7.o pl7c756.0 ex1l.0 add.o -L
c:\nce\lib -mex1l. map -0 exl.out 17c¢756. | kr

(This should be entered on one line.) This will produce the same files
as before.

00 1998 Microchip Technology Inc. DS51112B - page 9

MPLAB-C17 USER’S GUIDE

Making Projects in the MPLAB Integrated Development

Environment

Introduction

The project manager in MPLAB v3.40 has been extended to support multiple
files. Previously established projects from MPLAB v3.31 and earlier will be
converted automatically by MPLAB v3.40 when they are opened. Converted
projects cannot be re-opened from previous versions of MPLAB.

Read the on-line help with MPLAB for further information on making projects
with MPASM or other compilers.

Highlights

In this tutorial you will learn these functions of MPLAB Projects:

Making a Project with MPLAB-C17
New Project

Set Language Tool Options

Add Node to Project

Make Project

Install Language Tool

Project Window

Summary of Setting Up Projects

DS51112B - page 10

00 1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17

Making a Project with MPLAB-C17

This tutorial will show you how to use MPLAB-C17 with projects in MPLAB to
build applications.

Set Development Mode

Set Options>Development Mode to MPLAB-SIM simulator and select the
17C756 PICmicro for this example.

tdror finby SMICE Simalnin

Prumusar| I _J Frestiieg wf | J

= WPLAR-SM Sl o Limmn e | I
Pracessor, [TSTTEETIN | 1 risie| |

FHWAETER Enulnios

1GEPR
A0 Pt ; -
il Hid g el sl I—J
40 ME T He | BesdFelw]]
FAnesd ancel |
Figure 2.1:

Install MPLAB-17 Language Tool

Make certain that MPLAB-C17 is installed correctly in MPLAB. The “Install
Language Tool” dialog should look like this:

Langunge Sufs ||.Ii|.-|u|.-llp

L) o

ool Harmss |u|-'|AH-|.-|.I

Executabile |C\MCTINUMCCT 7 CAE | [Bu=e |

o Camcel | nep |

Figure 2.2:

If the executable is not shown in the window, use the Browse button to point to
MCC17.EXE on your system.

00 1998 Microchip Technology Inc.

DS51112B - page 11

MPLAB-C17 USER’S GUIDE

New Project

Select Project>New Project and select a directory for a new project, then type
in its name. Name it AD.PJT in the MCC\EXAMPLES\AD directory.

o e -
nd gt nid
| = imeryrnmplus |
ey _1
—i mer
_ilssmplas
A
Lied Filog o Typa: DOivean i
[FPrognct Fies = g i ET T 4

Figure 2.3:

After setting the project name, the Edit Project dialog will be shown.

Friagesi
Targed Filunamu

Ivhd LT

lackan Fath

Libirary Pt

ali

Help

r.umj_uﬂm

Do previat Woda

Lesquagn Tosl Sail

| Micenchip

Froque Fdas

Aﬂhl
cosrNods_|
_ Dk Nk _|
| st

Hodo Feopories

DS51112B - page 12

00 1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17

Set Project Options

Select the name of the project in the “Project Files” dialog of the New Project
Dialog and press “Node Properties.”

hioasta [0 HE E S |

Opinne

| Description] | | [ata _.:

Majs M i

Hixs Formmat PR H . INHEAS IHHE3?

_']l it mndla {an

\Lings. per list page O
Caarimnipnil |
[fu AD HEN |
Addibonnl Commmad Lise Opanes

|
| o | cancel | Hidg
Figure 2.4:

Set the language tool to “MPLINK.”

00 1998 Microchip Technology Inc.

DS51112B - page 13

MPLAB-C17 USER’S GUIDE

Add First Source File

To determine which nodes to set up from this tutorial, look at AD.BAT. This is
the batch file that will compile this example in DOS and is in the
\MCC\EXAMPLES\AD directory. Use this data to add all required nodes. Here
is a listing of the batch file:

et hisi - =

K KD RA 1 1 |

IF FEELEEL | BT Error

[Z 5]

FEH ank:

EFp L : i

= I i i

B

: L] I lsta I I

i i
Figure 2.5:

The nodes required are AD.C, which must be compiled, and the following
object files which need to be linked: C0S17.0, IDATA17.0, INT756L.0,
P17C756.0 and the linker script, P17C756L.LKR.

You can return to setting up the project from the Project>Edit Project menu
selection.

Select “Add Node” from the Edit Project Dialog. Add the source file, AD.C from
the \MCC\EXAMPLES\AD directory.

et T -
nd = cimetiExanplusiod
| i Cascal J
ek
—j macr
_iExsmplos
3

Lied Filos of Typia Divegn
Ij-inulnll- filee ™ o™ aem) J | e daeral) J

Figure 2.6:

When the file name is shown and selected in the Add Node dialog, press
“Node Properties.”

Set up this dialog this way:

e Setthe “Language Tool” to MPLAB-C17.

» Check the “Processor” check box.

* Goto the “Data” column and enter “17C756.”

DS51112B - page 14

00 1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17

B | AL J ST |
Langanges Toal | WFLAD-CIT |
D=
L Description | | 1 | Bata [
:I:ll_'rl|'h" L] I
| Qida] endie N |
| Frocassor H O 1T CTS6E |
Inchude path on
Object filename n |
| Error flename {n
| Acseally aptimizer # O o
Optimirer o |
Warning lewel all o W O BT |
| Suppress message in |
Command Line
|.'l.'lar P |
Al gl T makd Lisd D s |
! Ok | Cadical Hukg
Note: “Object flename” is set to “AD.O” automatically. I

Adding Pre-Compiled Object Files

Use the “Add Node” button from the Edit Project dialog to add the precompiled
object files from the MPLAB-C17 library in \MCC\LIB. Add C0S17.0 as the first
node. Options cannot be set on precompiled object files.

o e -
(I .
ld:" = | i Castal |
Al f.a - dey
—i mr
idmialo =1
[L25]
L35 FHT]
int3u
intd3m.n
inf4dl o
Lied Filog of Typa: DOvegns
|gpect ilms =0} i ET T B
Figure 2.7:

Add the rest of the nodes that were listed in the batch file, IDATA17.0,
INT756L.0 and P17C756.0 using the Add Node button from the Edit Project
Dialog.

00 1998 Microchip Technology Inc. DS51112B - page 15

MPLAB-C17 USER’S GUIDE

Select Linker Script

Select a linker script and add it as a node. Use the linker script in the
MCC\EXAMPLES\AD directory. Options can not be set on a linker script.

it Gmcoe o |
FEGEL
i 7 cPEhL Ik | = imeryrenmplustod |
Pl FcA ke T _1
. —i mr
L Lesmplee
B
Lisd Filns of Typa: Dveanes
|||nlur._-:m{-n:rp J ETE B
Figure 2.8:

Press OK on the New Project Dialog.

The Edit Project window should now look like this:

Do prvisat Wada Lesquags Tosl Suie

e ' I Hiochis J
Frogact Flas

&d [o] gl Mude I
ad |.c]
ﬂll?!.lu] :

idwint J | o] CEE |
WEPRE] o]

pITci%E [o] |
pATCTSE [k]

Figure 2.9:

DS51112B - page 16 00 1998 Microchip Technology Inc.

Chapter 2. Getting Started with MPLAB-C17

Make Project

Select Project>Make Project from the menu to see the command lines sent to
MPLAB-C17 and MPLINK to build the application. It should look like this:

Figure 2.10:

Troubleshooting

If this did not work, check these items:

Select Project>Install Language Tool... and check that MPLAB-C17 and
MPLINK are pointed to the MCC17.EXE and MPLINK.EXE executables.

Langunge Suss | Wiruchip

L) o

Tool Hams |IlI-'IA.H-1.'I||

Exmcuntie: [CAMCCABINUMEGT? EAE | [B |

ok | Camcol | nep |

Figure 2.11:

st Lo g e Tosl =/

Lasgiaga Suike |wieochip -

et Nores: [TV T S |

Exi-Canatike ||:‘ SRR | P LABY MPLINE. EXE | Flires s |

| oK | cancal | wp |

Figure 2.12:

00 1998 Microchip Technology Inc.

DS51112B - page 17

MPLAB-C17 USER’S GUIDE

Project Window

Open the Window>Project Window. 1t should look like this:

Ll Projuoct Wisndew =10 x|
Peasece Listina :|
Path:z Coi BT\ ECANPL S, A

Frojece Hems: AE.FIT

TRrgsTi Ak, HEX

Tl #uifn=g L FEa e i]

Frupsaooe FIC1ICTHE

Devrmloprers Eode: Simmlmtor

Targez Baca

Flae L1AC AR, 1Y 0 JRNTRLY S IR AL S PR EE D PRRCIERL KEKi
Build Taoli ArLINE
LB H] AE O
Files Liac WL
CPE LA AGE LDy FP=1CTR fdmtj v
Bulld Taal AFLAR-CTLT
Hoaiw {1 =
Deperdezop Limn)

AF.H
Heosdm oE17 .0
Fath: CoyBCCLLINY
Hisie TFATaLT. O
Fath CH1MCCLLIES
Hosdaic INTTSEL. O
#nth CrYy R, ETHY
Hesde FITCPSE.D
Fath CoAmCCLLIES
Headw Pa7GEEL. LEE

i

Al A

Figure 2.13:

Summary of Setting Up Projects

Here is a quick list of the steps to set up a new project as described above:

Create new project with Project>NewProject

Set project Node Properties to MPLINK

Add Source files, setting language tool to MPLAB-C17 or MPASM
Set Processor in Node Properties of each source file

For MPASM source files, set to generate object file

Add Pre-Compiled Nodes (.O files and .LIB files)

Add Linker Script

DS51112B - page 18

00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Chapter 3. MPLAB-C17 Fundamentals

Introduction

Highlights

MPLAB-C17 Fundamentals describes the C programming language, including
functions, statements, expressions and declarations.

This chapter covers the following topics:
e C Fundamentals

* Preprocessor Directives

e Variables

» Arrays and Strings

« Pointers

e Structures and Unions

* Functions

e Operators

e Program Control Statements

C Fundamentals

This section is intended as a reference for programmers with a basic
understanding of C programming. Various points are highlighted for users who
are not experienced with programming microcontrollers in C, and deviations
from ANSI C are described.

Programmers who are unfamiliar with the C language can refer to Appendix E
for a list of C programming references.

This section discusses the following topics:

e Components of an MPLAB-C17 Program
 Comments

e C Keywords

« Constants

Components of an MPLAB-C17 Program

A C program is a collection of declarations, statements, comments, and
preprocessor directives that typically do the following:

* Declare data structures

00 1998 Microchip Technology Inc.

DS51112B - page 19

MPLAB-C17 USER’S GUIDE

P17CXX.H includes proper
processor specific header
file based on the processor
selected on the command
line.

» Allocate data space

» Evaluate expressions

» Perform program control operations

e Control PICmicro MCU peripherals

The following is a shell for an MPLAB-C17 source file:
#i ncl ude <P17CXX. h>

voi d main()

{

/* User source code here */

The first line includes the processor definition file. This file defines processor-
specific information such as special function registers. Any user-defined
function prototypes should follow this line. Finally, the function main is defined,
with the appropriate source code between the braces.

Comments

Description

Comments are used to document the meaning and operation of the source
code. The compiler ignores all comments. A comment can be placed
anywhere in a program where white space can occur. Comments can be many
lines long and may also be used to temporarily remove a line of code.
Comments cannot be nested.

Syntax
'I* begins a comment, and "*/' terminates a comment.
'/I' comments to the end of the line
Example
/* This is a block coment.
It can have multiple |ines
bet ween the comment deliniters.
*/

/1l This is a C++ style comment

DS51112B - page 20

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

C Keywords

Description

The ANSI C standard defines 32 keywords for use in the C language. Typically,
C compilers add keywords that take advantage of the processor’s architecture.
The following table shows the ANSI C and the MPLAB-C17 keywords.

Additional MPLAB-C17 keywords are shown in bold.

_asm double* long* struct
_endasm else near switch
auto enum ram typedef
break extern register union
case far return unsigned
char float* rom void
const for short volatile
continue goto signed while
default if sizeof

do int static

*float, double, and long are not supported by MPLAB-C17

Constants

Description

A constant in C is any literal number, single character, or character string.

Syntax

Numeric Constants

By default, literal numbers are evaluated in decimal. Hexadecimal values can
be specified by preceding the number by 0x. Octal values can be specified by
preceding the number by 0 (zero). Binary values can be specified by

preceding the number by Ob.

Character Constants

Character constants are denoted by a single character enclosed by single
guotes. ANSI C escape sequences, as shown by the following table, are

treated as a single character.

00 1998 Microchip Technology Inc.

DS51112B - page 21

MPLAB-C17 USER’S GUIDE

Table 3.1: ANSI C Escape Sequences

Escape Description Hex
Character Value
\a Bell (alert) character 07
\b Backspace character 08
\f Form feed character ocC
\n New line character 0A
\r Carriage return character 0D
\t Horizontal tab character 09
\v Vertical tab character 0B
\\ Backslash 5C
\? Question mark character 3F
\V Single quote (apostrophe) 27
\" Double quote character 22
\00O Octal number (zero, Octal digit, Octal digit)
\xHH Hexadecimal number

String Constants

String constants are denoted by zero or more characters (including ANSI C
escape sequences) enclosed in double quotes. A string constant has an

implied null (zero) value after the last character.

Example

Numeric Constants

/1 Each of the follow ng evaluates to a

/1 deciml twelve
12 /1 Deci mal
0x0C /'l Hexadeci nal
014 /] Cctal
0b1100 /1 Binary
Character Constants
"a’ /'l Lowercase 'a’
"\ n’ /'l New Line
"\ O’ /1 Zero or null character

DS51112B - page 22

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

String Constants
"Hell o Worl d"

Preprocessor Directives

Preprocessor directives give instructions on how to compile the source
code. Preprocessor directives generally do not translate directly into
executable code.

Preprocessor directives begin with the '# character. This section discusses the
following preprocessor directives:

» #define

* f#else

o #elif

« #endif

e #error

o Hif

o #ifdef

o #ifndef

e #include

o #line

e #pragma

e #undef
#define
Description

The #define directive defines string constants that are substituted into a source
line before the source line is evaluated. These can improve source code
readability and maintainability. Common uses are to define constants that are
used in many places and provide short cuts to more complex expressions.

Syntax

define-directi ve:

#define identifier pp-token-1ist newline

#define identifier |paren parameter-1ist) pp-token-Iist
newI i ne

#define identifier |paren) pp-token-1ist newline

| par en:

(l

1 No whitespace may separatelpar en and the macro name.

00 1998 Microchip Technology Inc. DS51112B - page 23

MPLAB-C17 USER’S GUIDE

paraneter-1ist:
identifier
paraneter-1ist , identifier

Example

#defi ne MAX_COUNT 100

#defi ne VERSI ON "v1. 0"

#define PERI METER(X, y) 2*x + 2*y
#defi ne | NCREMENTALL x++;\

#else

Description

Refer to #if, #ifdef, and #ifndef for a description of the #else directive.

#elif

Description
Refer to #if, #ifdef, and #ifndef for a description of the #elif directive.

#endif

Description
Refer to #if, #ifdef, and #ifndef for a description of the #endif directive.

Herror

Description

The #error directive generates a user-defined error message at compile time.
One use of #error is to detect cases where the source code generates
constants that are out of range. No code is generated as a result of using this
directive.

Syntax

error-directive:
#error pp-token-1ist newline

DS51112B - page 24 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

Example

#defi ne MAX_COUNT 100

#def i ne ELEMENT_SI ZE 3

#i f (MAX_COUNT * ELEMENT_SI ZE) > 256
#error "Data size too large."

#endi f

#if

Description

The #if directive is useful for conditionally compiling code based on the
evaluation of an expression. #if must be terminated by #endif. The #elif is used
to test a new expression. The directive #else is also available to provide an
alternative compilation. The defined() operator acts similarly to #ifdef when
combined with #if.

Syntax
if-directive:
#i f constant - expressi on newline

Example
#defi ne MAX_COUNT 100
#def i ne ELEMENT_SI ZE 3
#if defined(MAX_COUNT) && defined(ELEMENT_SI ZE)
#i f (MAX_COUNT * ELEMENT_SI ZE) > 256

#error "Data size too large."
#el se

#defi ne DATA S| ZE MAX_COUNT * ELEMENT S| ZE
#endi f
#endi f

#ifdef

Description

The #ifdef directive is similar to the #if directive, except that instead of
evaluating an expression, it checks to see if the specified symbol has been
defined. Like the #if directive, #ifdef must be terminated by #endif, and can
optionally be used with #else.

00 1998 Microchip Technology Inc. DS51112B - page 25

MPLAB-C17 USER’S GUIDE

Syntax

ifdef-directive:

#ifdef identifier newline

Example
#i f def DEBUG

Count = MAX_COUNT;
#endi f
#ifndef
Description

The #ifndef directive is similar to the #ifdef directive, except that it checks to
see if the specified symbol has not been defined. Like the #if directive, #ifndef
must be terminated by #endif, and can optionally be used with #else.

Syntax
i fndef-directive:
#i fndef Jidentifier newline
Example
#i f ndef DEBUG
#defi ne Debug(x)
#el se
#define Debug(x) x
#endi f

#include

Description

#include inserts the full text from another file at this point in the source code.
The inserted file may contain any number of valid C statements.

DS51112B - page 26 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

Syntax

i ncl ude-directive:

#i ncl ude fil enane new1l i ne
#include < filenane > newline
#i ncl ude pp-token-1ist newline

When <f i | enane> is used, MPLAB-C17 looks for the file in the directory
specified by the environment variable MCC_INCLUDE or in the command line
parameter '/i’.

When "f i | enanme" is used, MPLAB-C17 looks for the file in the current
directory and then in the directory specified by MCC_INCLUDE.

Example

#i ncl ude <pl7cxx. h>

#i ncl ude "header. h"

#line

Description

The line directive causes the compiler to renumber the source text so that the
following line has the specified line number.

Syntax
line-directive:

#line digit-sequence newline

#line digit-sequence " filename " newline
#l i ne pp-token-1list new-Iine

Example

#line 34 [/ This line is line 34

#line 55 "main.c" // This line is line 55 of main.c

#pragma {code|udatalidatajromdata} [[name] [{{gpr | sfr}
n} | {=address}|

Description

These directives change the section in which a type of data is allocated.
Specifying an address for a new section will create an absolute section at that
location and begin allocating data of the specified type into the new section.
Issuing a section pragma without specifying a name for the section causes the
compiler to revert to allocating data into the default section for that section
type. Issuing a section pragma with a section name which is the same as a
section name earlier in the source code file causes the compiler to resume

00 1998 Microchip Technology Inc.

DS51112B - page 27

MPLAB-C17 USER’S GUIDE

allocation of the type of data into that section. Specifying an address twice for
the same section name is an error. Specifying 'gpr | sfr nn’ is equivalent to
adding a '#pragma varlocate gpr | sfr n’ for each variable contained inthe
section.

Syntax

#pragna code nycode // changes the allocation of code to a new
/] section called 'nycode’

#pragna rondat a /'l changes the allocation of code to the
/1 default rondata section

#pragma nocontext

Description

For the next function defined after the #pragma nocontext directive, the
compiler will not generate prologue or epilogue code to set up the stack frame
or save and restore working register contents. Use this directive to optimize a
function that has no return value, no arguments and no local variables.

Syntax

#pragma nocont ext

#pragma nosaveregs

Description

For the next function defined after the #pragma nosaveregs directive, the
compiler will not generate prologue or epilogue code to save and restore

working register contents. Use this directive to optimize a function with no
return value.

Syntax

#pragnma nosaver egs

#pragma list

Description

The #pragma list directive turns on list file generation for all code following the
directive.

Syntax

#pragma | i st

DS51112B - page 28 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

#pragma nolist

Description

The #pragma nolist directive turns off list file generation for all code following
the directive.

Syntax

#pragma nol i st

#undef

Description

The #undef directive undefines a string constant. After a string constant has
been undefined, any reference to it generates an error unless the string
constant is redefined.

Syntax

undef-directi ve:

#undef identifier newline
Example
#defi ne MAX_COUNT 10

#undef MAX_ COUNT
#defi ne MAX_COUNT 20

#pragma varlocate {gpr | sfr} n

The var | ocat e pragma tells the compiler in which bank and in what address
range (GPR or SFR) a variable will be located at link time, enabling the
compiler to perform more efficient bank switching.

var | ocat e specifications are not enforced by the compiler at link time. The
sections which contain the variables should be assigned explicitly in the linker
script, or via absolute sections in the modules(s) where they are defined, into
the correct bank.

00 1998 Microchip Technology Inc.

DS51112B - page 29

MPLAB-C17 USER’S GUIDE

Variables

This section examines how C uses variables to store data.
The topics discussed in this section are:

* Basic Data Types

» Variable Declaration

e Enumeration

e Typedef

Basic Data Types

Description
e void

e char

e int

» float - not supported in MPLAB-C17
e double - not supported in MPLAB-C17

The following modifiers are also allowed:

Table 3.2: Data Type Modifiers

Modifier 'A[‘)F;E[);?I_?tglee Use

auto any Variable exists only during the execution of the
block in which it was defined.

const any Declares data that will not be modified.

far any Declares paged/banked data

extern any Declares data that is allocated elsewhere

long int Not supported

near any Declares non-paged/non-banked data

register any No effect in MPLAB-C17

short int Declares an 16-bit integer.

signed char, int, long* | Declares a signed variable.

static any Variable is retained unchanged between
executions of the defining block.

unsigned | char, int, long* | Declares an unsigned variable.

DS51112B - page 30 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

The following table shows the size and range of common data types as
implemented by MPLAB-C17.

Table 3.3: Data Type Ranges

Type Bit Width Range

void N/A none

char 8 -128 to 127

unsigned char 8 0 to 255

int 16 -32,768 to 32,767

unsigned int 16 0 to 65,535

short 16 -32,768 to 32,767

unsigned short 16 0 to 65,535

long* 32 -2,147,483,648 to
2,147,483,647

unsigned long* 32 0 to 4,294,967,295

float* 32 1.7549435E-38 to
6.80564693E+38

double* 32 1.7549435E-38 to
6.80564693E+38

* these types are not supported in MPLAB-C17
C represents all negative numbers in the two’s complement format.

Integral data types are char, int, long of all sizes, and enumerations.

Variable Declaration

Description

A variable is a name for a specific memory location. In C, all variables must be
declared before they are used. A variable’s declaration defines the data type
and the size of the variable.

Variables can be declared in two places: inside a function or outside all
functions. The variables are called local and global, respectively.

Syntax

decl ar at i on:
decl arat i on-speci fi ers declarator-1ist ;

decl arator-1ist:
decl ar at or

decl arator-1list , declarator

00 1998 Microchip Technology Inc.

DS51112B - page 31

MPLAB-C17 USER’S GUIDE

decl ar at i on- speci fi ers:
decl ar at i on- speci fi er
decl arat i on- speci fi ers decl aration-speci fier

decl ar at i on- speci fi er:
t ype- nane
extern
static
ram
rom
const
volatile
near
far

t ype- nane:
basi c-t ype- name
t ag- t ype- nane

basi c-t ype- nanme
i nt
short
char
unsi gned
| ong
fl oat
doubl e

t ag- t ype- nane:
enuner at ed- t ype- nane
struct - or-uni on-t ype- nane

Local variables (declared inside a function or a block of code) can only be used
by statements within the block where they are declared. The value of a local
variable cannot be accessed by functions or statements outside of the
function. The most important thing to remember about local variables is that
they are created upon entry into the block and destroyed when the block is
exited. Local variables must be declared before executable statements.

Global variables can be used by all of the functions in the program. Global
variables must be declared before any functions that use them. Most
importantly, global variables are not destroyed until the execution of the
program is complete.

Example

#i ncl ude <pl7cxx. h>
unsi gned char d obal Count;

void f2()
{
unsi gned char count;
f or (count =0; count <10; count ++)
d obal Count ++;

DS51112B - page 32

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

void f1()
{

unsi gned char count;
f or (count =0; count <10; count ++)

fmsi gned char tenp;
f2();
tenp = count *2;
}
}
voi d mai n(voi d)
{ d obal Count = 0;
f10);
}

This program increments GlobalCount to 100. The operation of the program is
not affected adversely by the variable named count located in both functions.
The variable 'temp’ is allocated inside the for() loop and deallocated once the
loop exits.

Storage Class (extern, static, volatile)

static/extern/volatile

'static’ and 'extern’ behave in the ANSI specified manner. 'static’ used with a
local variable declaration inside of a block causes the variable to maintain its
value between entrances to the block. 'static’ used for a global object (variable
or function) declaration outside of all functions limits the scope of the object to
the file containing the definition.

‘'extern’ does not allocate space for its object. The compiler assumes the
definition appears in an external file. This external reference is resolved at
link time.

A global object has external linkage by default.
Example

In filel.c:

static unsigned char a;
unsi gned char b;
voi d mai n(voi d)

{
a =1,
b = 2;
a = new function();
return a;
}
In file2.c:

00 1998 Microchip Technology Inc.

DS51112B - page 33

MPLAB-C17 USER’S GUIDE

extern int b;
int new function(voi d)

{
int c;
c =Db;/* this will not produce an error, because
b is extern by default in filel.c and
declared extern in file2.c */
return a;/*this will produce an undefined vari abl e
error because 'a’ is only valid within
filel.c */
}
Example
unsi gned char hel |l o()
{
static unsigned char i = 0;
i ++;
return i;
}
voi d mai n()
{
unsi gned char count;
for(count = 0; count < 10; count++)
{
unsi gned char a
a = hello();
}
}
/* For each call of the function hello, i will be
increnented. i is static and will maintain its val ue
between calls to hello. hello is called 10 tines, so
will be '10" after the last call. */
volatile

A vol ati | e variable has a value that can be changed by something other
than user code. A typical example is an input port or a timer register. These
variables must be declared as 'volatile’ so the compiler makes no assumptions
on their values while performing optimizations.

Example

unsi gned char x, vy;
vol atile unsigned char TMRO;

X = 0x55; //Conpiler’s tenporary registers contain 0x55
y = X; //and those values are witten to 'y’ since x is
unchanged

DS51112B - page 34

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

TMRO = 0x00;
y = TMRO; //The conpiler nust read TMRO and cannot use the
// Ox00 in its tenporary variabl es since TMRO
increments with execution.

Enumeration

Description

An Enumeration defines a list of named integer constants. The constants
defined by an enumeration can be used in the place of any integral value.
Enumerated types are implemented as signed int type in MPLAB-C17. This
means that the enumerated values are between -32,768 to 32,767.

Syntax

enuner at ed- t ype- nane:
enum i dentifier
enum identifier { enuneration-|ist }
enum { enuneration-list }

enuneration-|ist:
enuner at ed- val ue
enuneration-1list , enunerated-val ue
enuner at ed- val ue:
identifier

identifier = constant-expression

All enumeration identifiers (such as VALUE_1 in the example) must be unique
across all defined enumerations.

Enumerated values can be specified for each enumerated member.
Example

enumtag_1 { VALUE 1, VALUE 2, VALUE 3 } enum1;
/* VALUE 1 is equal to O *
* VALUE 2 is equal to 1 *
* VALUE 3 is equal to 2 */

char char _1;

enum 1 = 42; /* this will not produce an error */
char_1 = VALUE 3;/* this will assign char_1 value to 2 */

Example
enumtag_2 { VALUE 3, VALUE 4, VALUE 5 } enum 2;

/* this definition will cause an error because VALUE 3
al ready has a val ue of 2, and cannot al so hold a val ue of 0 */

00 1998 Microchip Technology Inc.

DS51112B - page 35

MPLAB-C17 USER’S GUIDE

enumtag_3 { VALUE 6 =2, VALUE 7, VALUE_8=50, VALUE 9 }
enum 3;

/* VALUE 6 is equal to 2 *

* VALUE 7 is equal to 3 *

* VALUE 8 is equal to 50 *

* VALUE 9 is equal to 51 */

enum col or _type {red, green,yell ow color;

The entries in the enumeration list are assigned constant integer values,
starting with zero for the first entry. Each entry is one greater than the previous
one. Therefore, in the above example, red is 0, green is 1, and yellow is 2.

The default integer values assigned to the enumeration list can be overridden
by specifying a value for a constant. The following example illustrates
specifying a value for a constant.

enum col or _type {red, green=9, yel | ow} col or;
This statement assigns 0 to red, 9 to green, and 10 to yellow.

Once an enumeration is defined, the name can be used to create additional
variables at other points in the program. For example, the variable mycolor can
be created with the color_type enumeration by:

enum col or _type mnycol or;

Essentially, enumerations help to document code. Instead of assigning a value
to a variable, use an enumeration to clarify the meaning of the value.

Using t ypedef to Create Port abl e Progranms. When writing portable code, it is important that the data

read:

typedef int nyint;

size be consistent. For example, suppose that 16-bit integers are required. Rather than declaring integers as
int, declare them as a typedef name, such as myint. Near the top of the program, declare the typedef based
on the target machine. When compiling with a tool that uses 16-bit integers, the typedef statement should

DS51112B - page 36

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

Functions

typedef

Description

The typedef statement creates a new name for an existing type. The new
name can then be used to declare variables.

Syntax

The ' t ypedef’ keyword may be used anywhere the storage class specifiers
"extern’ and’static’ may be used.

Example

t ypedef char string;
t ypedef unsigned int uint;
voi d main()

{
string j[10];
uint i;
for(i=0;i<10;i ++)
jril=i;
}

When using a typedef statement, remember these two key points:
» Atypedef does not deactivate the original name or type.

» Several typedef statements can be used to create many new names for
the same original type.

The typedef typically has two purposes:
e Create portable programs

. Document source code

Functions are the basic building blocks of the C language. All executable
statements must reside within a function.

The topics discussed in this section are:
* Function Declarations

* Function Prototyping

» Passing Arguments to Functions

* Returning Values from Functions

Function Declarations

Description

Functions must be declared before they are used. The compiler supports the
modern ANSI form of function declarations.

00 1998 Microchip Technology Inc.

DS51112B - page 37

MPLAB-C17 USER’S GUIDE

Syntax

function-definition:
function-decl arat or conpound- st at enent

function-decl ar at or:
decl aration-specifiers identifier (parameter-1ist)

paraneter-1ist:
par anet er
paranet er paraneter-1ist

paraneter:
t ype- speci fier
decl ar at or

Example

unsi gned char AddOne(unsi gned char x)
{

}
Function Prototyping

return(x + 1);

Description

A function prototype should be declared before the function is called. A
function prototype declares the return type, name, and types of parameters for
a function, but no other statements.

Syntax

functi on- pr ot ot ype:
function-decl arat or ;

Example

unsi gned char AddOne(unsi gned char x);

Overhead of Passing Variables

MPLAB-C17 uses a software stack for passing variables into functions and for returning values from functions.
This makes it possible to support quite complex functions and allows recursive functions, but there is some
overhead in managing the software stack. You can choose to reduce code size by not passing on the stack,,
using instead static variables. When compiling, the compiler will examine the function and only include the
appropriate level of stack support code.

DS51112B - page 38 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

Passing Arguments to Functions

Description

A function argument is a value that is passed to the function when the function
is called. C allows zero or more arguments to be passed to a function.

When a function is defined, formal parameters are declared between the
parentheses that follow the function name.

Function parameters can have storage class 'auto’ or 'static’. "auto’
parameters are placed on the software stack, enabling reentrancy, and

'static’ parameters are allocated globally, enabling direct access and,
therefore, smaller code.

If the first parameter to a function is 'static’ and is 8 bits wide, the argument will
be passed to the functin in PRODL. Ifit is 'static’ and 16-bits wide, the argument
will be passed in PROD.

Example

The function below calculates the sum of two values that are passed to the
function whenitis called. When sun() is called, the value of each argument is
copied into the corresponding parameter variable.

void sun{ static unsigned char a, unsigned char b)

{

int c;
C = atb;
}
voi d main()
{
sun(1, 10);
sun(15, 6) ;
sun{ 100, 25);
}

Functions pass arguments by value. Any changes made to the formal
parameter do not affect the original value in the calling routine.

Returning Values from Functions

Description

A function in C can return a value to the calling routine by using the return
statement. If the value being returned is 8-bits wide, it is returned in WREG. If
it is 16-bits wide, it is retuned in the WREG/FSR1 pair. Otherwise, it is retuned
on the software stack.

Syntax

return-statenent:
return expr ession ;

return ;

00 1998 Microchip Technology Inc.

DS51112B - page 39

MPLAB-C17 USER’S GUIDE

Operators

Example

unsi gned char sun{unsigned char a, unsigned char b)

return(a + b);

}

void main()

{
unsi gned char c;
c = sun(1, 10);
¢ = sun(15, 6);
¢ = sun(100, 25);

}

When a return statement is encountered, the function returns immediately to
the calling routine. Any statements after the return are not executed. The
return value of a function is not required to be assigned to a variable or to be
used in an expression; however, if it is not used, then the value is lost.

A C expression is a combination of operators and operands. For the most
part, C expressions follow the rules of algebra.

This section discusses many different types of operators including:
e Arithmetic Operators

* Relational Operators

* Logical Operators

» Bitwise Operators

» Assignment Operators

* Increment and Decrement Operators

e Conditional Operator

* Precedence of Operators

» Operator Differences

Arithmetic Operators

Description

The C language defines five arithmetic operators: addition, subtraction,
multiplication, division, and modulus.

Syntax

arit hnetic- expressi on:
post fi x- expressi on
arithnetic-expression arithnetic-operator postfix-
expressi on

DS51112B - page 40

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

arithmeti c-operator:
+ addition
- subtraction
* multiplication
[division
nodul us
The +, -, *, and / operators may be used with any basic data type.

The modulus operator, %, can only be used with integral data types.

Example
-b /I negative b
count - 163 //variabl e count m nus 163

Relational Operators

Description

The relational operators in C compare two values and return 1’ or’'0’ based on
the comparison.

Syntax

rel ational - expressi on:
arithnetic-expression
rel ational - expression rel ational -operator arithnetic-
expressi on

rel ati onal - operator:
> (greater than

>= greater than or equal to
< less than
<= less than or equal to
== equal to
I= not equal to

Example

count > 0

val ue <= MAX

i nput != BADVAL

Logical Operators

Description
The logical operators support the basic logical operations AND, OR, and NOT.
Syntax

| ogi cal - or - expressi on:
| ogi cal - and- expressi on

| ogi cal - or-expression || | ogical -and-expressi on

00 1998 Microchip Technology Inc.

DS51112B - page 41

MPLAB-C17 USER’S GUIDE

| ogi cal - and- expressi on:
rel ational - expressi on
| ogi cal - and- expression || rel ational -expression

| ogi cal - not - expressi on:
I unary-expression
&& Logi cal AND
|| Logical R
! Logi cal NOT

Example

Not Found && (i <= MAX)
I'(Value <= LIMT)
(("a <=ch) & (ch <="'2")) || (("A <=ch) & (ch <="2"))

Bitwise Operators

Description

C contains six special operators which perform bit-by-bit operations on
numbers. These bitwise operators can only be used on integral data
types. The result of using any of these operators is a bitwise operation
of the operands.

Syntax

bi t wi se- expressi on:
post fi x- expressi on
bi twi se- expression bitw se-operator postfix-expression

bi t wi se- not - expressi on:
~ unary- expressi on

bi tw se- operator:
& bitwi se AND
| bitwise OR
A bitwi se XOR
~ 1's conpl erment
>> right shift
<< |eft shift

Example

Fl ags & MASK; /1 Zero unwanted bits
Fl ags ~ 0x07; /IHip bits 0, 1, and 2
Val << 2; /IMiltiply Val by 4

Assignment Operators

Description

The most common operation in a program is to assign a value to a variable.
In C, this is done by using the equals sign (=).

DS51112B - page 42

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

C also provides shortcuts for modifying a variable by performing an operation
on itself. These shortcuts are special assignment operators.

Syntax

assi gnment - expr essi on:
unary-expressi on assi gnnent-op expressi on

assi gnment - op:

+=

/=

%

| =

N=

>>=

<<=
Example
a+=b + c; //Sanre as a = a + b + c;
a*=>b+c //Sanme as a = a * (b + ¢);
a*= (b +c); //Sanme as a = a * (b + ¢);
r /=s; //Same as r =1 | s;
m *= 5; //Same as m= m* 5;
Flags |= SETBITS; //Set bits in Fl ags
Div2 >>= 1, //Divide Div2 by 2

Increment and Decrement Operators

Description

C provides shortcuts for the common operation of incrementing or
decrementing a variable. The increment and decrement operators are
extremely flexible. They can be used in a statement by themselves, or they
can be embedded within a statement with other operators. The position of the
operator indicates whether the increment or decrement is to be performed
before or after the evaluation of the statement in which it is embedded.

Syntax

pre-increnent - expressi on:
++ unary- expressi on

pre- decr enment - expr essi on:
-- unary-expression

post -i ncrenent - expr essi on:
post fi x- expressi on ++

00 1998 Microchip Technology Inc. DS51112B - page 43

MPLAB-C17 USER’S GUIDE

post - decr enent - expr essi on:
post fi x- expression - -

Example
void main()
{
unsi gned char a = 0, b, c;
a++; [/ sane as ++a;
/[la =1
b =5+ at++ //Ib =6 a=2
cC =6+ --a /lc =7, a=1
}

Conditional Operator

Description

The conditional operator is a shortcut for executing code based on the
evaluation of an expression.

Syntax

condi tional - expressi on:
| ogi cal - OR- expressi on ? conma-expression : conditional -
expressi on

Example

c =(a>b) ? a: b; //cis set to the larger of a and b

Precedence of Operators

Description

Precedence refers to the order in which operators are processed. The C
language maintains a precedence for all operators. The following shows the
precedence from highest to lowest. Operators at the same level are evaluated
from left to right.

Hi ghest

O [l ->.

I ~ ++ -- - (type cast) * & sizeof

DS51112B - page 44

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

&

N

I

&&

I

?

= 4= -= *= [=

Lowest
Example

Expression Result Note

10-2*5 0 *has higher precedence than +
(10-2)*5 40

0x20 | 0x01 '= 0x01 0x20 I= has higher precedence than |
(Ox20 | 0x01) != 0x01 1

1<<2+1 8 + has higher precedence than <<
1<<2)+1 5

Program Control Statements

This section describes the statements that C uses to control the flow of
execution in a program, explains how relational and logical operators are used
with these control statements, and covers how to execute loops.

Topics discussed in this section include:
« if Statement

» if-else Statements

» for Loop

e while Loop

e do-while Loop

* break Statement

e continue Statement

e switch Statement

« TRUE is any non-zero value
 FALSE is zero

00 1998 Microchip Technology Inc.

DS51112B - page 45

MPLAB-C17 USER’S GUIDE

if Statement

Description

The if statement is a conditional statement. The block of code associated with
the if statement is executed based upon the outcome of a condition. If the
condition evaluates to TRUE, the code is executed. Otherwise, the code is
skipped.

Syntax

i f-statenent:
if (expression) statenent

Example

i f(num > 0) Adjust(nunj;
i f (count <0)
{

count =0;

EndFound = TRUE;
}

if-else Statements

Description

The if-else statement handles conditions where a program requires one set of
instructions to be executed if a condition is TRUE and a different set of
instructions if the condition is FALSE.

Syntax

i f-el se-statenent:
if (expression) statenent el se statenent

Example
i f(num< 0)
{
num = 0O;
Val id = FALSE;
}
el se
Valid = TRUE;
i f(num== 1)
DoCasel();
el se if(num== 2)
DoCase?2();
el se if(num== 3)
DoCase3();
el se
Dol nval i d();

DS51112B - page 46

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

for Statement

Description

One of the three loop statements that C provides is the for loop. Use a for loop
to repeat a statement or set of statements.

Syntax

for-statenent:
for (expression ; expression ; expression) statenent

Example

unsi gned char i;
for(i=0;i<10;i++)
DoFunc();
f or (num=100; nun®0; nunkEnum 1)
{. . .1}
f or (count =0; count <50; count +=5)
{. . .1}
for(i=0; (i<MAX) && (Array[i]<>Target); i++); //Find Target

while Statement

Description

Another of the loops in C is the while loop. While an expression is TRUE, the
while loop repeats a statement or block of code. The value of the expression is
checked prior to each execution of the statement.

Syntax

whi | e- st at enent :
while (expression) statenent

Example

X = CGet Val ue()
while (1);//Loop Forever
{

Handl eVal ue(X) ;

X = CGet Val ue();

}
do-while Statement

Description

The final loop in C is the do loop. In the do loop, the statement is always
executed before the expression is evaluated. Thus, the do statement always
executes at least once.

00 1998 Microchip Technology Inc.

DS51112B - page 47

MPLAB-C17 USER’S GUIDE

Syntax

i f-statenent:
do statenent while (expression) ;

Example

do
{
X = Cet Val ue()
Handl eVal ue(x) ;
} while (x '=0);

switch Statement

Description

A switch statement is functionally equivalent to multiple if-else statements.
The switch statement has two limitations:

* The switch variable must be an 8-bit integral data type.

* The switch variable can only be compared against constant values.
Syntax

Swi t ch- st at enent :
switch (expression) statenent

case-statenent:
case constant - €XpI’€SSi on : statenent

defaul t - st at enent :
default : statenent

The switch variable is successively tested against a list of constants. When a
match is found, execution continues at the labeled case staement. If no match
is found, the statements associated with the default case are executed if a
default label exists.

The use of the default
label is good
programming practice. It
can catch out of range
data that is not expected. Exam p|e

switch(i)
{
case 1.
DoCasel();
br eak;
case 2:
DoCase?2();
br eak;
case 3:
DoCase3();
br eak;
case 4.

DS51112B - page 48 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

DoCase4();

br eak;
defaul t:

DoDef aul t ();

br eak;

}

X = 0;

swi t ch(ch)
{

case 'c’: //1gnoring case, set x to:
case 'C: x++; /1 1if chis A
case 'b’: /1 2if chis B
case 'B : x++; /1 3if chisC
case 'a’: //otherwise, chis invalid
case 'A . X++;
br eak;
default :
BadChar (ch);
br eak;

}
break Statement

Description

The break statement exits the innermost enclosing control statement (for,
while, do, switch) from any point within the body. The break statement
bypasses normal termination from an expression. If the break occurs in a
nested loop, control returns to the previous nesting level.

Syntax

br eak- st at enent :
break ;

Example

//Get 100 values. Stop imediately if the value is O.
unsi gned char i;
for(i = 0; i < 100; i++)

{
X = GetVal ue();
if(x == 0)
br eak;
Handl eVal ue(x) ;
}

00 1998 Microchip Technology Inc. DS51112B - page 49

MPLAB-C17 USER’S GUIDE

continue Statement

Description

The continue statement allows a program to skip to the end of a for, while, or
do statement without exiting the loop.

Syntax

cont i nue- st at enent :
conti nue ;

Example

/1 Gt 100 values. If the value is O,
/lignore it and go on.

unsi gned char i;

for (i = 0; i <100; i++)

{
X = Get Val ue;
if (x == 0)
conti nue;
Handl eVal ue(x) ;
}

Arrays and Strings

An array is a list of related variables of the same data type. Strings are arrays
of characters with some special rules.

Topics discussed in this section include:
* Arrays
e Strings

e Initializing Arrays

Arrays

Description

An array is a list of variables that are all of the same type and can be
referenced through the same name. An individual variable in the array is
called an array element. When an array is declared, C defines the first element
to be at an index of 0. If the array has 50 elements, the last element is at an
index of 49.

C stores arrays in contiguous memory locations. The first element is at the
lowest address. An array element can be used anywhere a variable or
constant would be used.

DS51112B - page 50

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

Syntax

decl ar at or:
decl arat or array- decl ar at or

array-decl ar at or:
[constant-expression |
array-decl arator [constant-expression]

Example

#define SIZE 10
unsi gned char i, nuniSl ZE];
for(i =0; i < SIZE i++)

nuni] =1i;
To copy the contents of one array into another, copy each individual element
from the first array into the second array. The following example shows one
method of copying the array a[] into b[] assuming that each array has 10
elements.

for(i=0;i<10;i++)
b[i] = a[i];

Strings

Description

A common one-dimensional array is the string. C does not have a built-in
string data type. Instead, a string is defined as a null (0) terminated character
array. The size of the character array must include the terminating null. All
string constants are automatically null terminated.

Example

char String[80];
int i;

for(i =0 (i <80) & !String[i]: i+4)
Handl eChar (String[i]);

Initializing Arrays

Description
C allows pre-initialization of arrays.
Syntax

initialized-declarator:
decl arator = { value-list }

00 1998 Microchip Technology Inc.

DS51112B - page 51

MPLAB-C17 USER’S GUIDE

val ue-1ist:
{ value-list }
const ant - expressi on-1i st

const ant - expressi on-1i st:
const ant - expr essi on
const ant - expressi on-1i st , constant-expression

Example

The following example shows a 5 element integer array initialization.
int i[5 ={1,2,83,4,5};
The element i[0] has a value of 1 and the element i[4] has a value of 5.

A string (character array) can be initialized in two ways. One method is to
make a list of each individual character:

char str[4]={"a,’b,’c’, 0};
The second method is to use a string constant:
char nang[5] ="John";

A null is automatically appended at the end of "John". When initializing an
entire array, the array size may be omitted:

char Version[] = "Vi1.0";

Because the PICmicro family of microcontrollers uses separate program
memory and data memory address busses in their design, MPLAB-C17
requires ANSI extensions to distinguish between data located in ROM and
data located in RAM. The ANSI/ISO C standard allows for code and data to be
in separate address spaces, but this is not sufficient when it is required to
locate data in the code space as well. To this purpose, MPLAB-C17 introduces
the r omand r amqualifiers. Syntactically, these qualifiers bind to identifiers just
as the const and volatile qualifiers do in strict ANSI C.

The primary use of ROM data is for static strings. In keeping with this, MPLAB-
C17 automatically places all string literals in ROM. The type of a string literal is
"array of char located in ROM." For example, a string table in ROM can be
declared as:

rom const char table[][20] = { "string 1", "string 2",
"string 3", "string 4"
b
rom const char *romtable2[] = { "string 1", "string 2",
"string 3", "string 4"
b

The declaration of t abl e declares an array of four strings that are each 20
characters long, and so takes 40 words of program memory. Table2 is
declared as an array of pointers to ROM. The r omqualifier after the * places
the array of pointers in ROM as well. All of the strings in table2 are 9 bytes
long, and the array is four elements long, so t abl e2 takes (9*4+4*2)/2 = 22
words of program memory. Accesses to t abl e2 may often be less efficient
than accesses to t abl e, however, because of the additional level of
indirection required by the pointer.

DS51112B - page 52

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

An important consequence of the separate ROM and RAM address spaces for
MPLAB-C17 is that pointers to data in ROM and pointers to data in RAM are
not compatible. That is, two pointer types are not compatible unless they point
to objects of compatible types and the objects they point to are located in the
same address space. For example, a pointer to a string in ROM and a pointer
to a string in RAM are not compatible because they refer to different address
spaces. To copy data from ROM to RAM, it must be done explicitly. For simple
types, this entails only a simple assignment, but for arrays and other complex
data-types it may require more.

For example, a function to copy a string from ROM to RAM could be written as
follows.

voi d str2ram(static char *dest, static char rom *src)

{
while((*dest++ = *src++) 1= "\0")

} /* end str2ram*/

As an example, the following code will send a ROM string to USART1 on a
PIC17C756 using the PICmicro C libraries. The library function to send a string
to the USART, put sUSART1(const char *str), takes a pointerto a string
as its argument, but that string must be in ram.

METHOD 1: COPY THE ROM STRING TO A RAM BUFFER BEFORE SENDING

rom char nmystring[] = "Send ne to the USART";
voi d foo(void)
{

char strbuffer[21];
str2ram(strbuffer, nystring);
put SUSART1(strbuffer);

}
METHOD 2: MODIFY THE LIBRARY ROUTINE TO READ FROM A ROM STRING.

/* The only changes required to the library routine is to change
* the name so the new routine does not conflict with the

origi nal
* routine and to add the romqualifier to the paranmeter.
*/
voi d putsUSART1_ron{ static const romchar *data)
{
do /'l Send characters up to the null
{ Il Wite a byte to the UASRT

whi | e(BusyUSART1());
put cUSART1(*dat a) ;
} while(*data++);
} /* end putsUSART1 rom */

00 1998 Microchip Technology Inc. DS51112B - page 53

MPLAB-C17 USER’S GUIDE

Pointers
This section covers one of the most important and powerful features of C,
pointers. A pointer is a variable that contains the location of an object.
The topics covered in this section are:
* Introduction to Pointers
* Pointers and Arrays
* Pointer Arithmetic

» Passing Pointers to Functions

ROM and RAM pointers in MPLAB-C17
Pointer arithmetic is complicated by the ROM paging and RAM banking of the PICmicro MCU. Pointers are
assumed to be RAM pointers unless declared as ROM.

romint *p; /1 ROM poi nt er

char *q; /1 RAM poi nter (default)

ram char *r; /1 RAM poi nter (explicitly decl ared)
char * rom* pp; /1 RAM pointer to a ROM char pointer

RAM pointers are 16-bit values. ROM pointers are 24-bit values if they point to 8-bit objects. ROM pointers are

DS51112B - page 54 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

Introduction to Pointers

Description

A pointer is an object that holds the location of another object or a NULL
constant.

For example, if a pointer variable called Varl contains the address of a
variable called Var2, then Varl points to Var2. If Var2 is a variable at address
100 in memory, then Varl would contain the value 100.

Syntax

decl ar at or:
* type-qualifier-1ist declarator

The two special operators that are associated with pointers are the asterisk (*)
and the ampersand (&). The address of a variable can be accessed by
preceding the variable with the & operator. The * operator returns the value
stored at the address pointed to by the variable.

Example
voi d mai n(voi d)
{
unsi gned char *Varl, Var2, Vars;
Var2 = 6;
Varl = &Var 2,
Var3 = Var2; // These two do
Var3 = *Var 1, //the same thing.
}

The first statement declares three variables: Varl, which is an integer pointer,
and Var2 and Var3, which are integers. The next statement assigns the value
of 6 to Var2. Then the address of Var2 (&Var2) is assigned to the pointer
variable Varl. Finally, the value of Var2 is assigned to Var3 in two ways: first by
accessing Var2 directly, then by accessing Var2 through the pointer Varl.

Pointer Arithmetic

Description

In general, pointers may be treated like other variables. However, there are a
few rules and exceptions. In addition to the * and & operators, there are only
four other operators that can be applied to pointer variables: +, ++, -, --.

An important point to remember when performing pointer arithmetic is that the
value of the pointer is adjusted according to the size of the data type it is
pointing to. If a pointer’s data type requires five memory bytes, "incrementing"
the pointer actually increases the value of the pointer by five. Similarly,
"adding" three to the pointer increases the value of the pointer by fifteen (three
times five).

00 1998 Microchip Technology Inc.

DS51112B - page 55

MPLAB-C17 USER’S GUIDE

Example
unsi gned char *p, *q, r[30] ;

p=r + 20;//p points to el ement 20 of r
g=p- 5/qpoints to elemrent 15 of r
p++; //p points to element 21 of r

It is possible to increment or decrement either the pointer itself or the object to
which it points. Pointers may also be used in relational operations.

Passing Pointers to Functions

Description

A pointer may be passed to a function just like any other variable.

Example
voi d i ncby10(unsi gned char *n)
{
*n += 10;
}
voi d mai n(voi d)
{
unsi gned char *p;
unsi gned char i = 0;
p=&i;
i ncby10(p); //i equals 10
i ncby10(&); //i equals 20
}

Structures and Unions

Structures are a group of related variables. Unions are a group of variables,
often of differing types, that share the same memory space.

This section covers:

e Introduction to Structures
e Introduction to Unions

* Nesting Structures

e Bit-fields

Syntax

Struct-or-uni on-type- nane:
Struct-or-union identifier
Struct-or-union identifier { menber-declaration-list }
Sstruct-or-union { nenber-declaration-1list }

DS51112B - page 56 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

Structures and
Debugging in MPLAB
User-defined data
constructs are not fully
described in the symbolic
information file from the
linker, and you may not be
able to use the names of
elements of structures
when debugging in
MPLAB.

nmenber -decl aration-1ist:
menber - decl ar ati on
nmenber -decl aration-1ist nenber-decl aration

menber - decl ar ati on:
menber - decl ar at i on-speci fi ers decl arator-1ist ;

nmenber - decl ar at i on- speci fi ers:
menber - decl ar at i on- speci fi er
nmenber - decl ar at i on- speci fi ers nenber - decl ar at i on-

speci fier
menber - decl ar at i on- speci fi er:
t ype- nane
const
vol atile
near
far

Introduction to Structures

Structures and unions allow the storage and manipulation of related data
together rather than in separate variables. Structures located in ROM must
have all elements word aligned.

Description

A structure is a group of related items that can be accessed through a common
name. Each item within a structure has its own data type, which can be
different from the other data types.

Example

The following example is for a card catalog in a library.

struct catal og_tag

{
char aut hor[40];
char title[40];
char pub[40];
unsi gned i nt date;
unsi gned char rev;
} card;

In this example, the tag of the structure is catalog. It is not the name of a
variable, only the name of the type of structure. The variable card is declared
as a structure of type catalog. The following shows what the structure catalog
looks like in memory.

author 40 bytes
title 40 bytes
pub 40 bytes
date 2 bytes

00 1998 Microchip Technology Inc.

DS51112B - page 57

MPLAB-C17 USER’S GUIDE

rev 1 byte

DS51112B - page 58 00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

To access any member of a structure, specify the name of the variable and the
name of the member separated by a period. For example, to change the
revision member of the structure catalog, use the following:

card.rev="a’;
To access the third character in the title, use the following:
ThirdChar = card.title[2];

Introduction to Unions

Description

A union is a memory block that is shared by two or more variables, which can
be of any data type. A union resembles a structure, but its memory usage is
fundamentally different. In a structure, the elements are arranged sequentially.
In a union, all of the elements begin at the same address, making the size of
the union equal to the size of the largest element.

Syntax

The <uni on- name> is the tag of the union, and the <vari abl e-li st >
contains the names of the variables that have a data type of <uni on- nanme>.

Accessing members of a union is the same as accessing members of a
structure.

Example

Because an int is two bytes, a char is one byte, and a long is four bytes, the
union below is stored in memory as shown:

uni on u_tag

{
int i;
char c[3];
long I;
} tenp;
where
Commmmmmaaaa- [T, >
<-mm-- c[0]----><---- ¢[1]----><---- ¢[2]----><---- ¢[3]-----
>
=
>
location O location 1 location 2 location 3

An example of saving space is shown below:

struct type_tag

{
enum { VAR ABLE, CONSTANT } type;

00 1998 Microchip Technology Inc.

DS51112B - page 59

MPLAB-C17 USER’S GUIDE

uni on
char *vari abl e_nane;
i nt constant _val ue;
} val ue;
} variabl e_or_constant;

voi d function(struct type_tag var_or_const)
{

i nt constant;

char *vari abl e;

switch(var_or_const.type)
{
case VAR ABLE:
variabl e = var_or_const. val ue. vari abl e_narne;
br eak;
case CONSTANT:
constant = var_or_const. val ue. const ant _val ue;
br eak;

}

Based on the type of data stored in st ruct type_t ag, the access of the
data is different. A union allows the data for the two types to share space.

An example of using a union to access memory as two different data types is
shown below:

uni on Mer geDat a

{
short int Twolnts[2];

| ong Onelong;
H

The above union accesses memory as two integers or as one long integer.

Nesting Structures

Description

A structure member can have a data type that is another structure. This is
referred to as a nested structure.

Example
struct Menory
{
i nt RAMNSI ze;
i nt ROVEI ze;
b

DS51112B - page 60

00 1998 Microchip Technology Inc.

Chapter 3. MPLAB-C17 Fundamentals

struct PIC
{
char Nare[12];
struct Menory MenS zes;

H
Members of a structure or union define a separate name space, Meaning that
two different structures can have the same names for their members.

Example

struct struct_tag_ 1{
int a;
int b;
char c;
} struct _1;
struct struct_tag_2
{
char d;
int a;
int b;
} struct_2;

struct _1. a references the first two bytes of a structure of type st r uct
tag_1.

struct _2. a references the second and third bytes of a structure of type
struct tag_2.

struct_2.c andstruct_1. d would produce an error because the
referenced member is not part of the structure’s definition.

Bit-fields

Description
Bit-fields allow the specification of 1-bit wide elements of a structure.
Syntax

struct <struct_name>

{
<int type> <menber1> : <bit-w dth>;
<int type> <menber?2> : <bit-w dth>;

<int type> <menbern> : <bit-w dth>;

}
Example

See Special Function Registers section in Chapter 4.

00 1998 Microchip Technology Inc. DS51112B - page 61

MPLAB-C17 USER’S GUIDE

DS51112B - page 62 00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Chapter 4. MPLAB-C17 and PICmicro™ M CU Programming

Introduction

Highlights

This section discusses specific details for PICmicro MCUs when using
MPLAB-C17.

. Processor header and assembly definition files
e Software Stack

e C startup code

. Interrupts

. Internal Assembler

Processor Header and Assembly Definition Files

Each PICmicro device has two files associated with it, a processor header file,
and a processor assembly file. The assembly file contains declarations for all
the special function registers on the device. Every assembly file is associated
with a C header file that contains, among other things, external declarations for
the special function registers.

Special Function Registers

Special function registers are defined in the processor assembly file. For
example, here port A is defined in the processor assembly file
P17C44.ASM as:

BANKO_SFR SEC DATA H 010’

PORTAbi t s
PORTA RES 1 : 010h
DDRB RES 1 : 011h
and so on.

The first line specifies the file register bank where port A is located and the
starting address for that bank. Port A has two labels PORTAbits and PORTA
both referring to the same location (in this case 010h in bank 0). So the above
definition reserves 1 byte for PORTA and PORTADbits at location 010h.

In P17C44.H, port A is declared as:
volatile extern far unsigned char PORTA,

and as:

00 1998 Microchip Technology Inc.

DS51112B - page 63

MPLAB-C17 USER’S GUIDE

extern far volatile union

{
struct
{
unsi gned RAO: 1; /* Bit O */
unsi gned RA1: 1;
unsi gned RA2: 1;
unsi gned RA3: 1;
unsi gned RAM: 1;
unsi gned RAS5: 1;
unsi gned : 1;
unsi gned NOT_RBPU: 1;
H
struct
{
unsi gned | NT: 1; /* Alternate nane for bit 0 */
unsi gned TOCKI : 1; /* Alternate nane for bit 1 */
unsi gned : 6; /* pad next 6 | ocatons */
H
} PORTADbits;

The first declaration specifies that PORTA is a byte (unsigned char) whereas
the second one declares PORTADbits as a union of bit-addressible structures.
Since individual bits in a special function register may have more than one
function (and hence more than one name), there are multiple structure
definitions inside the union all referring to the same register. Respective bits in
all structure definitions refer to the same bit in the register. Where a bit has
only one function for its position is simply padded in other structure definitions.
For example, bits 2 through 7 on port A are simply padded in the second
structure definition using the statement (unsigned :6).

When using a special function register such as port A, write the following

statements:

PORTA = 0x34; /* Assigns the value 0x34 to the whol e
port */

PORTAbits. INT = 1; /* Sets the INT pin high */

PORTAbits. RAO = 1; /* Sets the RAO pin high, same as

above statenent */

The ’extern’ modifier is needed since the variables are declared in the
processor assembly definition file. The 'volatile’ modifier tells the compile that
it cannot assume that port A retains values assigned to it. The 'far’ modifier
specifies that the port needs a bank switching instruction prior to access.

DS51112B - page 64 00 1998 Microchip Technology Inc.

Chapter 4. MPLAB-C17 and PICmicro™ MCU

Specific Instruction Macros for PICmicro MCUs

There are certain instructions on PICmicro MCUs that may need to execute from
the C code. They can be included as inline assembler instructions but for
convenience they are also available as macros in C. They are listed in the
following table:

Table 4:
Instruction Macro Action

Nop () Executes a no operation (NOP)

ClrwdtT () Clears the watchdog timer (CLRWDT).

Sleep () Executes a SLEEP instruction

Rlcf(var) Rotates 'var to the left through the carry bit

Rincf(var) Rotates 'var to the left without going through the
carry bit.

Rrcf(varn) Rotates 'var to the right through the carry bit.

Rincf(var) Rotates 'var to the right without going through the
carry bit.

Swapf(var) Swaps the upper and lower nibble of 'var

Note: 'var’ must be an 8-bit quantity (i.e. char) and not located on the stack.
Interrupt Support Macros

All PIC17CXXX header files have four macros for installing interrupt service
routines to the four interrupt vectors available. Call these macros as part of setting
up the interrupt handler functions. Specify which C function should act as the
interrupt handling function for a particular interrupt vector. For more information on
how interrupts are handled by MPLAB-C17, please refer to the 'interrupts’ section
below. Interrupt support macros are listed in the following table:

Table 5:

Macro Action

Install_INT(func) Sets 'func’ as the handler for the INT interrupt.

Install_TMRO(func) Sets 'func’ as the handler for the TMRO interrupt.

Install_TOCKI(func) Sets 'func’ as the handler for the TOCKI interrupt.

Install_PIV(func) Sets 'func’ as the handler for the PIV interrupt.

00 1998 Microchip Technology Inc. DS51112B - page 65

MPLAB-C17 USER’S GUIDE

Software Stack

The compiler uses a software stack for storing local variables, and for passing
arguments to and returning values from functions. The software stack should not
be confused with the hardware stack that the PICmicro MCU uses for storing
return addresses during function calls and interrupts. Define a software stack in
the linker script for the processor by placing a command similar to the following:

st ack si ze = 0x20

This reserves 32 bytes in the general purpose RAM area for the software stack.
The size of the software stack required by a program varies with the complexity
of the program. The following considerations should be kept in mind:

* One location of the stack will be reserved by the compiler for use as the
Stack Pointer.

* When nesting function calls, all arguments and local variables of the
calling function will remain on the stack. Therefore, the stack must be
large enough to accommodate the requirements by all functions in a
calling sequence.

C Startup Code

The C start up code is an assembly file that is assembled and linked with your C
files. It performs four main tasks:

1. Sets up the software stack used by the compiler.

2. Optionally calls a function called __STARTUP() upon reset.

3. Optionally calls the code which copies initialized data from program
memory to data memory.

4. Transfers control to the C function main() which is the entry point for C
programs.

There are two C startup code files for the PIC17CXXX family. The first is
C0S17.ASM which uses short GOTOs and CALLs. C0S17.ASM should be
assembled and linked with the small model (code less than 8K). The other
startup file is COL17.ASM which uses long jumps and LCALLs. COL17.ASM
should be used with projects targeting memory larger than 8K.

Stack initialization

The stack initialization simply points the compiler stack pointer to the right
location in data memory.

__STARTUP()

To execute some code immediately after a device reset before any other code
generated by the compiler is executed, optionally create a function by the name
___STARTURP(). This will be the first code executed upon a reset. To use a
__STARTURP() function in a program:

1. Definea__ STARTUP() function in a C program as follows:

DS51112B - page 66

00 1998 Microchip Technology Inc.

Chapter 4. MPLAB-C17 and PICmicro™ MCU

void __ STARTUP(voi d)

{

/1 Initialize sone registers to O
DDRB = 0;

DDRC = 0;

}

2. In COL17.ASM and C0S17.ASM, uncomment the line:
#DEFI NE USE_STARTUP

3. Compile the source file, assemble COL17.ASM or C0S17.ASM and link
them.

Note that since __ STARTUP() is executed before the stack is initialized, 't’
variables may not be used

Initialized Data Support

When declaring initialized data (such as int x = 5;) the variable is allocated
in data memory but the value is stored in program memory. Before the data is
usable in any program, the values must be copied from program memory into
the variable in data memory. COL17.ASM and C0S17.ASM perform this task
by calling a routine that does just that. The size of the initialization code is
approximately 50 words. Therefore, to only initialize a few variables, do not
use that feature and initialize the variables manually in the code. If initializing
many variables (10 or more integers or 20 or more characters) as they are
declared, then the initialization code is the better option in terms of code size.
To use initialized data in the program:

1. Uncomment the following line in COL17.ASM or C0S17.ASM
#DEFI NE USE_I NI TDATA

2. Assemble COL17.ASM or C0S17.ASM and IDATA17.ASM (or use
IDATAL17.0 directly).

3. Link the above files with the C object code.
Branching to main()

After the startup code optionally calls __ STARTUP() and/or copies initialized
data, and sets up the stack, it calls the main() function of the C program. There
are no arguments passed to main().

Default Options for the Startup Code

The startup code files are provided in object format as COL17.0 and C0S17.0.
These two files are assembled with the following options:

* Initialized data support is on (i.e. USE_INITDATA is defined).
e STARTUP() support is off (i.e. USER_STARTUP is commented out).

To change the behavior of the startup code, assemble the files after making
the necessary changes. Choose 17CXX as the processor type when
assembling COL17.ASM and C0S17.ASM. The resulting object file will be
usable for any PIC17CXXX project.

00 1998 Microchip Technology Inc.

DS51112B - page 67

MPLAB-C17 USER’S GUIDE

Startup code supplied with
MPLAB-C17 does not
support nested interrupts.

Interrupts

MPLAB-C17 provides interrupt support macros and code for saving and
restoring context during interrupt handling. The use of such macros and code
are optional. Elect to do interrupt handling in assembler to reduce latency and
minimize overhead.

Each PICmicro MCU processor has two interrupt support assembly files. One
is for the small model and the other for the large model as before. These files
contain code fragments that save critical special function registers, call the
interrupt handling function, and returns from the interrupt. The registers are
saved as follows:

» First ALUSTA is saved primarily to preserve the Z bit. The saved
ALUSTA can go in any bank (since BSR isn't known at that time) but
always at location OxFF. The interrupt support code reserves location
OxFF in all banks for save_ ALUSTA.

e Second, PCLATH is saved at location OXFE or the equivalent location in
the same manner as with ALUSTA. The interrupt support code reserves
location OXFE in all banks for save_ PCLATH.

e Finally BSR and WREG are saved in bank 0 at locations OxFD and
OxFC, respectively. The interrupt support code reserves locations 0xFD
and OxFC in bank 0 for save_ BSR and save_ WREG.

Here is how the highest addresses in data memory would look if an interrupt
occurred while BSR was pointing to bank 2 on the PIC17C756. (For the
PIC17C44 only banks 0 and 1 are used.)

Table 6:
Bank 0 Bank 1 Bank 2 Bank 3
OxFB | <Available> <Available> <Available> <Available>
OxFC | save BSR <Available> <Available> <Available>
OxFD | save_WREG <Reserved> <Reserved> <Reserved>
OXxFE | save_ALUSTA | <Reserved> <Reserved> <Reserved>
OxFF | save_PCLATH | <Reserved> <Reserved> <Reserved>

The ALUSTA, PCLATH, BSR, and WREG are the registers that absolutely
need to be saved before we branch to the interrupt service function. However,
there are other registers used by the compiler that are worth saving under
certain circumstances. The following is an example that uses the Timer 0

Overflow Interrupt.

DS51112B - page 68

00 1998 Microchip Technology Inc.

Chapter 4. MPLAB-C17 and PICmicro™ MCU

#i ncl ude <pl7c44. h>
unsi gned char x;

void _ TMRO()
{

X++;
PCRTB = x;

}

voi d mai n()

{

X = 1;

/1 Install interrupt handler for tiner O interrupt
Instal |l _TMRO(__TMRO);

/'l Set prescale value for TMRO
TOSTA = 0b11100110;

/1 Unmask TMRO overfl ow interrupt
| NTSTA = 0b00000010;

/1 Enable all unmasked interrupts

CPUSTA = 0;
/1 Set Port B in of/p node
DDRB = 0;
whi | e(1)
{
/1 Loop and wait for an interrupt to take place!
}

}

Install _TMRO (_TMRO) sets the function __TMRO() as the interrupt handler for
Timer O overflow interrupts. Then the appropriate prescale value, interrupt flag,
and global interrupt enable flag are set. The program enters into an infinite
loop when it reaches the while(1) statement. When Timer 0 overflows,
program control goes to the __ TMRO() function where the value of X’ is sent to
PORT B and possibly displayed on LEDs.

In this simple program the PICmicro MCU wasn't doing much at the time the
interrupt occurred. Therefore do not save any more registers in addition to
what the compiler interrupt code saved. However, in a more complex
application, the interrupt may occur at any point in the program. Therefore
other registers may need to be saved. The best way to find out is to look at the
generated code for the interrupt handling function. Find out which registers are
used by the compiler inside the function and make sure to save them at the
beginning and restore them at the end of the function. Looking at the following
example’s generated code, determine that registers PRODL and PRODH are
used both inside and outside the interrupt function.

#i ncl ude <pl7c44. h>

00 1998 Microchip Technology Inc.

DS51112B - page 69

MPLAB-C17 USER’S GUIDE

#pragnma udata int Save = OxFa

unsi gned char save_PRODL; /1 OxF9
unsi gned char save_1F; /1 OxFA
unsi gned char save_1lE; /1 OxFB

#pragnma udata anywhere
unsi gned char x, v;

void _ TMRO()

{

_asm
nmovpf PRCDL, save PRODL
nmovpf PRCDH, save_l1E
nmovpf , save_1F

_endasm
X++;
PORTB =
y =y *x

_asm
novlir O /1 Switch to bank O
nmovf p save PRODL, PRODL
nmovf p save 1E, PRODH
novfp save_ 1F,

_endasm

}

voi d main()

{

[
X

X =y =1
Instal | _TMRO(___TVRO);

/'l Set prescal e value for TMRO
TOSTA = 0b11100110;

/1 Unmask TMRO overflow interrupt
| NTSTA = 0b00000010;

/1 Enable all unmasked interrupts
CPUSTA = 0;

/] Set Port Bin o/p node
DDRB = 0;

whi | e(1)

The registers PRODH and PRODL are saved in save_1F, save_1E, and
save_PRODL, respectively. These variables are declared globally and
allocated at locations OxFa to 0xFB in bank 0 using the #pragma udata
directive. This places them at the end of the bank just before save_B and
guarantees they are in bank 0. Since BSR is cleared in the interrupt support

DS51112B - page 70 00 1998 Microchip Technology Inc.

Chapter 4. MPLAB-C17 and PICmicro™ MCU

code, don't do any bank switching to save those three registers. However,
clear the BSR (using MOVLR 00) before restoring them as the interrupt
function code could have switched banks.

The following are merely guidelines as to what the compiler might be using for
certain tasks. However, the best guarantee that the context is saved and
restored correctly is by looking at generated code.

1. WREG: This is necessary if the program is doing anything other than
looping when an interrupt occurs. It is best to save WREG at all times.

2. FSRO, FSR1: Save FSRO if the interrupt handling function uses arrays
or pointers.

3. PRODL, PRODH: Save these registers if performing multiplication in
the interrupt function. The compiler potentially uses PRODL and
PRODH if it is evaluating a complex expression.

4. TBLPTRL, TBLPTRH: These two registers are used for table read and
write operations. However, the compiler rarely uses them for temporary
storage. In general, it is not recommended to do table reads or writes in
the interrupt functions if done elsewhere in the program. Table reads
and writes use the 16-bit TBLAT register for latching data transferred
from and to program memory. Since TBLAT is not an addressable
register it cannot be saved or restored during interrupts.

Internal Assembler

MPLAB-C17 has an internal assembler using a syntax similar to MPASM. The
block of assembly code must begin with"_asm" and end with"_endasm". The
syntax within the block is

<instruction> [argl][, arg2][, arg3]

Comments must be C or C++ type notation.

Example:

_asm

/* User assenbly code */

movl w 7 // Load 7 into WREG
mvwf PORTB // and send it to PORTB
_endasm

It is generally recommended to limit the use of inline assembly to a minimum.
To write large fragments of assembly code, use the standalone assembler and
link the modules to the C modules using MPLINK.

00 1998 Microchip Technology Inc. DS51112B - page 71

MPLAB-C17 USER’S GUIDE

NOTES:

DS51112B - page 72 00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Chapter 5. Usng MPL AB-C17 with Other Microchip Tools

Introduction

Highlights

This chapter describes how to use MPLAB-C17 with other Microchip

development tools.

+ MPLAB IDE
* MPLAB-SIM
+ PROCMD

* PICSTARTUPIlus and PRO MATE ™Il

MPLAB IDE

Why You Would
Want to Use
MPLAB Tools

The MPLAB IDE provides the ability to do source level
debugging in C, and a Project Manager that allows
programmers to edit and compile MPLAB-C17 source
code. The MPLAB IDE interfaces with the
PICMASTERE emulator and the MPLAB-SIM
simulator for debugging source code.

The MPLAB IDE
Software Version

3.40 or later

MPLAB-C17
Command Line
Parameters
Needed

None.

Files Types
Shared between
the MPLAB IDE
and MPLAB-C17

Common Object Description (*.COD), List File (*.LST),
Error File (*.ERR)

Setup Required

Project > Make Setup

Method of
Opening Source
Files from the

From the MPLAB IDE Main Menu:
Project > Open Project. Open the source file from the
project window.

MPLAB IDE From the MPLAB IDE Main Menu:

File > Open Source
Integration The MPLAB IDE extracts the machine code and
Description symbolic information from the *.COD file.
Special None

Considerations

00 1998 Microchip Technology Inc.

DS51112B - page 73

MPLAB-C17 USER’S GUIDE

MPLAB-SIM Simulator

Why You Would
Want to Use the
MPLAB-SIM

Simulator Tools

The MPLAB-SIM Simulator allows programmers to
simulate discrete events in an application by
imitating the operation of the microcontroller. Thus,
MPLAB-SIM assists in the debugging of the general
logic of software.

MPLAB-SIM
Software Version

5.10 or greater

MPLAB-C17 None

Command Line

Parameters

Needed

Files Types Machine Code (*.HEX), Common Object Description

Shared between
MPLAB-SIM and
MPLAB-C17

(*.COD), List File (*.LST)

Setup Required

All *HEX, *.COD, and *.LST files must be placed in
the current MPLAB-SIM directory.

Method of Same as MPLAB

Opening Source

Files from

MPLAB-SIM

Integration MPLAB-SIM gets machine code from *.HEX files, and

Description gets symbols and source/list file correspondence from
*.COD files. MPLAB-SIM uses *.LST files to show
code while disassembling, single-stepping, and
tracing.

Special The PIC17CXXX family requires a hex file output

Considerations

format of INHX32 if configuration bits or program
words above address Ox7FFF are specified.

DS51112B - page 74

00 1998 Microchip Technology Inc.

Chapter 5. Using MPLAB-C17 with Other Microchip Tools

PROCMD

Why You Would
Want to Use
PROCMD Tools

PROCMD enables development engineers to program
Microchip PICmicro eight-bit microcontroller devices in
a DOS environment.

PROCMD
Software Version

All

MPLAB-C17
Command Line
Parameters
Needed

None

Files Types
Shared between
PROCMD and
MPLAB-C17

Machine Code (*.HEX)

Setup Required

None

Integration PROCMD programs the contents of the *.HEX file into
Description the microcontroller.
Special The PIC17CXXX family uses the INHX32 file format

Considerations

when programming. The other families use the
INHX8M file format.

PICSTART Plus and PRO MATE I

Why You Would
Want to Use
PICSTART Plus or
PRO MATE Il

The PICSTART Plus or PRO MATE Il device
programmer enables users to quickly and easily
program PICmicro microcontroller devices.

PICSTART Plus or
PRO MATE Il
Software Version

All

MPLAB-C17
Command Line
Parameters
Needed

None

Files Types Shared
between PICSTART
Plus or PRO MATE
Il and MPLAB-C17

Machine Code (*.HEX)

Setup Required

None

00 1998 Microchip Technology Inc.

DS51112B - page 75

MPLAB-C17 USER’S GUIDE

Method of Opening
Source Files from
PICSTART Plus or

Same as MPLAB

PRO MATE Il

Integration PICSTART Plus and PRO MATE Il program the
Description contents of the *.HEX file into the microcontroller.
Special The PIC17CXXX family uses the INHX32 file format

Considerations

when programming. The other families use the
INHX8M file format.

DS51112B - page 76

00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Chapter 6. Mixing Assembly Language and C M odules

Introduction

Highlights

This section describes how to use assembly language and C modules
together. It gives examples of using C variables and functions in assembly
code and examples of using assembly language variables and functions in C.

This chapter covers the following topics:
» C calling convention

* Mixing assembly language and C variables and functions

C calling convention

The following example shows how to call an assembly function with a
parameter. Most of the work is done in the file 'call_asm.asm’ where the
parameter is taken off of the software stack. 'call_c.c’ calls the 'asm_function’
with a parameter.

Il File CALL_C.C
unsi gned char asm function(unsigned char a);

unsi gned char x;

void main(void)
{

x = asmfunction(Oxff);

; File CALL_ASM ASM
LI ST P=17C756

EXTERN _st ack
GLOBAL asm function

MyCODE CODE

asm function
banksel _stack ; CGet the stack pointer into 0x00
movfp _stack, 0xO01
decf 0x01, f ; Point FSRL at the argunent

movfp Ox00, OxOa ; Get the argunent
decf O0x0a, f

; The convention is that we return
; Wth
; FSRO pointing at the return val ue.

00 1998 Microchip Technology Inc.

DS51112B - page 77

MPLAB-C17 USER’S GUIDE

nmovw 0x00 ;
return

END

W'l |l just reuse the space

al located for

the argunent since we're already
poi nted there.

Store the return val ue

Mixing assembly language and C variables

and functions

The following example shows how to use variables and functions in both

assembly language and C regard

less of where they are originally defined. The

file 'EX_ASM.ASM’ defines 'asm_function’ and 'asm_variable’ as required to
use them in a linked C file. The assembly file also shows how to call a C

function, 'main’, and how to access a C defined variable, 'c_variable’. The file
'EX_C.C’ defines 'main’ and 'c_variable’ to be used in the assembly language

file. The C file also shows how to call an assembly function, 'asm_function’,
and how to access the assembly defined variable, 'asm_variable’.

; file: EX_ASM ASM

LI ST P=17C44
EXTERN mai n ; defined in C nodul e
EXTERN c_variable ; also defined in C nodul e
MyCODE CODE
asm function
nmovl w Oxf f
movwf c_vari abl e ; put Oxffff in the C declared
vari abl e
movwf c¢_vari abl e+1
return
G.BAL asmfunction ; export so linker can see it
MYDATA UDATA
asmvari abl e RES 2 ; 2 byte variable
GLCBAL asmuvariabl e ; export so linker can see it
END

/Il file: EXC C
extern unsigned asmvari abl e;
extern near void asmfunction(void);

extern void main(void);
unsi gned c_vari abl e;

voi d mai n(voi d)

{

asm function(); /1 wll nodify 'c_variable’

asmvari abl e = 0x1234;

DS51112B - page 78

00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Chapter 7. ANSI Implementation |ssues

Introduction

Highlights

Identifiers

This section describes the behavior of MPLAB-C17 where the ANSI standard
X3.159-1989 describes the behavior as implementation defined. The text
below in italic font is taken directly from the ANSI standard with the appropriate
section in parentheses.

This chapter covers ANSI-implementation issues for the following categories:
* ldentifiers

e Characters

e Integers

* Floating Point

e Arrays and Pointers

* Reqisters

e Structures and Unions
e Bit-Fields

e Enumerations

e Switch statements

* Preprocessor directives

The number of significant initial characters (beyond 31) in
an identifier without external linkage (3.1.2)

The number of significant initial characters (beyond 6) in an
identifier with external linkage (3.1.2)

Whether case distinctions are significant in an identifier
with external linkage (3.1.2)

All MPLAB-C17 identifiers have 31 significant characters. Case distinctions
are significant in an identifier with external linkage.

00 1998 Microchip Technology Inc.

DS51112B - page 79

MPLAB-C17 USER’S GUIDE

Characters

Integers

Floating Point

The value of an integer character constant that contains
more than one character or a wide character constant that
contains more than one multibyte character (3.1.3.4)

The value of the integer character constant is the 8-bit value of the first
character. Wide characters are not supported.

Whether a 'plain’ char has the same range of values as
signed char or unsigned char (3.2.1.1)

A ‘'plain’ char has the same range of values as a si gned char.

The result of converting an integer to a shorter signed
integer, or the result of converting an unsigned integer to a
signed integer of equal length, if the value cannot be
represented (3.2.1.2)

When converting from a larger integer type to a smaller integer type, the high
order bits of the value are discarded and the remaining bits are interpreted
according to the type of the smaller integer type. When converting from an
unsigned integer to a signed integer of equal size, the bits of the unsigned
integer are simply re-interpreted according to the rules for a signed integer of
that size.

The results of bitwise operations on signed integers (3.3)

The bitwise operators are applied to the signed integer as if it were an
unsigned integer of the same type. i.e., the sign bit is treated as any other bit.

The sign of the remainder on integer division (3.3.5)
The remainder has the same sign as the quotient.

The result of a right shift of a negative-valued signed
integral type (3.3.7)

The value is shifted as if it were an unsigned integral type of the same size.
i.e., the sign bit is not propagated.

The representations and sets of values of the various types
of floating point numbers (3.1.2.5)

The direction of truncation when an integral number is
converted to a floating point number that cannot exactly

DS51112B - page 80

00 1998 Microchip Technology Inc.

Chapter 7. ANSI Implementation Issues

represent the original value (3.2.1.3)

The direction of truncation or rounding when a floating
point number is converted to a narrower floating point
number (3.2.1.4)

No floating point types are supported in MPLAB-C17 at this time.

Arrays and Pointers

Registers

The type of integer required to hold the maximum size of an
array - thatis, the type of the sizeof operator, size t (3.3.3.4,
4.1.1)

si ze_t is defined as an unsi gned int.

The result of casting a pointer to an integer, or vice-versa
(3.3.4)

The integer will contain the binary value used to represent the pointer. If the
pointer is larger than the integer, the representation will be truncated to fit in
the integer.

The type of integer required to hold the difference between
two pointers to elements of the same array, ptrdiff_t (3.3.6,
4.1.1)

ptrdi ff_t isdefined as an unsi gned int.

The extent to which objects can actually be placed in
registers by use of the register storage class specifier
(3.5.1)

The r egi st er storage class specifier is ignored.

Structures and Unions

A member of a union object is accessed using a member of
a different type (3.3.2.3)

The value of the member is the bits residing at the location for the member
interpreted as the type of the member being accessed.

The padding and alignment of members of structures
(3.5.2.1)

Members of structures and unions are aligned on byte boundaries.

00 1998 Microchip Technology Inc.

DS51112B - page 81

MPLAB-C17 USER’S GUIDE

Bit-Fields

Enumerations

Whether a ‘plain’ int bit-field is treated as a signed int or as
an unsigned int bit-field (3.5.2.1)

A ’plain’i nt bit-field is treated as an unsi gned i nt bit-field.
The order of allocation of bit-fields within a unit (3.5.2.1)

Bit-fields are allocated from least significant bit to most significant bit in order
of occurrence.

Whether a bit-field can straddle a storage-unit boundary
(3.5.2.1)

A bit-field cannot straddle a storage unit boundary.

The integer type chosen to represent the values of an
enumeration type (3.5.2.2)

si gned i nt is used to represent the values of an enumeration type.

Switch statement

The maximum number of case values in a switch statement
(3.6.4.2)

The maximum number of values is limited only by target memory.

Preprocessing directives

The method for locating includable source files (3.8.2)

Includable source files specified via the #i ncl ude <fi | ename> mechanism
are searched for in the path specified in the MCC_INCLUDE environment
variable. The MCC_INCLUDE environment variable contains a semi-colon
delimited list of directories to search.

The support for quoted names for includable source files
(3.8.2)

Includable source files specified via the #i ncl ude "fil ename" mechanism
are searched for in the current directory and then in the path specified in the
MCC_INCLUDE environment variable. The MCC_INCLUDE environment
variable contains a semi-colon delimited list of directories to search.

The behavior on each recognized #pragma directive (3.8.6)

Each #pragma directive is listed in Chapter 3.

DS51112B - page 82

00 1998 Microchip Technology Inc.

microcmie MPLAB-C17 USER’'S GUIDE

Chapter 8. Libraries

1.0 Introduction

This chapter documents functions that are in libraries and pre-compiled object
files that can be included in an application. The source code for all of these
functions is included with MPLAB-C17 in the \MCC\SRC directory. See the
"MPASM User's Guide with MPLINK and MPLIB” for more information about
libraries.

1.1 Highlights

This chapter consists of these sections:

e MPLAB-C17 Library Functions and Pre-Compiled Object Files
Overview

* Hardware, Software, Standard Libraries

e Math Libraries

e Interrupt Handler Code

* Reqgister File Definitions

e Start Up Code

* Initialized Data Move Code
e Libraries

e Hardware Peripheral Library

» Software Peripheral Library

e General Software Library

e Math Library

1.2 MPLAB-C17 Library Functions and
Pre-Compiled Object Files Overview

The pre-compiled libraries are included in the \MCC\LIB directory. These can
be linked directly into an application with MPLINK. These files were
precompiled in the C:\MCC\SRC directory at Microchip. A warning message
will be generated by MPLINK if the compiler has been installed in a different
location. This warning means that source code from the libraries will not show
in the .LST file and can not be stepped through when using MPLAB., since the
debug info does not point to the location of the source files for the libraries.

To include the library code in the .LST file and to be able to single step through
library functions, use the batch file BUILDALL.BAT in the \MCC\SRC directory
to rebuild the files. Then execute the batch file COPY2LIB to copy the newly
compiled files into the \MCC\LIB directory.

00 1998 Microchip Technology Inc. DS51112B-page 83

MPLAB-C17 USER’S GUIDE

1.3

When building an application, usually one file from each of the following
categories will be needed to successfully link.

1.2.1 Hardware, Software, Standard Libraries

thcr)':joerly PIC17C42A PIC17C43 PIC17C44 PIC17C756
Small PMC42AS.LIB |PMC43S.LIB __ |PMC44S.LIB__ |PMC756S.LIB
Medium |PMC42AM.LIB |PMC43M.LIB |PMC44M.LIB |PMC756M.LIB
Compact |PMC42AC.LIB |PMC43C.LIB |PMC44C.LIB |PMC756C.LIB
Large PMC42AL.LIB |PMC43L.LIB |PMC44L.LIB | PMC756L.LIB

These are the main library files as described in Section 2.0, 3.0 and 4.0 of
this chapter, and this file should be included by the linker when building a
project using any of these library functions described in this chapter except
the math libraries listed in Section 5.0. The source code for these libraries is
in \MCC\SRC\PMC.

Pre-Compiled Math Libraries

‘AII processors and memory models: CMATH17.LIB

This file contains the math libraries. The source files can be found in
\MCC\SRC\MATH. This file is the same for all memory models and all
PIC17CXXX PICmicros™. See Section 5.0 in this chapter for more
information.

1.3.1 Interrupt Handler Code

These pre-compiled object files contain the interrupt code. These may be
customized for specific applications. The source code for these pre-compiled
objects is in \MCC\SRC\STARTUP.

MJ?doerly PIC17C42A PIC17C43 PIC17C44 PIC17C756
Small INT42AS.0 | INT43S.0 INT44S.0 INT756S.0
Medium INTA2AM.O | INT43M.O INT44M.O INT756M.0
Compact INT42AC.O |INT43C.0 INT44C.O INT756C.O
Large INT42AL.0 INT43L.0 INT44L.0 INT756L.0

1.3.2 Register File Definitions

These files contain the PICmicro special function register definitions for each
processor supported. These are the same for all memory models. The source
code can be found in MCC\SRC\PROCESSOR

DS51112B-page 84

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

1.3.3 Start Up Code

PIC17C42A PIC17C43 PIC17C44 PIC17C756
P17C42A.0 P17C43.0 P17C44.0 P17C756.0

These files contain the start up code for the compiler. This code initializes the
C software stack, calls the routines in IDATA17.0 to initialize data (see below),
and jumps to the start of the application function, main(). These files will work
for all PIC17CXXX PICmicros. The source code is in \MCC\SRC\STARTUP. If
the application uses more than one page (8k) of program memory, the Large
model should be used.

Memory Model

Small C0s17.0
Large C0oL17.0

1.3.4 Initialized Data Move Code

‘AII processors and memory models: IDATA17.0

This assembly code copies initialized data from ROM to RAM upon system
start up. This code is required if variables are set to a value when they are first
defined. This file is the same for all memory models and all PIC17CXXX
PICmicros. The source code is in \MCC\SRC\STARTUP.

Here is an example of data that will need to be initialized on system startup:

int my_data = 0x1234;
unsi gned char nmy_char =

a
To avoid the overhead of this initialization code, set variable values at run time:

int my_data,;
unsi gned char my_char;
Void main (void)

my_data = 0x1234;
my_char ="a";

00 1998 Microchip Technology Inc. DS51112B-page 85

MPLAB-C17 USER’S GUIDE

2.0 Hardware Peripheral Library

2.1 A/D Convertor Functions

Return Value:

BusyADC
Device: PIC17C756
Function: Returns the value of the GO bit in the ADCONO register.
Syntax: #i ncl ude <adc16. h>
char BusyADC (void);
Remarks: This function returns the value of the GObit in the

ADCONO register. If the value is equal to 1, then the A/
D is busy converting. If the value is equal to 0, then the
A/D is done converting.

This function returns a char with value either 0 (done)
or 1 (busy).

Filename: adcbusy.c
See also: None.
CloseADC
Device: PIC17C756
Function: This function disables the A/D convertor.
Syntax: #i ncl ude <adc16. h>
voi d Cl oseADC (void);
Remarks: This function first disables the A/D convertor by clearing

the ADON bit in the ADCONO register. It then disables the
A/D interrupt by clearing the ADI E bit in the Pl E2
register.

Return Value: None.
Filename: adcclose.c
See also: None.
ConvertADC
Device: PIC17C756
Function: Starts an A/D conversion by setting the GO bit in the

ADCONO register.

DS51112B-page 86

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Syntax: #i ncl ude <adc16. h>
voi d Convert ADC (void);

Remarks: This function sets the GO bit in the ADCONO register.

Return Value: None.

Filename: adcconv.c

See also: None.

OpenADC

Device: PIC17C756

Function: Configures the A/D convertor.

Syntax: #i ncl ude <adc16. h>
voi d OpenADC (unsi gned char config,
unsi gned char channel);

Remarks: This function resets the A/D related Special Function

Registers to the POR state and then configures the
clock, interrupts, justification, voltage reference source,
number of analog/ digital 1/0s, and current channel.

The value of config can be a combination of the
following values (defined in adc16.h):

A/D Interrupts
ADC_INT_ON
ADC_INT_OFF

A/D clock source
ADC_FOSC 8
ADC_FOSC 32
ADC_FOSC 64
ADC_FOSC _RC

A/D result justification
ADC_RIGHT_JUST
ADC_LEFT_JUST

Interrupts ON
Interrupts OFF

Fosc/8

Fosc/32

Fosc/64

Internal RC Oscillator

A/D voltage reference source

ADC_VREF_EXT
ADC_VREF_INT

Vref from 1/O pins
Vref from Avdd pin

A/D analog/digital I/O configuration

ADC_ALL_ANALOG
ADC_ALL_DIGITAL
ADC_11ANA_1DIG
ADC_10ANA_2DIG
ADC_9ANA_3DIG
ADC_8ANA_4DIG
ADC_6ANA_6DIG
ADC_4ANA_8DIG

All channels analog
All channels digital
11 analog, 1 digital
10 analog, 2 digital
9 analog, 3 digital
8 analog, 4 digital
6 analog, 6 digital
4 analog, 8 digital

00 1998 Microchip Technology Inc.

DS51112B-page 87

MPLAB-C17 USER’S GUIDE

The value of channel can be one of the following values
(defined in adc16.h):

ADC_CHO Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CHS8 Channel 8
ADC_CH9 Channel 9
ADC_CHI10 Channel 10
ADC_CHI11 Channel 11

Return Value: None.

Filename: adcopen.c

See also: None.

Code Example:

#i ncl ude <pl7c756. h>
#i ncl ude <adc16. h>
#i ncl ude <stdlib. h>
#i ncl ude <del ays. h>
#i ncl ude <usart 16. h>
voi d nmai n(void)

{

int result;
char str[7];
/'l configure A/ D convertor
OpenADC(ADC_I NT_OFF&ADC_FOSC_32&ADC_
Rl GHT_JUST&ADC _VREF_| NT&ADC _
ALL_ANALGCG, ADC_CHO) ;
/1 configure USART
OpenUSART1(USART_TX_ | NT_
OFF&USART_RX_
| NT_OFF&USART_ASYNCH_
MODE&USART _El GHT _
Bl T&USART_CONT_RX)

Del ay10TCYx(5); /1 Delay for 50TCY
Convert ADC() ; /1 Start Conversion

whi | e(BusyADC()) ; /1 Done Converting?
result = ReadADC(); // read result
itoa(result,str); /1l convert to string

put sUSART1(str); /[l Wite string to USART
Cl oseADC() ; /1l Cl ose Modul es

DS51112B-page 88

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Cl 0seUSART1();

return;
}
ReadADC

Device: PIC17C756
Function: Reads the result of an A/D conversion.
Syntax: #i ncl ude <adc16. h>

i nt ReadADC (void);
Remarks: This function reads the 16-bit result of an A/D

Return Value:

conversion.

This function returns the 16-bit signed result of the A/D
conversion. If the ADFMbit in ADCONL is set, then the
result is always right justified leaving the MSbs cleared.
If the ADFMbit is cleared, then the result is left justified
where the LSbs are cleared.

Filename: adcread.c
See also: None
SetChanADC
Device: PIC17C756
Function: Selects a specific A/D channel.
Syntax: #i ncl ude <adc16. h>
voi d Set ChanADC (unsi gned char channel);
Remarks: This function first clears the channel select bits in the

ADCONO register, which selects channel 0. It then ORs
the value channel with ADCONO register.

The value of channel can be one of the following values
(defined in adc16.h):

ADC_CHO Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CHS8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CHI11 Channel 11

00 1998 Microchip Technology Inc.

DS51112B-page 89

MPLAB-C17 USER’S GUIDE

Return Value: None.

Filename: adcset.c

DS51112B-page 90 00 1998 Microchip Technology Inc.

Chapter 8. Libraries

2.2 Input Capture Functions

CloseCapturel
CloseCapture2
CloseCapture3
CloseCapture4

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

CloseCapturel - PIC17C4X, PIC17C756
CloseCapture? - PIC17C4X, PIC17C756
CloseCapture3 - PIC17C756
CloseCapture4 - PIC17C756

This function disables the specified input capture.

#i ncl ude <captur16. h>

voi d Cl oseCapturel (void);
voi d Cl oseCapture2 (void);
voi d Cl oseCapture3 (void);
voi d Cl oseCaptured4 (void);

This function simply disables the interrupt of the
specified input capture.

None.

cplclose.c
cp2close.c
cp3close.c
cp4close.c

None.

OpenCapturel
OpenCapture2
OpenCapture3
OpenCaptured

Device:

Function:

Syntax:

OpenCapturel - PIC17C4X, PIC17C756
OpenCapture2 - PIC17C4X, PIC17C756
OpenCapture3 - PIC17C756
OpenCapture4 - PIC17C756

This function configures the specified input capture.

#i ncl ude <captur16. h>

voi d OpenCapturel (unsigned char config);
voi d OpenCapture2 (unsigned char config);
voi d OpenCapture3d (unsigned char config);
voi d OpenCapt ure4d (unsigned char config);

00 1998 Microchip Technology Inc.

DS51112B-page 91

MPLAB-C17 USER’S GUIDE

Remarks:

This function first resets the capture module to the POR
state and then configures the specified input capture for
edge detection, i.e., every falling edge, every rising
edge, every fourth rising edge, or every sixteenth rising
edge.

Capturel has the ability to become a period register for
Timer3.

The value of config can be a combination of the
following values (defined in captur16.h):

All OpenCapture functions
CAPTURE_INT_ON Interrupts ON
CAPTURE_INT_OFFInterrupts OFF

OpenCapturel
C1_EVERY_FALL_EDGE
C1_EVERY_RISE_EDGE
Cl1_EVERY_4_RISE_EDGE
C1_EVERY_16_RISE_EDGE
CAPTURE1_PERIOD
CAPTURE1_CAPTURE

OpenCapture2
C2_EVERY_FALL_EDGE
C2_EVERY_RISE_EDGE
C2_EVERY_4_RISE_EDGE
C2_EVERY_16_RISE_EDGE

OpenCapture3
C3_EVERY_FALL_EDGE
C3_EVERY_RISE_EDGE
C3_EVERY_4_RISE_EDGE
C3_EVERY_16_RISE_EDGE

OpenCapture4

C4_EVERY_FALL_EDGE
C4_EVERY_RISE_EDGE
C4_EVERY_4_RISE_EDGE
C4_EVERY_16_RISE_EDGE

The capture functions use a structure to indicate
overflow status of each of the capture modules. This
structure is called CapStatus and has the following bit
fields:

struct capstatus

unsi gned CaplOVF: 1;
unsi gned Cap20VF: 1;
unsi gned Cap3O0OVF: 1;

DS51112B-page 92

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

unsi gned Cap4OvVF: 1;
unsi gned : 4;
} CapsSt at us;
In addition to opening the capture,
Timer 3 nmust al so be opened with an

OpenTinmer3 (...) statenment before any of
the captures will operate.

Return Value: None.

Filename: cplopen.c
cp2open.c
cp3open.c
cpopené.c

See also: Timer3.

Code Example:

#i ncl ude <pl7c756. h>
#i ncl ude <captur16. h>
#i ncl ude <timersl6. h>
#i ncl ude <usart 16. h>
voi d mai n(voi d)

{
unsigned int result;
char str[7];
/1l Configure Capturel
OpenCapt urel(Cl_EVERY_4_RI SE_EDGE
&CAPTURE1_CAPTURE) ;
/'l Configure Tinmer3
OpenTi mer 3(TI MER_| NT_OFF&T3_SOURCE_I NT) ;
/'l Configure USART
OpenUSART1(USART_TX_I NT_OFF&USART_RX_
| NT_OFF&USART_ASYNCH_MODE&
USART_EIl GHT_BI TRUSART_CONT_RX) ;
whil e(! PIRLlbits. CALIF); /1 Wait for event
result = ReadCapturel(); /1 read result

uitoa(result,str);// convert to string
i f(!CapStatus. CaplOVF)
{
put sSUSART1(str); /1 wite string
Cl oseCapturel(); !/l to USART
}
Cl oseTi ner 3();
Cl 0seUSART1();
return;

}

00 1998 Microchip Technology Inc. DS51112B-page 93

MPLAB-C17 USER’S GUIDE

ReadCapturel
ReadCapture2
ReadCapture3
ReadCapture4
Device: ReadCapturel - PIC17C4X, PIC17C756
ReadCapture2 - PIC17C4X, PIC17C756
ReadCapture3 - PIC17C756
ReadCapture4 - PIC17C756
Function: Reads the result of a capture event from the specified
input capture.
Syntax: #i ncl ude <captur16. h>
unsi gned int ReadCapturel (void);
unsi gned int ReadCapture2 (void);
unsi gned i nt ReadCapture3 (void);
unsi gned int ReadCapture4 (void);
Remarks: This function reads the value of the respective input

Return Value:

Filename:

See also:

capture SFRs.
Capturel: CALL, CA1H
Capture2: CA2L, CA2H
Capture3: CA3L, CA3H
Capture4: CA4AL, CAAH

This function returns the result of the capture event.
The value is a 16-bit unsigned integer.

caplread.c
cap2read.c
cap3read.c
capdread.c

None.

DS51112B-page 94

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

2.3

1°C Functions

Ackl2C
Device: PIC17C756
Function: Generates 1°C bus Acknowledge condition.
Syntax: #i ncl ude <i 2c16. h>
voi d Ackl 2C (voi d);
Remarks: This function generates an 1°C bus Acknowledge

condition.

Return Value:

Filename:

See also:

Return Value: None.
Filename: acki2c.c
See also: None.
Closel2C
Device: PIC17C756
Function: Disables the SSP module.
Syntax: #i ncl ude <i 2c16. h>
void Cl osel 2C (voi d);
Remarks: Pin I/O returns under control Port register settings.
Return Value: None.
Filename: closei2c.c
See also: None.
DataRdyl2C
Device: PIC17C756
Function: Provides status back to user if the SSPBUF register
contains data.
Syntax: #i ncl ude <i 2c16. h>
unsi gned char Dat aRdyl 2C (voi d);
Remarks: Determines if there is a byte to be read from the SPBUF

register.

This function returns 1 if there is data in the SSPBUF
register else returns 0 which indicates no data in
SSPBUF

register.

dtrdyi2c.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 95

MPLAB-C17 USER’S GUIDE

getsl2C

Device:

Function:

Syntax:

Remarks:

Return Value:

PIC17C756

This function is used to write a predetermined data
string length to the 12C bus.

#i ncl ude <i 2c16. h>
unsi gned char getsl2C (unsigned char far
*rdptr,unsigned char /ength);

Master I°C mode: This routine writes a predefined data
string length to the I°C bus. Each byte is retrieved via a
call to the getcl2C function. The actual called function
body is termed Readl2C. Readl2C and getcl2C refer to
the same function via a #def i ne statement in the
i2c16.h file.

Slave 1°C mode: This routine writes a predefined data
string length to the 1°C bus. Each byte is retrieved by
reading the SSPBUF register. There is a time-out period
which can be adjusted so as to prevent the slave from
waiting forever for data reception.

Master 1°C mode: This function returns 0 if all bytes
have been sent.

Slave I2C mode: This function returns -1 if the slave
device timed-out waiting for a data byte else it returns 0
if the master 12C device sent a Not Ack condition.

Filename: getsi2c.c
See also: Readl2C
Idlel2C
Device: PIC17C756
Function: Generates wait condition until 12C bus is idle.
Syntax: #i ncl ude <i 2c16. h>
void Idlel2C (void);
Remarks: This function checks the R/ Whit of the SSPSTAT

register and the SEN, RSEN, PEN, RCENand ACKEN
bits of the SSPCON2 register. When the state of any of
these bits is a logic 1 the function loops on itself. When
all of these bits are clear the function terminates and
returns to the calling function. The Idlel2C function is
required since the hardware 1°C peripheral does not
allow for spooling of bus sequences/actions. The 1°c

DS51112B-page 96

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

peripheral must be in an idle state before any 1°C
operation can be initiated or a bus collision will be
generated.

Return Value: None.

Filename: idlei2c.c

See also: None.

NotAckl2C

Device: PIC17C756

Function: Generates 1°C bus Not Acknowledge condition.

Syntax: #i ncl ude <i 2c16. h>
voi d Not Ackl 2C (voi d);

Remarks: This function generates an 1°C bus Not Acknowledge
condition.

Filename: noacki2c.c

Return Value: None.

See also: None.

Openl2C

Device: PIC17C756

Function: Configures the SSP module.

Syntax: #i ncl ude <i 2c16. h>
voi d Openl 2C (unsi gned char sync_nopde,
unsi gned char s/ ew;

Remarks: Openl2C resets the SSP module to the POR state and

Return Value:

Filename:

then configures the module for master/slave mode and
slew rate enable/disable.

The value of function parameter sync_mode can be one
of the following values defined in i2¢16.h:

SLAVE 7 I2C Slave mode, 7-bit address
SLAVE_10 I2C Slave mode, 10-bit address
MASTER I2C Master mode

The value of function parameter slew can be one of the
following values defined in i2c16.h:

SLEW_OFF Slew rate disabled for 100kHz mode
SLEW_ON Slew rate enabled for 400kHz mode

None.

openi2c.c

00 1998 Microchip Technology Inc.

DS51112B-page 97

MPLAB-C17 USER’S GUIDE

See also: None.
CODE EXAMPLES:

The following are simple code examples illustrating the SSP module
configured for 1°C master communication. The routines illustrate 1°C
communications with a Microchip 24LC01B 1°C EE Memory Device. In all
the examples provided no error checking utilizing the function return value
is implemented.

The basic 1°C routines for the hardware 1°C module of the PIC17C756
such as Startl2C, Stopl2C, Ackl2C, NotAckl2C, Restartl2C, putcl2C,
getcl2C, putsI2C, getsl2C, etc., are utilized within the specialized EE 1°c
routines such as EESequentialRead or EEPageWrite.

#i ncl ude "pl7cxx. h"
#i ncl ude "i 2c16. h"
/' FUNCTI ON PROTOTYPES
voi d mai n(voi d);
I/ PO NTERS and ARRAYS
unsi gned char arrayw|[] = {1,2,3,4,5,6,7, 8, 0};
/124L.C01B page wite
/'l unsigned char arrayw|[] ={1,2,3,4,5,6,7,8,9, 10,
11 11,12, 13, 14, 15, 16, 0};
/1 24LC04B page wite
unsi gned char far *wptr = arrayw;
unsi gned char arrayrd[80];
unsi gned char far *rdptr
unsi gned char tenp;

arrayrd;

//***

#pragma code _nmai n=0x100
voi d nmai n(voi d)

@ 6MHz

{
Openl 2C(MASTER, SLEWON);//initialize |I2C nodul e
SSPADD = 9; /1 400Khz Baud cl ock(9)
/1 100khz Baud cl ock(39) @6z
tenp = 0;
whil e(1)
tenp = EEByteWite(0xA0, 0x30, O0xA5);
temp = EEAckPol | i ng(0xAQ0) ;
tenp = EECurrent AddRead(OxAl);
tenmp = EEPageWite(0xA0, 0x70, wrptr);
tenmp = EEAckPol | i ng(0xAQ) ;
tenmp = EESequenti al Read(0xA0, 0x70, rdptr, 15);
tenmp = EERandonRead(0xA0, 0x30);
Cl osel 2C() ;
}

DS51112B-page 98

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

putsi2C

Device:

Function:

Syntax:

Remarks:

Return Value:

PIC17C756

This function is used to write out a data string to the 1°C
bus.

#i ncl ude <i 2c16. h>
unsi gned char putsl2C (unsigned char far
*wrptr);

Master 1°C mode: This routine writes a data string to
the 12C bus until a null character is reached. Each byte
is written via a call to the putcl2C function. The actual
called function body is termed Writel2C. Writel2C and
putcl2C refer to the same function via a #define
statement in the i2c16.h file.

Slave I°C mode: This routine writes a string out to the
12C bus until a null character is reached. Each byte is
placed directly in the SSPBUF register and the putcl2C
routine is not called.

Master 12C Mode: This function returns 1 if the slave
1°C device responded with a Not Ack which terminated
the data transfer. The function returns 0 if the null
character was reached in the data string.

Slave 12C mode: This function returns -1 if the master
1°C device responded with a Not Ack which terminated
the data transfer. The function returns 0 if the null
character was reached in the data string

Filename: putsi2c.c
See also: Writel2C
Readl2C

Device: PIC17C756

Function: This function is used to read a single byte from the 1’c
bus.

Syntax: #i ncl ude <i 2c16. h>
unsi gned char Readl 2C (voi d);

Remarks: This function reads in a single byte from the 1°C bus.

Return Value:

Filename:

See also:

The return value is the data byte read from the 12C bus.
readi2c.c
getsl2C ;

00 1998 Microchip Technology Inc.

DS51112B-page 99

MPLAB-C17 USER’S GUIDE

Return Value:

Restartl2C
Device: PIC17C756
Function: Generates 1°C bus restart condition.
Syntax: #i ncl ude <i 2c16. h>
unsi gned char Restartl2C (void);
Remarks: This function generates an 1°C bus restart condition.

This function returns -1 if there was a bus collision error
or returns 0 if the bus restart condition completed
without error.

Return Value:

Filename: rstrti2c.c
See also: None.
Startl2C
Device: PIC17C756
Function: Generates IC bus start condition.
Syntax: #i ncl ude <i 2c16. h>
unsi gned char Startl2C (void);
Remarks: This function generates a 12C bus start condition.

This function returns -1 if there was a bus collision error
or returns 0 if the bus start condition completed without
error.

Return Value:

Filename:

See also:

Filename: starti2c.c
See also: None.
Stopl2C
Device: PIC17C756
Function: Generates 1°C bus stop condition.
Syntax: #i ncl ude <i 2c16. h>
unsi gned char Stopl 2C (void);
Remarks: This function generates an 1°C bus stop condition.

This function returns -1 if there was a bus collision error
or returns 0 if the bus stop condition completed without
error.

stopi2c.c

None.

DS51112B-page 100

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Writel2C

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C756

This function is used to write out a single data byte to
the 1°C
bus device.

#i ncl ude <i 2c16. h>
unsi gned char Witel 2C (unsi gned char
data_out);

This function writes out a single data byte to the 1°C bus
device.

This function returns -1 if there was a write collision else
it returns a 0.

writei2c.c
putsi2C

Note: The routines to follow are specialized and specific to EE 1°C
memory devices such as, but not limited to, the Microchip
241.C01B. Each of the routines depicted below utilize the
previous basic 'C’ routines in a composite standalone function.

EEAckPolling

Device:

Function:

Syntax:

Remarks:

Return Value:

File name:

See also:

PIC17C756

This function is used to generate the acknowledge
polling sequence for Microchip EE 1°C memory
devices.

#i ncl ude <i 2c16. h> unsi gned char
EEAckPol I i ng (unsigned char
control);

This function is used to generate the acknowledge
polling sequence for Microchip EE 1°C memory
devices. This routine can be used for 12C EE memory
device which utilize acknowledge polling.

The return value is -1 if there bus collision error else
return 0.

i2ceeap.c

None.

EEByteWrite

00 1998 Microchip Technology Inc.

DS51112B-page 101

MPLAB-C17 USER’S GUIDE

Device:

Function:

Syntax:

Remarks:

Return Value:

PIC17C756

This function is used to write a single byte to the 1°C
bus.

#i ncl ude <i 2c16. h>

unsi gned char EEByteWite (unsigned char
control, unsi gned char address, unsigned
char data);

This function writes a single data byte to the 1°C bus.
This routine can be used for any Microchip 1°C EE
memory device which requires only 1 byte of address
information.

The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns 0 if there
were no errors.

File name: i2ceebw.c
See also: None.
EECurrentAddRead

Device: PIC17C756

Function: This function is used to read a single byte from the 1’c
bus.

Syntax: #i ncl ude <i 2c16. h>
unsi gned char EECurrent AddRead (unsi gned
char control);

Remarks: This function reads in a single byte from the 1°C bus.

Return Value:

File name:

See also:

The address location of the data to read is that of the
current pointer within the 1°C EE device. The memory
device contains an address counter that maintains the
address of the last word accessed, incremented by
one.

The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns the contents
of the SSPBUF register.

i2ceecar.c
EERandomRead

DS51112B-page 102

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

EEPageWrite

Device:

Function:

Syntax:

Remarks:

Return Value:

PIC17C756

This function is used to write a string of data to the 1°C
EEb device.

#i ncl ude <i 2c16. h>

unsi gned char EEPageWite (unsigned char
control, unsigned char address, unsigned
char far *wrptr);

This function writes a predetermined string length of
data to the 1°C EE memory device. The length of the
data string to read is passed as a function parameter.

The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns O if there
were no errors.

Return Value:

File name:

See also:

File name: i2ceepw.c
See also: None.
EERandomRead

Device: PIC17C756

Function: This function is used to read a single byte from the 1’c
bus.

Syntax: #i ncl ude <i 2c16. h>
unsi gned char EERandonRead (unsi gned char
control, unsigned char address);

Remarks: This function reads in a single byte from the 1°C bus.

The routine can be used for Microchip 1°C EE memory
devices which only require 1 byte of address
information.

The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns the contents
of the SSPBUF register.

i2ceerr.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 103

MPLAB-C17 USER’S GUIDE

EESequentialRead

Device:

Function:

Syntax:

Remarks:

Return Value:

File name:

See also:

PIC17C756

This function is used to read in a string of data from the
1°C bus.

#i ncl ude <i 2c16. h>

unsi gned char EESequenti al Read (unsi gned
char control, unsigned char address

unsi gned char

far *rdptr, unsigned char [ength);

This function reads in a predefined string length of data
from the 12C bus. The routine can be used for Microchip
I2C EE memory devices which only require 1 byte of
address information. The length of the data string to
read in is passed as a function parameter. The function
parameter ‘control’ is the defining address of the 12C
memory device.

The return value is -1 if there was a bus collision error,
-2 if there was a not ack error else returns 0O if there
were no errors.

i2ceesr.c

None.

DS51112B-page 104

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

2.4 Interrupt Functions

Disable
Device: PIC17C4X, PIC17C756
Function: Disables global interrupts.
Syntax: #i ncl ude <int16. h>
voi d Di sable (void);
Remarks: This function disables global interrupts by setting the
GLI NTD bit of the CPUSTA register.
Return Value: None.
Filename: disable.c
See also: None.
Enable
Device: PIC17C4X, PIC17C756
Function: Enables global interrupts.
Syntax: #i ncl ude <int16. h>
voi d Enabl e (void);
Remarks: This function enables global interrupts by clearing the

GLI NTD bit of the CPUSTA register.

Return Value: None.
Filename: enable.c
See also: None.

00 1998 Microchip Technology Inc.

DS51112B-page 105

MPLAB-C17 USER’S GUIDE

2.5

I/O Port Functions

ClosePORTB
Device: PIC17C4X, PIC17C756
Function: Disables the interrupts and internal pull-up resistors for
PORTB.
Syntax: #i ncl ude <portbil6. h>
voi d Cl 0sePORTB (void);
Remarks: This function disables the PORTB interrupt on change

by clearing the RBI E bit in the PI E register. It also
disables the internal pull-up resistors by clearing the
NOT_RBPU bit in the PORTA register.

Return Value:

Filename:

See also:

Return Value: None.
Filename: pbclose.c
See also: None.
CloseRAOQINT
Device: PIC17C4X, PIC17C756
Function: Disables the RAO/INT pin interrupt.
Syntax: #i ncl ude <int16. h>
voi d Cl 0seRAOI NT (void);
Remarks: This function disables the RAO/INT pin interrupt by

clearing the | NTE bit in the | NTSTA register.
None.
raOclose.c

None.

DS51112B-page 106

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

DisablePullups

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Disables the internal pull-up resistors on PORTB.

#i ncl ude <portbl6. h>
voi d Di sabl ePul | ups (void);

This function disables the internal pull-up resistors on
PORTB by clearing the NOT_RBPU bit in the PORTA
register.

None.
pulldis.c

None.

EnablePullups

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Enables the internal pull-up resistors on PORTB.

#i ncl ude <portbl6. h>
voi d Enabl ePul ups (void);

This function enables the internal pull-up resistors on
PORTB by setting the NOT_RBPU bit in the PORTA
register.

None.
pullen.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 107

MPLAB-C17 USER’S GUIDE

OpenPORTB

Device:

Function:

Syntax:

Remarks:

PIC17C4X, PIC17C756

Configures the interrupts and internal pull-up resistors
on PORTB.

#i ncl ude <portbl6. h>
voi d OpenPORTB (unsigned char

This function configures the interrupts and internal pull-
up resistors on PORTB.

config);

The value of config can be a combination of the
following values (defined in portb16.h):

PORTB_CHANGE_INT_ON
PORTB_CHANGE_INT_OFF
PORTB_PULLUPS_ON

PORTB_PULLUPS_OFF

Interrupt ON
Interrupt OFF
pull-up resistors
enabled

pull-up resistors

disabled
Return Value: None.
Filename: pbopen.c
See also: None.
OpenRAOINT

Device: PIC17C4X, PIC17C756
Function: Configures the external interrupt pin RAO/INT.
Syntax: #i ncl ude <int16. h>

voi d OpenRAOI NT (unsi gned char config);
Remarks: This function configures the RAO/INT pin for external

interrupt for interrupt on/off and edge select.

The value of config can be a combination of the
following values (defined in int16.h):

Return Value:

Filename:

See also:

INT_ON
INT_OFF
INT_RISE_EDGE
INT_FALL_EDGE

None.
raOopen.c

None.

Interrupt ON

Interrupt OFF

Interrupt on rising edge
Interrupt on falling edge

DS51112B-page 108

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

2.6 Microwiretd Functions

CloseMwire
Device: PIC17C756
Function: Disables the SSP module.
Syntax: #i ncl ude <mni rel6. h>
void CloseMrvre (void);
Remarks: Pin 1/O returns under control DDRx and PORTXx register

settings.

Return Value: None.

Filename: closmwir.c

See also: None.

DataRdyMwire

Device: PIC17C756

Function: Provides status back to user if the Microwire device has
completed the internal write cycle.

Syntax: #i ncl ude <mni rel6. h>
unsi gned char DataRdyMnire (void);

Remarks: Determines if Microwire device is ready.

Return Value:

Filename:

See also:

This function returns 1 if the Microwire device is ready
else returns 0 which indicates that the internal write
cycle is not complete or there could be a bus error.

drdymwir.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 109

MPLAB-C17 USER’S GUIDE

getsMwire
Device: PIC17C756
Function: This routine reads a string from the Microwire device.
Syntax: #i ncl ude <mni rel6. h>
void getsMiai re (unsigned char far *rdptr,
unsi gned char /ength);
Remarks: This function is used to read a predetermined length of

data from a Microwire device. User must first issue start
bit, opcode and address before reading a data string.

Return Value:

Filename:

See also:

Return Value: None.
Filename: getsmwir.c
See also: None.
OpenMwire
Device: PIC17C756
Function: Configures the SSP module.
Syntax: #i ncl ude <mni rel6. h>
voi d OpenMni re (unsi gned char sync_node) ;
Remarks: OpenMwire resets the SSP module to the POR state

and then configures the module for Microwire
communications.

The value of the function parameter sync_mode can be
one of the following values defined in mwire16.h:

FOSC_4 clock = Fosc/4
FOSC_16 clock = Fosc/16
FOSC_64 clock = Fosc/64
FOSC_TMR2 clock = TMR2 output/2

None.

openmwir.c

None.

CODE EXAMPLES:

The following are simple code examples illustrating the SSP module
communicating with a Microchip 93LC66 Microwire EE Memory Device. In
all the examples provided no error checking utilizing the value returned
from a function is implemented.

#i ncl ude "pl7c756. h"

#i ncl ude

"mmM rel6. h"

/] 93LC66 x 8

DS51112B-page 110

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

/' FUNCTI ON PROTOTYPES

voi d mai n(voi d);

voi d ew_enabl e(voi d);

void erase_all (void);

voi d busy_poll (void);

void wite_all (unsigned char data);

voi d byte_read(unsigned char address);

void read_mul t (unsi gned char address, unsigned char
far *rdptr, unsigned char |ength);

void wite_byte(unsigned char address, unsigned char
dat a) ;

unsi gned char arrayrd[20];

unsi gned char far *rdptr = arrayrd;

unsi gned char var;

/| DEFI NE 93LC66 MACROS

#def i ne READ 0x0C
#defi ne WRI TE Ox0A
#defi ne ERASE 0x0E
#defi ne EVEEN1 0x09
#defi ne EVEEN2 0x80
#defi ne ERAL1 0x09
#defi ne ERAL?2 0x00
#defi ne VWRAL 1 0x08
#defi ne VRAL 2 0x80
#defi ne EWDS1 0x08
#defi ne EWDS?2 0x00

#define WCS PORTAbits. RA2
#pragma code _nmai n=0x100
voi d mai n(voi d)

{
WCS = 0; [/l ensure CS is negated
OpenMn r e(FOSC_16) ; /I enabl e SSP perpi hera
ew_enabl e(); //send erase/wite enable

wite byte(0x13, 0x34); //wite byte

(address, dat a)

(address)

busy_pol I ();
Nop() ;
byte read(0x13); /lread single byte
read_nul t (0x10, rdptr, 10); //read multiple bytes
erase_all (); /lerase entire array
Cl oseMrire(); /1 di sabl e SSP peri phera
}

voi d busy_poll (voi d)

{
WCGCS = 1;
do

00 1998 Microchip Technology Inc.

DS51112B-page 111

MPLAB-C17 USER’S GUIDE

{

var = DataRdyMaire();//test for busy/ready
} while(var !'= 0);
WCGCS = 0;

void wite_byte(unsigned char address, unsigned char

dat a)

{
WCGCS = 1;
putcMvire(WRITE); //write command
put cMnai re(addr ess) ;// address
putcMd re(data);//wite single byte
WCGCS = 0;

}

voi d byte_read(unsigned char address)

{
WCGCS = 1;
get cMn r e(READ, address) ;//read one byte
WCGCS = 0;

}

void read_mul t (unsi gned char address, unsigned char

far *rdptr, unsigned char |ength)

{
WCGCS = 1;
put cMai r e(READ) ; //read comand
put cMai r e(addr ess) ; [l address (A7 - A0)

getsMr re(rdptr, length);//read multiple bytes
WCGCS = 0;

}

voi d ew_enabl e(voi d)

{
WCS = 1;//assert chip select
putcMam re(EVENL) ; //enable write conmand byte 1
putcMum re(EMEN2) ; //enable write conmand byte 2
WCS = 0;//negate chip select

}

voi d erase_all (void)

{
WCGCS = 1;
putcMa re(ERALL); //erase all command byte 1
putcMa re(ERAL2); //erase all command byte 2
WCGCS = 0;

}

DS51112B-page 112

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

ReadMwire

Device:

Function:

Syntax:

Remarks:

Return Value:

PIC17C756

This function is used to read a single byte from a
Microwire device.

#i ncl ude <mni rel6. h>
unsi gned char ReadMnire (unsigned char
hi gh_byte, unsigned char [ow byte);

This function reads in a single byte from a Microwire
device. The start bit, opcode and address compose the
high and low bytes passed into this function.

The return value is the data byte read from the
Microwire device.

Filename: readmwir.c
See also: None.
WriteMwire

Device: PIC17C756

Function: This function is used to write out a single data byte.

Syntax: #i ncl ude <mni rel6. h>
unsi gned char WiteMd re (unsigned char
data_out);

Remarks: This function writes out single data byte to a Microwire

Return Value:

Filename:

See also:

device utilizing the SSP module.

This function returns -1 if there was a write collision else
it returns a 0.

writmwir.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 113

MPLAB-C17 USER’S GUIDE

2.7 Pulse Width Modulation Functions

ClosePWM1
ClosePWM2
ClosePWM3

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

ClosePWM1 - PIC17C4X, PIC17C756
ClosePWM2 - PIC17C4X, PIC17C756
ClosePWM3 - PIC17C756

This function disables the specified PWM channel.

#i ncl ude <pwrl6. h>

void Cl osePWML (void);
void Cl osePWW (void);
void Cl osePWB (void);

This function simply disables the specified PWM
channel by clearing the P\ ON bit in the respective
TCON2 or TCON3

registers.

None.

pwlclose.c
pw2close.c
pw3close.c

None.

OpenPWM1
OpenPWM2
OpenPWM3

Device:

Function:

Syntax:

Remarks:

OpenPWM1 - PIC17C4X, PIC17C756
OpenPWM2 - PIC17C4X, PIC17C756
OpenPWM3 - PIC17C756

Configures the specified PWM channel.

#i ncl ude <pwrl6. h>

voi d OpenPWML (char period);

voi d OpenPWW2 (unsigned char config,
char period);

voi d OpenPWMB (unsigned char config,
char period);

This function configures the specified PWM channel for
period and for time base. PWM1 uses only Timerl.
PWM2 and PWM3 can use either Timerl or Timer2.
Timerl and Timer2 must be set up as individual 8-bit
timers for PWM mode to work correctly.

DS51112B-page 114

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

The value of period can be any value from 0x00 to Oxff.
This value determines the PWM frequency by using the
following formula:

Periodl =[(PR1) +1] x 4 x Tosc
Period2 =[(PR1) +1] x 4 x Tosc

=[(PR2) +1] x 4 x Tosc
Period3 =[(PR1) +1] x 4 x Tosc

=[(PR2) +1] x 4 x Tosc

The value of config can be one of the following values
(defined in capturl6.h):

OpenPWM2

OpenPWM3
T1 SOURCETImerl is clock source
T2_SOURCETImer2 is clock source

In addition to opening the PWM, Timer1 or Timer2 must
also be opened with an OpenTimer1(...) or
OpenTimer2(...) statement before any of the PWMs
will operate.

Return Value: None.

Filename: pwlopen.c
pw2open.c
pw3open.c

See also: Timerl, Timer2.

Code Example:

#i ncl ude <pl7c756. h>
#i ncl ude <pwrl6. h>

#i ncl ude <timersl6. h>
voi d mai n(voi d)

{ . .
int i;
Set DCPWWR(0) ; //set duty cycle
OpenPWWR2(T1_SOURCE, Oxff); [/ open PW2
OQpenTi mer 1(TI MER_| NT_OFF&T1_SOURCE _
| NT&T1 T2 8BIT); /] open timer
for(i=0;i<1024;i++)
{
whi | e(! PI Rlbits. TMRLI F);
PIRlbits. TMRLI F = 0;
Set DCPWWR(i) ; //slowy increnent
duty cycle
}
Cl osePWW2() ; /1 cl ose nodul es
Cl oseTiner1();
return;
}

00 1998 Microchip Technology Inc.

DS51112B-page 115

MPLAB-C17 USER’S GUIDE

SetDCPWM1
SetDCPWM2
SetDCPWM3

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

SetDCPWM1 - PIC17C4X, PIC17C756
SetDCPWM2 - PIC17C4X, PIC17C756
SetDCPWM3 - PIC17C756

Writes a new dutycycle value to the specified PWM
channel dutycycle registers.

#i ncl ude <pwrl6. h>

voi d Set DCPWML (unsigned int dutycycle);
voi d Set DCPWW2 (unsigned int dutycycle);
voi d Set DCPWMB (unsigned int dutycycle);

This function writes the new value for dutycycle to the
specified PWM channel dutycycle registers.

PWM1: PWDCL, PWLDCH
PWM2: PW2DCL, PW2DCH
PWM3: PW\BDCL, PWBDCH

The value of dutycycle can be any 10-bit number. Only
the lower 10-bits of dutycycle are written into the
dutycycle registers.

The dutycycle, or more specifically the high time of the
PWM waveform, can be calculated from the following
formula:

PWMx Dutycycle = (DCx<9:0>) x Tosc

where DCx<9:0> is the 10-bit value from the
PW«DCH: PW«DCL registers.

The maximum resolution of the PWM waveform can be
calculated from the period using the following formula:

Resolution (bits) = log(Fosc/Fpwm) / log(2)
None.

pwlset.c
pw2set.c
pwa3set.c

None.

DS51112B-page 116

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

2.8

Reset Functions

isBOR
Device: PIC17C756
Function: Detects a reset condition due to the Brown-out Reset
circuit.
Syntax: #i ncl ude <reset16. h>
char i sBOR (void);
Remarks: This function detects if the microcontroller was reset

Return Value:

due to the Brown-out Reset circuit. This condition is
indicated by the following status bits:

POR=1
BOR=0
TO=don't care
PD=don't care

Include the statement #defi ne BOR_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2 of
this manual (DS51112A) for information on compilers.
Refer to the MPASM User’s Guide with MPLINK and
MPLIB (DS33014F) for information on linking.

This function returns 1 if the reset was due to the
Brown- out Reset circuit, otherwise 0 is returned.

Filename: resetl6.c
See also: None.
isSMCLR

Device: PIC17C756

Function: Detects if a MCLR reset during normal operation
occurred.

Syntax: #i ncl ude <reset16. h>
char i sMCLR (void);

Remarks: This function detects if the microcontroller was reset via

Return Value:

the MCLR pin while in normal operation. This situation
is indicated by the following status bits:

POR=1

BOR=1 if Brown-out is enabled
TO=1 if WDT is enabled

PD =1

This function returns 1 if the reset was due to MCLR
during normal operation, otherwise 0 is returned.

00 1998 Microchip Technology Inc.

DS51112B-page 117

MPLAB-C17 USER’S GUIDE

Filename:

See also:

resetl6.c

None.

ISPOR

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Detects a Power-on Reset condition.

#i ncl ude <reset 16. h>
char i sPOR (void);

This function detects if the microcontroller just left a
Power-on Reset. This condition is indicated by the
following status bits:

PIC17C4X
TO=1
PD=1
This condition also for MCLR reset during normal
operation and CLRWDT instruction executed
PIC17C756
POR=0
BOR=0
TO=1
PD=1
This function returns 1 if the device just left a Power-on
Reset, otherwise 0 is returned.
resetl6.c

None.

ISWDTTO

Device:

Function:

Syntax:

Remarks:

PIC17C4X, PIC17C756

Detects a reset condition due to the WDT during normal
operation.

#i ncl ude <reset 16. h>
char i sWDTTO (void);

This function detects if the microcontroller was reset
due to the WDT during normal operation. This condition
is indicated by the following status bits:

PIC17C4X
TO=0
PD=1

DS51112B-page 118

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

PIC17C756
POR=1
BOR=1
TO=0
PD=1

Include the statement #defi ne WDT_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2 of
this manual (DS51112) for information on compilers.
Refer to the MPASM User’s Guide with MPLINK and
MPLIB (DS33014F) for information on linking.

Return Value: This function returns 1 if the reset was due to the WDT
during normal operation, otherwise 0 is returned.

Filename: resetl6.c
See also: None.
ISWDTWU

Device: PIC17C4X, PIC17C756

Function: Detects when the WDT wakes up the device from
SLEEP.

Syntax: #i ncl ude <reset 16. h>
char i sWDTWUJ (voi d);

Remarks: This function detects if the microcontroller was brought

out of SLEEP by the WDT. This condition is indicated by
the following status bits:

PIC17C4X
TO=0
PD=0

PIC17C756
POR=1
BOR=1
TO=0
PD=0

Include the statement #defi ne WDT_ENABLED in the
header file reset16.h. After the definitions have been
made, compile the reset16.c file. Refer to Chapter 2 of
this manual (DS51112B) for information on compilers.
Refer to the MPASM User’s Guide with MPLINK and
MPLIB (DS33014F) for information on linking.

Return Value: This function returns 1 if device was brought out of
SLEEP by the WDT, otherwise 0 is returned.

Filename: resetl6.c

00 1998 Microchip Technology Inc. DS51112B-page 119

MPLAB-C17 USER’S GUIDE

See also: None.
swWu

Device: PIC17C4X, PIC17C756

Function: Detects if the microcontroller was just waken up from
SLEEP via the MCLR pin or interrupt.

Syntax: #i ncl ude <reset16. h>
char isWJ (void);

Remarks: This function detects if the microcontroller was brought

Return Value:

out of SLEEP by the MCLR pin or an interrupt. This
condition is indicated by the following status bits:

PIC17C4X
TO=1
PD=0

PIC17C756
POR=1
BOR=1
TO=1
PD=0
This function returns 1 if the device was brought out of

SLEEP by the MCLR pin or an interrupt, otherwise 0 is
returned.

Filename: resetl6.c
See also: None.
StatusReset
Device: PIC17C756
Function: Sets the POR and BOR bits in the CPUSTA register.
Syntax: #i ncl ude <reset16. h>
voi d StatusReset (void);
Remarks: This function sets the POR and BOR bits in the CPUSTA

Return Value:

Filename:

See also:

register. These bits must be set in software after a
Power-on Reset has occurred.

None.
resetl6.c

None.

DS51112B-page 120

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

2.9 i SPI™ Functions

CloseSPI
Device: PIC17C756
Function: Disables the SSP module.
Syntax: #include <spil6.h>
void CloseSPI (void);
Remarks: This function disables the SSP module. Pin I/O returns

under the control of the DDRx and PORTx Registers.

Return Value:

Return Value: None.
Filename: closespi.c
See also: None.
DataRdySPI
Device: PIC17C756
Function: Determines if the SSPBUF contains data.
Syntax: #i ncl ude <spi 16. h>
unsi gned char DataRdySPlI (void);
Remarks: This function determines if there is a byte to be read

from the SSPBUF register.

This function returns 1 if there is data in the SSPBUF
register else returns a 0.

Filename: dtrdyspi.c

See also: None.
getsSPI

Device: PIC17C756

Function:Reads in data string from the SPI bus.

Syntax: #i ncl ude <spi 16. h>
voi d getsSPl (unsigned char far *rdptr,
unsi gned char [ength);

Remarks: This function reads in a predetermined data string

length from the SPI bus. The length of the data string to
read in is passed as a function parameter. Each byte is
retrieved via a call to the getcSPI function. The actual
called function body is termed Read SPI. ReadSPI and
getcSPI refer to the same function via a #def i ne
statement in the spil6.h file.

00 1998 Microchip Technology Inc. DS51112B-page 121

MPLAB-C17 USER’S GUIDE

Return Value: None.

Filename: getsspi.c

See also: ReadSPI

OpenSPI

Device: PIC17C756

Function: Initializes the SSP module.

Syntax: #i ncl ude <spi 16. h>
voi d OpenSPl (unsigned char sync_nopde,
unsi gned
char bus_npde, unsigned char snp_phase);

Remarks: This function setups the SSP module for use with a SPI

Return Value:

Filename:

See also:

bus device.
None.
openspi.c
None.

The value of sync_mode, bus_mode and smp_phase
parameters can be one of the following values defined
in spil6.h:

sync_mode:

FOSC_4 SPI Master mode, clock = Fosc/4

FOSC_16 SPI Master mode, clock = Fosc/16

FOSC_64 SPI Master mode, clock = Fosc/64

FOSC_TMR2 SPI Master mode, clock = TMR2
output/2

SLV_SSON SPI Slave mode, /SS pin control
enabled

SLV_SSOFF SPI Slave mode, /SS pin control
disabled

bus_mode:

MODE_00 Setting for SPI bus Mode 0,0

MODE_01 Setting for SPI bus Mode 0,1

MODE_10 Setting for SPI bus Mode 1,0

MODE_11 Setting for SPI bus Mode 1,1

smp_phase:

SMPEND Input data sample at end of data
out

SMPMID Input data sample at

middle of data out

DS51112B-page 122

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

CODE EXAMPLE:

The following are simple code examples illustrating the SSP module
communicating with a Microchip 24C080 SPI EE Memory Device. In all the
examples provided no error checking utilizing the value returned from a
function is implemented.

#i ncl ude <pl7c756. h>
#i ncl ude <spi 16. h>
/' FUNCTI ON PROTOTYPES
voi d mai n(voi d);
void set_wren(void);
voi d busy_pol ling(void);
unsi gned char status_read(void);
void status_write(unsigned char data);
void byte write(unsigned char addhi gh, unsigned char
addl ow, unsigned char data);
voi d page_wite(unsigned char addhi gh, unsigned char
addl ow, unsigned char far *wptr);
voi d array_read(unsi gned char addhi gh, unsigned char
addl ow, unsigned char far *rdptr,
unsi gned char count);
unsi gned char byte_read
(unsi gned char addhi gh,
unsi gned char addl ow);
unsi gned char arrayw|[] = {1,2,3,4,5,6,7,8,9,10,11
12, 13, 14, 15, 16, 0};
/124C040/ 080/ 160 page wite size
unsi gned char far *wptr = arrayw;
unsi gned char arrayrd[32];
unsi gned char far *rdptr = arrayrd;
unsi gned char var;
#define SPI _CS PORTAbits. RA2
//**
#pragma code _mai n=0x100
voi d nmai n(voi d)
{
SPI _Cs = 1; /lensure SPI nmenory device Chip
Sel ect is reset
OpenSPI (FOSC_16, MODE_00, SMPEND) ;
set_wren();
status_wite(0);
busy_pol I'i ng();
set_wren();
byte write(0x00, 0x61, 'E);
busy_pol I'i ng();
var = byte_ read(0x00, 0x61);
set_wren();
page_write(0x00, 0x30, wrptr);
busy_pol I'i ng();

00 1998 Microchip Technology Inc.

DS51112B-page 123

MPLAB-C17 USER’S GUIDE

array_read(0x00, 0x30,
var = status_read();
Cl oseSPI () ;
while(l);

}

void set_wren(void)

{
SPI _CS = 0;
var = putcSPI (VREN) ;
SPI _CS = 1;

}

voi d page_write (unsigned char addhigh,

rdptr,

16);

/lassert chip sel ect
//send wite enabl e conmand
/I negate chip sel ect

unsi gned char

addl ow, unsigned char far *wptr)

{
SPI _CS = 0;
var = putcSPI (WRI TE)
var = putcSPI (addhi gh);
var = putcSPI (addl ow);

put sSPI (wrptr);
SPI _CS = 1;
}

void array_read (unsigned char addhi gh,

/lassert chip sel ect

//send wite comrand

/'l send high byte of address
/1send | ow byte of address
//send data byte

/I negate chip sel ect

unsi gned char

addl ow, unsi gned char far
*rdptr, nsi gned char count)

{
SPI _CS = 0;
var = putcSPI (READ);
var = putcSPI (addhi gh);

var = putcSPI (addl ow);
get sSPI (rdptr,
SPI _CS = 1;

}

count);

void byte wite (unsigned char addhi gh,

/lassert chip sel ect

//send read conmand

[/ send high byte of address
//send | ow byte of address
/[lread multiple bytes

unsi gned char

addl ow, unsigned char data)

{
SPI _CS = 0;
var = putcSPI (WRI TE)
var = putcSPI (addhi gh);
var = putcSPI (addl ow);
var = putcSPI (data)
SPI _CS = 1;

}

unsi gned char

{
SPI _CS = 0;
var = putcSPI (READ);
var = putcSPI (addhi gh);

/lassert chip sel ect

//send wite command

//send high byte of address
//send | ow byte of address
//send data byte

/I negate chip sel ect

byte read (unsigned char addhi gh,
unsi gned
char addl ow)

/lassert chip sel ect
/lsend read conmand
//send high byte of address

DS51112B-page 124

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

var = putcSPI (addlow); //send |ow byte of address
var = getcSPI(); /lread single byte
SPI _CS = 1;
return (var);
}
unsi gned char status_read (void)
{
SPI_CS = 0; /lassert chip sel ect
var = putcSPI (RDSR); //send read status command
var = getcSPI(); /lread data byte
SPI_Cs = 1, /I negate chip sel ect
return (var);
}
void status_wite (unsigned char data)
{
SPI _CS = 0;
var = putcSPI (WRSR); /[Iwite status command
var = putcSPI (data); /lstatus byte to wite
SPI_Cs = 1; /I negate chip sel ect
}
voi d busy_pol l'ing (void)
{
do
{
SPI_CS = 0; /lassert chip sel ect
var = putcSPI (RDSR); //send read status conmand
var = fetcSPI (); /lread data byte
SPI_Cs = 1, /I negate chip sel ect
}while (var & 0x01); [lstay in loop until
not busy
}
putsSPI
Device: PIC17C756
Function: Writes data string out to the SPI bus.
Syntax: #i ncl ude <spi 16. h>
void putsSPl (unsigned char far *wptr);
Remarks: This function writes out a data string to the SPI bus

device. The routine is terminated by reading a null
character in the data string.

Return Value: None.
Filename: putsspi.c

See also: None.

00 1998 Microchip Technology Inc.

DS51112B-page 125

MPLAB-C17 USER’S GUIDE

ReadSPI
Device: PIC17C756
Function: Reads a single byte from the SSPBUF register.
Syntax: #i ncl ude <spi 16. h>
unsi gned char ReadSPl (void);
Remarks: This function initiates a SPI bus cycle for the acquisition

Return Value:

of a byte of data. ReadSPI and getcSPI refer to the
same function via a #def i ne statement in the spil6.h
file.

This function returns a byte of data read during a SPI
read cycle.

Filename: readspi.c
See also: None.
WriteSPI

Device: PIC17C756

Function: Writes a single byte of data out to the SPI bus.

Syntax: #i ncl ude <spi 16. h>
unsi gned char WiteSPl (unsigned char
data_out);

Remarks: This function writes a single data byte out and then

Return Value:

Filename:

See also:

checks for a write collision. WriteSPI and putcSPI refer
to the same function via a #def i ne statement in the
spil6.h file.

This function returns -1 if a write collision occurred else
a 0 if no write collision.

writespi.c

None.

DS51112B-page 126

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

2.10 Timer Functions

CloseTimer0
CloseTimerl
CloseTimer?2
CloseTimer3

Device:
Function:

Syntax:

PIC17C4X, PIC17C756
This function disables the specified timer.

#i ncl ude <tinersl6. h>

void CloseTimer0 (void);
void CloseTimerl (void);
void CloseTimer2 (void);
void Cl oseTimer3 (void);

Remarks: This function simply disables the interrupt and the
specified timer.

Return Value: None.

Filename: tOclose.c
tlclose.c
t2close.c
t3close.c
See also: None.
OpenTimer0
OpenTimerl
Opentimer2
OpenTimer3
Device: PIC17C4X, PIC17C756
Function: Configures the specified timer.
Syntax: #i ncl ude <tinersl6. h>

voi d OpenTi ner0 (unsigned char config);
voi d OpenTinerl (unsigned char config);
voi d OpenTiner2 (unsigned char config);
voi d OpenTi ner3 (unsigned char config);

Remarks: This function configures the specified timer for
interrupts, internal/external clock source, prescaler, etc.

Timer0 -> 16-bit
Timerl -> 8-bit
Timer2 -> 8-bit
Timer3 -> 16-bit

00 1998 Microchip Technology Inc. DS51112B-page 127

MPLAB-C17 USER’S GUIDE

Return Value:

Filename:

See also:

Timer0 has a programmable prescaler from 1:1 to
1:256. Timerl and Timer2 can be concatenated to be a
16-bit timer.

The value of config can be a combination of the
following values (defined in timers16.h):

All OpenTimer functions
TIMER_INT_ON Interrupts ON
TIMER_INT_OFF Interrupts OFF

OpenTimer0
TO_EDGE_FALL External clock on falling edge
TO_EDGE_RISE External clock on rising edge

TO_SOURCE_EXT External clock source (/O pin)
TO_SOURCE_INT Internal clock source (Tosc)

TOPS 11 Prescale -> 1.1
TO_PS 1 2 1:2
TO_PS_ 1 4 1:4
TO_PS_1 8 1:8
TO_PS_1 16 1:16
TO_PS_1 32 1:32
TO_PS_1 64 1:64
TO_PS_1 128 1:128
TO_PS_1 256 1:256

OpenTimerl
T1_SOURCE_EXT External clock source (I/O pin)
T1 SOURCE_INT Internal clock source (Tosc)

T1 T2 8BIT Timerl and Timer2 individual
8-bit timers
T1 T2-16BIT Timerl and Timer2 one 16-bit
timer
OpenTimer2

T2_SOURCE_EXT External clock source (/O pin)
T2_SOURCE_INT Internal clock source (Tosc)

OpenTimer3
T3_SOURCE_EXT External clock source (/O pin)
T3_SOURCE_INT Internal clock source (Tosc)

None.

tOopen.c
tlopen.c
t2open.c
3open.c

None.

DS51112B-page 128

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

CODE EXAMPLE:

#i ncl ude <pl7c756. h>
#i ncl ude <tinmersi16. h>
#i ncl ude <usart16. h>
void main (void)
{

int result;

char str[7];

/'l configure tinmer0

OpenTi mer O(TI MER_| NT_COFF&TO_SOURCE_NT&TO_PS 1_32);
/'l configure USART
OpenUSART1(USART_TX_| NT_OFF&USART_RX_
| NT_OFF&USART _ASYNCH_MODE&
USART_EI GHT_BI T&USART_CONT_RX)
whi | e(1)
{
whil e(! PORTBbits. RB3);//wait for RB3 high
result = ReadTinerO();//read tinmer
i f(result>0xc000)
br eak;
WiteTinmer0(0);//wite new val ue
uitoa(result,str);//convert to string
put sUSART1(str);//print string
}
Cl oseTinmer0();//close nodul es
Cl 0seUSART1();
return;

}

ReadTimer0
ReadTimer1l
ReadTimer2
ReadTimer3
ReadTimerl 2

Device: PIC17C4X, PIC17C756
Function: Reads the contents of the specified timer register(s).

Syntax: #i ncl ude <tinersl6. h>
unsi gned int ReadTinmer0 (void);
unsi gned char ReadTimerl (void);
unsi gned char ReadTimer2 (void);
unsi gned int ReadTinmer3 (void);
unsi gned int ReadTinmerl_2 (void);

00 1998 Microchip Technology Inc.

DS51112B-page 129

MPLAB-C17 USER’S GUIDE

Remarks: This function reads the value of the respective timer
register(s).
TimerO: TMROL, TMROH
Timerl: TMR1
Timer2: TVR2
Timer3: TMR3L, TMR3H

Timerl 2. TMR2: TMRL

Return Value: These functions returns the value of the timer
register(s) which may be 8-bits or 16-bits.

TimerO: int (16-bits)
Timer1: char (8-bits)
Timer2: char (8-bits)
Timer3: int (16-bits)
Timerl_2: int (16-bits)
Filename: tOread.c
tlread.c
t2read.c
t3read.c
See also: None.
WriteTimerO
WriteTimerl
WriteTimer2
WriteTimer3
WriteTimerl 2
Device: PIC17C4X, PIC17C756
Function: Reads the contents of the specified timer register(s).
Syntax: #i ncl ude <tinersl6. h>

void WiteTimer0 (unsigned int tiner);
void WiteTimerl (unsigned char tiner);
void WiteTimer2 (unsigned char tiner);
void WiteTimer3 (unsigned int tiner);
void WiteTimerl_2 (unsigned int tiner);

Remarks: This function writes the value timer to the respective
timer register(s).
TimerO: TMROL, TMROH
Timerl: TMR1
Timer2: TVR2
Timer3: TMR3L, TMR3H

Timerl_2: TMR2: TMRL

These functions write a value to the timer register(s)
which may be 8-bits or 16-bits.
TimerO: int (16-bits)

DS51112B-page 130 00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Timer1: char (8-bits)
Timer2: char (8-bits)
Timer3: int (16-bits)

Timerl_2: int (16-bits)

Return Value: None.

Filename: tOwrite.c
tlwrite.c
t2write.c
t3write.c

See also: None.

00 1998 Microchip Technology Inc. DS51112B-page 131

MPLAB-C17 USER’S GUIDE

2.11 USART Functions

Return Value:

BusyUSART1
BusyUSART?2
Device: BusyUSART1: PIC17C4X, PIC17C756
BusyUSART2: PIC17C756
Function: Returns the status of the TRMT flag bit in the TXSTA?
register.
Syntax: #i ncl ude <usart 16. h>
char BusyUSART1 (void);
Char BusyUSART2 (void);
Remarks: This function returns the status of the TRMT flag bit in

the TXSTA? register.

If the USART transmitter is busy, a value of 1 is
returned. If the USART receiver is idle, then a value of 0
is returned.

Return Value:

Filename:

See also:

Filename: ulbusy.c
u2busy.c
See also: None.
CloseUSART1
CloseUSART2
Device: CloseUSART1: PIC17C4X, PIC17C756
CloseUSART2: PIC17C756
Function: Disables the specified USART.
Syntax: #i ncl ude <usart 16. h>
voi d Cl 0seUSART1 (void);
voi d Cl 0seUSART2 (void);
Remarks: This function disables the specified USARTSs interrupts,

transmitter, and receiver.
None.

ulclose.c
u2close.c

None.

DS51112B-page 132

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

DataRdyUSART1
DataRdyUSART?2

Device:

Function:

Syntax:

Remarks:

Return Value:

DataRdyUSART1: PIC17C4X, PIC17C756
DataRdyUSART2: PIC17C756

Returns the status of the RCl F flag bit in the PI R
register.

#i ncl ude <usart16. h>
char Dat aRdyUSART1 (voi d);
char Dat aRdyUSART2 (voi d);

This function returns the status of the RCl F flag bit in
the PI R
register.

If data is available, a value of 1 is returned. If data is not
available, then a value of O is returned.

Return Value:

Filename:

See also:

Filename: uldrdy.c
u2drdy.c
See also: None.
getcUSARTL1
getcUSART?2
Device: getcUSART1: PIC17C4X, PIC17C756
getcUSART?2: PIC17C756
Function: Reads one character from the specified USART.
Syntax: #i ncl ude <usart 16. h>
char get cUSART1 (void);
char get cUSART2 (void);
Remarks: This function performs the same function as

ReadUSARTX. Please refer to the description of that
function.

The next received character from the specified USART.
#define in usart16.h
ReadUSART1, ReadUSART2.

00 1998 Microchip Technology Inc.

DS51112B-page 133

MPLAB-C17 USER’S GUIDE

getsUSARTL1
getsUSART?2

Device:

Function:

Syntax:

Remarks:

getsUSARTL: PIC17C4X, PIC17C756
getsUSART?2: PIC17C756

Reads a string of characters until the specified number
of characters have been read.

#i ncl ude <usart 16. h>

voi d get sUSART1 (char *buffer, unsigned
char len);

voi d get sSUSART2 (char *buffer, unsigned
char len);

This function waits for and reads /en number of
characters out of the specified USART. There is no
timeout when waiting for characters to arrive. After len
characters have been written to the string, a null
character is appended to the end of the string.

The value of buffer is a pointer to the string where
incoming characters are to be stored. The length of this
string should be at least len + 1.

The value of len is limited to the available amount of
RAM locations remaining in any one bank - 1. There
must be one extra location to store the null character.

Return Value: None.
Filename: ulgets.c
u2gets.c
See also: None.
OpenUSART1
OpenUSART2
Device: OpenUSART1: PIC17C4X, PIC17C756
OpenUSARTZ2: PIC17C756
Function: Configures the specified USART module.
Syntax: #i ncl ude <usart 16. h>

voi d OpenUSART1 (unsigned char config,
char spbrg);

voi d OpenUSART2 (unsigned char config,
char spbrg);

DS51112B-page 134

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Remarks:

Return Value:

Filename:

See also:

Code Example:

This function configures the USART module for
interrupts, baud rate, sync or async operation, 8- or 9-
bit mode, master or slave mode, and single or
continuous reception.

The value of config can be a combination of the
following values (defined in usart16.h):

USART_TX_ INT_ON Transmit interrupt ON
USART_TX_INT_OFF Transmit interrupt OFF
USART_RX_INT_ON Receive interrupt ON
USART_RX_INT_OFF Receive interrupt OFF

USART_ASYNCH_MODE Asynchronous Mode
USART_SYNCH_MODE Synchronous Mode

USART_EIGHT_BIT 8-bit transmit/receive
USART_NINE_BIT 9-bit transmit/receive

USART_SYNC_SLAVE Synchronous slave mode
USART_SYNC_MASTER Synchronous master mode

USART_SINGLE_RX Single reception
USART_CONT_RX Continuous reception

The value of spbrg determines the baud rate of the
USART. The formulas for baud rate are:

asynchronous mode: FOSC/(64 (spbrg + 1))
synchronous mode: FOSC/(4 (spbrg + 1))

None.

ulopen.c
u2open.c

None.

#i ncl ude <pl7c756. h>
#i ncl ude <usart 16. h>
voi d mai n(voi d)

/'l configure USART
OpenUSART1(USART_TX_I NT_OFF&USART_RX_

| NT_OFF&USART _ASYNCH_MODE&
USART_El GHT_BI T&USART _
CONT_RX) ;

whi | e(! PORTAbI t s. RAO) [Iwait for RAO high
Wit eUSART1(PORTD) ; [Iwite val ue of PORTD
i f (PORTD == 0x80)

{
whi | e(1)
{
br eak;
}

00 1998 Microchip Technology Inc.

DS51112B-page 135

MPLAB-C17 USER’S GUIDE

Cl 0seUSART1();

return;
}
putcUSART1
putcUSART?2

Device: putcUSART1: PIC17C4X, PIC17C756
putcUSART?2: PIC17C756

Function: Writes one character to the specified USART.

Syntax: #i ncl ude <usart 16. h>
voi d put cUSART1 (char data);
voi d put cUSART2 (char data);

Remarks: This function performs the same function as
WriteUSARTX. Please refer to the description of that
function.

Return Value: None.

Filename: #define in usart16.h

See also: WriteUSART1, WriteUSART2.

putsUSARTL1
putsUSART?2

Device: PutsUSARTL: PIC17C4X, PIC17C756
putsUSART2: PIC17C756

Function: Writes a string of characters to the USART including the
null character.

Syntax: #i ncl ude <usart 16. h>
voi d put sUSART1 (char *data);
voi d put sUSART2 (char *data);

Remarks: This function writes a string of data to the USART

including the null character.

The value of data is a pointer to a string in contiguous
RAM locations within the same bank.

Return Value: None.

Filename: ulputs.c
u2puts.c

See also: None.

DS51112B-page 136 00 1998 Microchip Technology Inc.

Chapter 8. Libraries

ReadUSART1

ReadUSART?2
Device:
Functio
Syntax:
Remarks:

H

Return Value:

Filename:

See also:

ReadUSARTL: PIC17C4X, PIC17C756
ReadUSART2: PIC17C756

Reads a byte out of the USART receive buffer, including
the 9th bit if enabled.

#i ncl ude <usart16. h>
char ReadUSART1 (void);
char ReadUSART2 (void);

This function reads a byte out of the USART receive
buffer. The 9th bit is recorded as well as the status bits.
The status bits and the 9th data bits are saved in a
union named USART_St at us with the following
declaration:

uni on USART

{

unsi gned char val;

struct

{
unsi gned RX1_NI NE: 1;
unsi gned TX1_NI NE: 1;
unsi gnhed FRAME_ERRORL: 1;
unsi gned OVERRUN_ERROR1: 1;
unsi gned RX2_NI NE: 1;
unsi gned TX2_NI NE: 1;
unsi gnhed FRAME_ERROR2: 1;
unsi gned OVERRUN_ERROR2: 1;

The 9th bit is recorded only if 9-bit mode is enabled.
The status bits are always recorded.

This function returns the next character in the USART's
receive buffer.

ulread.c
u2read.c

getcUSARTL, getcUSART2.

00 1998 Microchip Technology Inc.

DS51112B-page 137

MPLAB-C17 USER’S GUIDE

WriteUSART1
WriteUSART2

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

WriteUSARTL: PIC17C4X, PIC17C756
WriteUSART2: PIC17C756

Writes a byte to the USART transmit buffer, including
the 9th bit if enabled.

#i ncl ude <usart16. h>
void WiteUSART1 (char data);
void WiteUSART2 (char data);

This function writes a byte to the USART transmit
buffer. The
9th bit is written as well. The 9th data bits are saved in a
union named USART_St at us with the following
declaration:
uni on USART

{

unsi gned char val;

struct

{

unsi gned RX1_NI NE: 1;

unsi gned TX1_NI NE: 1;

unsi gned FRAME_ERRORL: 1;

unsi gned OVERRUN_ERROR1: 1;

unsi gned RX2_NI NE: 1;

unsi gned TX2_NI NE: 1;

unsi gned FRAMVE_ERROR2: 1;

unsi gned OVERRUN_ERROR2: 1;

b

1
The 9th bit is used only if 9-bit mode is enabled.
The value of data can be any number from 0x00 to 0xff.
None.

ulwrite.c
u2write.c

putcUSART1, putcUSART2.

DS51112B-page 138

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

3.0 Software Peripheral Library

3.1 External LCD Functions

BusyXLCD

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756

Returns the status of the busy flag of the Hitachi
HD44780 LCD controller.

#i ncl ude <xl cd. h>
unsi gned char BusyXLCD (void);

This function returns the status of the busy flag of the
Hitachi HD44780 LCD controller.

This function returns 0 if the LCD controller is not busy,
otherwise 1 is returned.

xlcd.c

None.

OpenXLCD

Device:

Function:

Syntax:

Remarks:

PIC17C4X, PIC17C756

Configures the 1/0O pins and initializes the Hitachi
HD44780 LCD controller.

#i ncl ude <xl cd. h>
voi d OpenXLCD (unsigned char [cdtype);

This function configures the I/O pins used to control the
Hitachi HD44780 LCD controller. It also initializes this
controller.

The 1/O pin definitions that must be made to ensure that
the external LCD operates correctly are:

Control I/O pin definitions

RW PI N PORTxbi t s. RX?
TRI S_RW DDRxbi t s. Rx?
RS_PIN PORTxbi t s. Rx?
TRI S_RS DDRxbi t s. Rx?
E_PIN PORTxbi t s. Rx?
TRIS E DDRxbi t s. Rx?

x is the PORT, ? is the pin nunber

Data Port definitions
DATA PORT PORTx
TRI S_DATA PORTDDRX

00 1998 Microchip Technology Inc.

DS51112B-page 139

MPLAB-C17 USER’S GUIDE

The control pins can be on any port and are not
required to be on the same port. The data interface
must be defined as either 4-bit or 8-bit. The 8-bit
interface is defined when a #def i ne BI T8 is included
in the header file xlcd.h. If no define is included, then
the 4-bit interface is included. When in 8-bit data
interface mode, all 8 pins must be on the same port.
When in 4-bit data interface mode, the 4 pins must be
either the high or low nibble of a single port. When in 4-
bit interface mode, the high nibble is specified by
including #def i ne UPPERIn the header file xlcd.h.
Otherwise, the lower nibble is specified by commenting
this line out.

After these definitions have been made, the user must
compile xlcd.c into an object to be linked.

Please refer to Chapter 2 of this manual (DS51112A)
for information on compilers. Please refer to the
MPASM User’s Guide with MPLINK and MPLIB
(DS33014F) for information on linking.

The value of /cdtype can be one of the following values
(defined in xlcd.h):

Function Set defines

FOUR_BIT 4-bit data interface mode

EIGHT_BIT 8-bit data interface mode

LINE_5X7 5x7 characters, single line
display

LINE_5X10 5x10 characters display

LINES_5X7 5x7 characters, multiple line
display

This function also requires three external routines to be
provided by the user for specific delays:

DelayForl18TCY() 18 Tcy delay
DelayPORXLCD() 15ms delay
DelayXLCD() 5ms delay

Return Value: None.

Filename: xled.c

See also: None.

Code Example:
#i ncl ude <pl7c756. h>
#i ncl ude <xl cd. h>
#i ncl ude <del ays. h>
#i ncl ude <usart 16. h>

DS51112B-page 140 00 1998 Microchip Technology Inc.

Chapter 8. Libraries

voi d Del ayFor 18TCY(voi d)

{
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
Nop;
return;
}
voi d Del ayPORXLCD(voi d)
{
Del ay1KTCYx(60) ; /] Del ay of 15ms
return;
}
voi d Del ayXLCD(voi d)
{
Del ay1KTCYx(20) ; /1 Del ay of 5ns
return;
}
voi d mai n(voi d)
{
char dat a;
/1 configure external LCD
OpenXLCD(El GHT_BI T&LI NES_5X7) ;
/1 configure USART
OpenUSART1(USART_TX_| NT_OFF&
USART_RX_| NT_OFF&
USART _ASYNCH MODE&USART _
El GHT_BI T&USART _CONT_RX) ;
whi | e(1)
{
whi | e(! Dat aRdyUSART1()); //wait for data
data = ReadUSARTL1(); //read data
Wit eDat aXLCD(dat a) ; /[/wite to LCD
i f(data=="Q)
br eak;
}
Cl oseADC() ; /'l cl ose nodul es
Cl 0seUSART1();
return;

00 1998 Microchip Technology Inc.

DS51112B-page 141

MPLAB-C17 USER’S GUIDE

putcXLCD
Device: PIC17C4X, PIC17C756
Function: Writes one byte of data to the Hitachi HD44780 LCD
controller.
Syntax: #i ncl ude <xl cd. h>
voi d putcXLCD (char data);
Remarks: This function performs the same function as

Return Value:

WriteDataXLCD. Please refer to the description of that
function.

None.

Filename: #define in xlcd.h
See also: None.
putsXLCD

Device: PIC17C4X, PIC17C756

Function: Writes a string of characters to the Hitachi HC44780
LCD controller.

Syntax: #i ncl ude <xl cd. h>
voi d putsXLCD (char *buffer);

Remarks: This functions writes a string of characters located in

buffer to the Hitachi HD44780 LCD controller. It stops
transmission after the character before the null
character, i.e. the null character is not sent.

Return Value: None.

Filename: xled.c

See also: None.

ReadAddrXLCD

Device: PIC17C4X, PIC17C756

Function: Reads the address byte from the Hitachi HD44780 LCD
controller.

Syntax: #i ncl ude <xl cd. h>
unsi gned char ReadAddr XLCD (voi d);

Remarks: This function reads the address byte from the Hitachi

HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the
BusyXLCD() function.

DS51112B-page 142

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

The address read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was
called.

Return Value:This function returns an 8-bit which is the
7-bit address in the lower 7-bits of the byte and the
BUSY status flag in the 8th bit.

Bit7 Bit0

| BF | A6 [As [A4 | A3 | A2 | A1 | Ao |

Filename: xled.c
See also: SetCGRamAddr, SetDDRamAddr.
ReadDataXLCD

Device: PIC17C4X, PIC17C756

Function: Reads a data byte from the Hitachi HD44780 LCD
controller.

Syntax: #i ncl ude <xl cd. h>
char ReadDat aXLCD (voi d);

Remarks: This function reads a data byte from the Hitachi

Return Value:
Filename:

See also:

HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the
BusyXLCD() function.

The data read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was called.

This function returns the 8-bit data value.
xlcd.c
SetCGRamAddr, SetDDRamAddr.

00 1998 Microchip Technology Inc.

DS51112B-page 143

MPLAB-C17 USER’S GUIDE

3.1.1 SetCGRamAddr

Device:
Function:

Syntax:

Remarks:

PIC17C4X, PIC17C756
Sets the character generator address.

#i ncl ude <uart 16. h>
voi d Set CGRamAddr (unsi gned char CGaddr);

This function sets the character generator address of
the Hitachi HD44780 LCD controller. The user must first
check to see if the controller is busy by calling the
BusyXLCD() function.

Return Value: None.
Filename: xled.c
See also: None.
SetDDRamAddr
Device: PIC17C4X, PIC17C756
Function: Sets the display data address.
Syntax: #i ncl ude <uart 16. h>
voi d Set DDRamAddr (unsi gned char DDaddr);
Remarks: This function sets the display data address of the

Return Value:
Filename:

See also:

Hitachi HD44780 LCD controller. The user must first
check to see if the controller is busy by calling the
BusyXLCD() function.

None.
xlcd.c

None.

WriteCmdXLCD

Device:

Function:

Syntax:

Remarks:

PIC17C4X, PIC17C756

Writes a command to the Hitachi HD44780 LCD
controller.

#i ncl ude <xl cd. h>
void WiteCndXLCD (unsigned char cnd);

This function writes the command byte to the Hitachi
HD44780 LCD controller. The user must first check to
see if the LCD controller is busy by calling the
BusyXLCD() function.

The value of ecmd can be one of the following values
(defined in xlcd.h):

DS51112B-page 144

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Return Value:
Filename:

See also:

Function Set defines

FOUR_BIT 4-bit data interface mode

EIGHT_BIT 8-bit data interface mode

LINE_5X7 5x7 characters, single line
display

LINE_5X10 5x10 characters display

LINES_5X7 5x7 characters, multiple line
display

Display ON/OFF control defines
DON Display on
DOFF Display off

CURSOR_ON Cursor on
CURSOR_OFF Cursor off
BLINK_ON Blinking cursor on
BLINK_OFF Blinking cursor off

Cursor or Display shift defines

SHIFT_CUR_LEFT Cursor shifts to the left
SHIFT_CUR_RIGHT Cursor shifts to the right
SHIFT_DISP_LEFT Display shifts to the left
SHIFT_DISP_RIGHT Display shifts to the right

The above defines can not be mixed. The only
commands that can be issued are function set, display
control, and cursor/display shift control.

None.
xlcd.c

None.

WriteDataXLCD

Device:

Function:

Syntax:

Remarks:

PIC17C4X, PIC17C756

Writes a data byte from the Hitachi HD44780 LCD
controller.

#i ncl ude <xl cd. h>
void WiteDataXLCD (char data);

This function writes a data byte to the Hitachi HD44780
LCD controller. The user must first check to see if the
LCD controller is busy by calling the BusyXLCD()
function.

The data read from the controller is for the character
generator RAM or the display data RAM depending on
the previous Set??RamAddr() function that was
called.

00 1998 Microchip Technology Inc.

DS51112B-page 145

MPLAB-C17 USER’S GUIDE

The value of data can be any 8-bit value, but should
correspond to the character RAM table of the HD44780
LCD controller.

Return Value: None.
Filename: xlcd.c

See also: SetCGRamAddr, SetDDRamAddr.

DS51112B-page 146 00 1998 Microchip Technology Inc.

Chapter 8. Libraries

3.2 Software I°C Functions

Clock_test

Device:
Function:

Syntax:

Remarks:

PIC17CXXX
Generates delay for slave clock stretching.

#i ncl ude <swi 2c16. h>
void Clock test (void);

This function is called to allow for slave clock stretching.
The delay time may need to be adjusted per application
requirements. If at the end of the delay period the clock
line is low, a bit field in the global structure
BUS_STATUS (BUS_STATUS. cl k) is set to 1. If the
clock line is high at the end of the delay, this bit field is
ao.

far ram union i2cbus_state

{
struct
{
unsi gned busy:1; bus state is busy
unsigned clk :1; clock timeout or
failure
unsi gned ack :1; acknow edge error
or not ACK
unsi gned :5; bit padding
b
unsi gned char dummy; dumy vari abl e
} BUS_STATUS; ef i ne union/struct
Return Value: None.
Filename: swckti2c.c
See also: None.
SWACckI2C
Device: PIC17CXXX
Function: Generates 1°C bus acknowledge condition.
Syntax: #i ncl ude <swi 2c16. h>
voi d SWAckl 2C (voi d);
Remarks: This function is called to generate an 1°C bus

acknowledge sequence. A bit field in the global
structure BUS_STATUS (BUS_STATUS. ack) is setto 1
if the slave device did not ack. This error condition
could also indicate a bus error on the SDA line. If no
error occurred this bit field is a 0.

00 1998 Microchip Technology Inc.

DS51112B-page 147

MPLAB-C17 USER’S GUIDE

far ramunion i2cbus_state
{
struct
{
unsi gned busy :1; bus state is busy
unsigned clk :1; clock timeout or
failure
unsi gned ack :1; acknow edge error or
not ACK
unsi gned :5; bit padding
I

unsi gned char dummy; dumrmy vari abl e

} BUS_STATUS;

define uni on/struct

Return Value: None.

Filename: swacki2c.c

See also: None.

SWGetsI2C

Device: PIC17CXXX

Function: Reads in data string via software 1’c implementation.

Syntax: #include <swi2c16.h>
unsigned char SWGetsI2C (unsigned char far *rdptr,
unsigned char length);

Remarks: This function reads in a predetermined data string

Return Value:

length. Each byte is retrieved via a call to the
SWGetcl2C function. SWGetcl2C and SWReadl2C
refer to the same function via a #def i ne statement in
the swi2c16.h file.

This function returns -1 if all bytes have been received
and the master generated a not ack bus condition.

Filename: swgtsi2c.c
See also: None.
SWPutsI2C
Device: PIC17CXXX
Function: Writes out data string via software 1°C implementation.
Syntax: #i ncl ude <swi 2c16. h>

unsi gned char
far *wrdptr);

SWPut sl 2C (unsi gned char

DS51112B-page 148

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Remarks: This function writes out a data string until a null
character is evaluated. Each byte is written via a call to
the SWPutcl2C function. The actual called function
body is termed SWWritel2C. SWPutcl2C and
SWWritel2C refer to the same function via a #def i ne
statement in the swi2c16.h file.

Return Value: This function returns -1 if there was an error else

returns a 0.
Filename: swptsi2c.c
See also: None.

CODE EXAMPLES:

The following are simple code examples illustrating a software 1°c
implementation communicating with a Microchip 24LC01B 1°C EE
Memory Device. In all the examples provided no error checking utilizing
the value returned from a function is implemented. The port pins used are
defined in the swi2c16.h file and must be set per application requirments.

#i ncl ude <pl7cxx. h>

#i ncl ude <swi 2c16. h>

#i ncl ude <del ays. h>

extern far ram union i2cbus_state

{

struct

{

unsi gned busy :1; /1 bus state is busy

unsi gned clk :1; /1 clock tineout or
failure

unsi gned ack :1; /'l acknow edge error or
not ACK

unsi gned . 5; /1 bit padding

s

unsi gned char dummy;
} BUS_STATUS;

/1 FUNCTI ON PROTOTYPES

voi d mai n(void);

void byte write(void);

voi d page_wite(void);

voi d current _address(void);

voi d random read(void);

voi d sequential _read(void);

voi d ack_pol | (void);

unsi gned char warr[] = {8,7,6,5,4,3,2,1, 0};
unsi gned char rarr[15];

unsi gned char far *rdptr rarr;
unsi gned char far *wrptr = warr;
unsi gned char var;

#define WCS PORTA 2

00 1998 Microchip Technology Inc. DS51112B-page 149

MPLAB-C17 USER’S GUIDE

//**

#pragma code _nmai n=0x100

voi

{

voi

voi

voi

d mai n(voi d)

byte write();

ack_poll ();

page write();
ack_poll ();

Nop() ;

sequential _read();
Nop() ;

while (1);

d byte wite(void)

SWstart12C();

var = SWPut cl 2C(0xAQ) ;
swAckl 2C() ;

var = SWPut cl 2C(0x10);
swAckl 2C() ;

var = SWPut cl 2C(0x66) ;
SWACKI 2C() ;

SWEt opl 2C() ;

d page_wite(void)

SWetart12C();

var = SWPut cl 2C(0xA0) ;
SWACKI 2C() ;

var = SWPut cl 2C(0x20) ;
SWACKI 2C() ;

var = SWPut sl 2C(wrptr);

SWEt opl 2C() ;

d sequential _read(void)

SWetart12C();

var = SWPut cl 2C(0xA0) ;
SWACKI 2C() ;

var = SWPut cl 2C(0x00) ;
SWACKI 2C() ;

SWRest art | 2C();

var = SWPut cl 2C(0xAl) ;
SWACKI 2C() ;

11

11

11

11

11

11

11

11

control byte
wor d address

dat a

control byte
wor d address

dat a

control byte

address to read from

DS51112B-page 150

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

var =

SWGet sl 2C(rdptr, 9);

SWEt opl 2C() ;

voi d current _address(void)

SWst art12C();

SWPut cl 2C(0xA1) ; /'l control byte
SWAckI 2C() ;

SWeet cl 2C() ; /1 word address
SWNot Ackl 2C() ;

SWEt opl 2C() ;

voi d ack_pol | (voi d)

SWetart12C();

var =

SWPut cl 2C(0xA0); // control byte

SWAckI 2C() ;
whi | e (BUS_STATUS. ack)

{

BUS_STATUS. ack = O0;
SWRest art | 2C();

var =

SWPut cl 2C(0xA0); // data

SWACKI 2C() ;

}

SWEt opl 2C() ;

SWReadl2C

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17CXXX

Reads a single data byte via software 1’c
implementation.

#i ncl ude <swi 2c16. h>
unsi gned char SWReadl 2C (voi d);

This function reads in a single data byte by generating
the appropriate signals on the predefined 1°C clock line.

This function returns the acquired 1°C data byte. If there
was an error in this function, the return value will be -1.
This condition can be evaluated by testing the bit field
BUS_STATUS. cl k. If this bit field is 1, then there was
an error, elseitis a 0.

swgtci2c.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 151

MPLAB-C17 USER’S GUIDE

SWRestartl2C

Return Value:

Filename:

See also:

condition.
None.
swstpi2c.c

None.

Device: PIC17CXXX

Function: Generates I2C restart bus condition.

Syntax: #i ncl ude <swi 2c16. h>
void SWRestartl2C (void);

Remarks: This function is called to generate an 1°C bus restart
condition.

Return Value: None.

Filename: swrsti2c.c

See also: None.

SWStartl2C

Device: PIC17CXXX

Function: Generates IC bus start condition.

Syntax: #i ncl ude <swi 2c16. h>
void SWstartl2C (void);

Remarks: This function is called to generate an 1°C bus start
condition.

Return Value: None.

Filename: swstri2c.c

See also: None.

SWStopl2C

Device: PIC17CXXX

Function: Generates 1°C bus stop condition.

Syntax: #i ncl ude <swi 2c16. h>
voi d SW6t opl 2C (voi d);

Remarks: This function is called to generate an 1°C bus stop

DS51112B-page 152

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

SWWritel2C

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17CXXX

Writes out single data byte via software 1°C
implementation.

#i ncl ude <swi 2c16. h>
unsi gned char SWAitel 2C (unsi gned char
data_out);

This function writes out a single data byte to the
predefined data pin. The clock and data pins are user
defined in the swi2c16.h file and must be set per
application requirements. SWWritel2C and
SWPutcl2C refer to the same function via a #def i ne
statement in the swi2c16.h file.

This function returns -1 if there was an error condition
else returns a O.

swptci2c.c

None.

3.3 Software SPI Functions

SWClearCSSPI

Device:

Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756

Clears the chip select (CS) pin that is specified in the
swspil6.h header file.

#i ncl ude <swspi 16. h>
voi d SWCl ear CSSPI (voi d);

This function clears the 1/O pin that is specified in
swspil6.h to be the chip select (CS) pin for the software
SPI.

None.
swspil6.c
SWSetCSSPI.

00 1998 Microchip Technology Inc.

DS51112B-page 153

MPLAB-C17 USER’S GUIDE

SWOpenSPI
Device: PIC17C4X, PIC17C756
Function: Configures the 1/O pins for the software SPI.
Syntax: #i ncl ude <swspi 16. h>
voi d SWOpenSPI (voi d);
Remarks: This function configures the 1/0O pins used for the

Return Value:
Filename:
See also:

Code Example:

software SPI to the correct input or ouput state and
logic level. The 1/O pins used for chip select (CS), data
in (DIN), data out (DOUT), and serial clock (SCK) must
be defined in the header file swspil6.h.

The definitions that must be made to ensure that the
software SPI operates correctly are:

I/O pin definitions

SWCS PIN PORTxbi t s. Rx?
TRIS SWCS PIN DDRxbits. Rx?
SWDIN_PIN PORTxbi t s. Rx?
TRIS SWDIN PIN DDRxbits. Rx?
SW DOUT_PI N PORTxbi t s. Rx?
TRI'S_SW DOUT_PI N DDRxbits. Rx?
SW SCK_PI N PORTxbi t s. RXx?

TRIS_SW SCK_PIN DDRxbits.Rx?
x is the PORT, ? is the pin number

SPI Mode
#defi ne MODEO or
#defi ne MODEl1 or
#defi ne MODE2 or
#def i ne MODE3
Only one of the MODEX can be defined.

After these definitions have been made, compile the
software SPI files into an DS51112B) for information on
compilers. Refer to the MPASM User’s Guide with
MPLINK and MPLIB (DS33014F) for information on
linking.

None.
swspil6.c

None.

#i ncl ude <pl7c756. h>
#i ncl ude <swspi 16. h>
#i ncl ude <del ays. h>
voi d mai n(voi d)

{

DS51112B-page 154

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

char address;
/'l configure software SPI

QpenSWVEPI () ;
for (address=0; addr ess<0x10; addr ess++)
{
Cl ear CSSWEPI () ; //clear CS pin

Wit eSWSPI (0x02); //send wite cnd
W iteSWSPI (address);//send address h
W iteSWSPI (address);//send address | ow
Set CSSWSPI () ; //set CS pin

Del ay10KTCYx(50) ; //wait 5000, 000TCY

}

return;
}

SWputcSPI
Device: PIC17C4X, PIC17C756
Function: Reads/writes one byte of data out the software SPI.
Syntax: #include <swspil6.h>
char SWputcSPI (char data);

Remarks: This function performs the same function as

SWWriteSPI(). Refer to the description of that function.
Return Value: None.
Filename: swspil6.c

See also: None.

00 1998 Microchip Technology Inc. DS51112B-page 155

MPLAB-C17 USER’S GUIDE

SWSetCSSPI
Device: PIC17C4X, PIC17C756
Function: Sets the chip select (CS) pin that is specified in the
swspil6.h header file.
Syntax: #i ncl ude <swspi 16. h>
voi d SWset CSSPI (void);
Remarks: This function sets the I/O pin that is specified in

swspil6.h to be the chip select (CS) pin for the software
SPI.

Return Value:

Filename:

See also:

Return Value: None.
Filename: swspil6.c
See also: SWClearCSSPI.
SWWriteSPI
Device: PIC17C4X, PIC17C756
Function: Reads/writes one byte of data out the software SPI.
Syntax: #i ncl ude <swspi 16. h>
char SWAiteSPlI (char data);
Remarks: This function writes the specified byte of data out the

software SPI and returns the byte of data that was read.
This function does not provide any control of the chip
select pin (CS).

This function returns the byte of data that was read from
the data in (DIN) pin of the software SPI.

swspil6.c

None.

DS51112B-page 156

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

3.4 Software UART Functions

getcUART
Device: PIC17C4X, PIC17C756
Function: Reads one byte of data from the software UART.
Syntax: #i ncl ude <uart 16. h>
char get cUART (void);
Remarks: This function performs the same function as

ReadUART(). Please refer to the description of that
function.

Return Value: None.

Filename: uartlé.c

See also: ReadUART

getsUART

Device: PIC17C4X, PIC17C756

Function: Reads a string of characters from the software UART.

Syntax: #i ncl ude <uart 16. h>
voi d get sUART (char *buffer, unsigned
char len);

Remarks: This function reads a string of characters from the

Return Value:
Filename:

See also:

software UART and places them in buffer. The number
of characters read is given in the variable /en.

The value of len can be any 8-bit value, but is restricted
to the maximum size of an array within any bank of
RAM.

None.
uartl6.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 157

MPLAB-C17 USER’S GUIDE

OpenUART
Device: PIC17C4X, PIC17C756
Function: Configures the 1/O pins for the software UART.
Syntax: #i ncl ude <uart 16. h>
voi d OpenUART (void);
Remarks: This function configures the 1/0O pins used for the

software UART to the correct input or ouput state and
logic level. The I/O pins used for receive data (RXD)
and transmit data (TXD) must be defined in the header
file uartl6_a.asm.

The definitions that must be made to ensure that the
software UART operates correctly are:
I /O pin definitions

SWI'XDequPORTX

SWI'XDpi nequ?

TRI' S_SWI'XDequDDRXx

SWRXDequPORTX

SWRXDpi nequ?

TRI' S_SWRXDequDDRXx

UART_PORT_BSRequb

X is the PORT, ? is the pin nunber,

b is the PORTXx bank

After these definitions have been made, compile the
software ART files into an object to be linked. Refer to
Chapter 2 of this manual (DS51112A) for information on
compilers. Refer to the MPASM User’s Guide with
MPLINK and MPLIB (DS33014F) for information on

linking.
Return Value: None.
Filename: uartl6.c
See also: None.

Code Example:

#i ncl ude <pl7c756. h>
#i ncl ude <uart 16. h>
voi d mai n(voi d)
{
char data
/1l configure software UART
OpenUART() ;
whi | e(1)
{
data = ReadUART();//read a byte
WiteUART(data);//bounce it back

DS51112B-page 158 00 1998 Microchip Technology Inc.

Chapter 8. Libraries

}
return;
}
putcUART
Device: PIC17C4X, PIC17C756
Function: Writes one byte of data out the software UART.
Syntax: #i ncl ude <uart 16. h>
voi d put cUART (char data);

Remarks: This function performs the same function as

WriteUART(). Refer to the description of that function.

Return Value: None.
Filename: uartl6.c
See also: WriteUART
putsUART
Device: PIC17C4X, PIC17C756
Function: Writes a string of characters to the software UART.
Syntax: #i ncl ude <uart 16. h>
voi d get sUART (char *buffer);
Remarks: This function writes a string of characters to the

Return Value:

Filename:

See also:

software UART. The entire string including the null is
sent to the UART.

None.
uartl6.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 159

MPLAB-C17 USER’S GUIDE

Return Value:

ReadUART
Device: PIC17C4X, PIC17C756
Function: Reads one byte of data out the software UART.
Syntax: #i ncl ude <uart 16. h>
char ReadUART (void);
Remarks: This function reads a byte of data out the software

UART and returns the byte of data.

This function returns the byte of data that was read from
the receive data (RXD) pin of the software UART.

Return Value:

Filename:

See also:

Filename: uartlé.c
See also: getcUART
WriteUART
Device: PIC17C4X, PIC17C756
Function: Writes one byte of data out the software UART.
Syntax: #i ncl ude <uart 16. h>
void WiteUART (char data);
Remarks: This function writes the specified byte of data out the

software UART.

The value of data can be any 8-bit value.
None.

uartl6.c

putcUART

DS51112B-page 160

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

4.0 General Software Library

4.1 Character Classification Functions

isalnum

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Alphanumeric character classification.

#i ncl ude <ctype. h>
char isal num (char ch);

This function determines if ch is an alphanumeric
character in the ranges of:

AtoZ (0x41 to Ox5A)
atoz (0x61 to Ox7A)
0to9 (0x30 to 0x39)

This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

isalnum.c

None.

isalpha

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Alphabetical character classification.

#i ncl ude <ctype. h>
char isal pha (char ch);

This function determines if chis a valid character of the
alphabet in the ranges of:

AtoZ (Ox41 to Ox5A)
atoz (Ox61 to Ox7A)

This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

isalpha.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 161

MPLAB-C17 USER’S GUIDE

isascii
Device: PIC17C4X, PIC17C756
Function: ASCII character classification.
Syntax: #i ncl ude <ctype. h>
char isascii (char ch);
Remarks: This function determines if ch is an ASCII

Return Value:

character which has a range of 0x00 to Ox7F.

This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: isascii.c
See also: None.
iscntrl
Device: PIC17C4X, PIC17C756
Function: Control character classification.
Syntax: #i ncl ude <ctype. h>
char iscntrl (char ch);
Remarks: This function determines if ch is a control character in

Return Value:

Filename:

See also:

the ranges of:

0x00 to Ox1F
Ox7f

This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

iscntrl.c

None.

DS51112B-page 162

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

isdigit
Device: PIC17C4X, PIC17C756
Function: Numeric character classification.
Syntax: #i ncl ude <ctype. h>
char isdigit (char ch);
Remarks: This function determines if ch is an numeric

Return Value:

Filename:

See also:

islower

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

character in the ranges of:
Oto9 (Ox30 to 0x39)

This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

isdigit.c

None.

PIC17C4X, PIC17C756
Lower-case alphabetical character classification.

#i ncl ude <ctype. h>
char isal num (char ch);

This function determines if ch is a lower-case
alphabetical character in the ranges of:

ato z(0x61 to Ox7A)

This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

islower.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 163

MPLAB-C17 USER’S GUIDE

isupper
Device: PIC17C4X, PIC17C756
Function: Upper-case alphabetical character classification.
Syntax: #i ncl ude <ctype. h>
char isupper (char ch);
Remarks: This function determines if ch is an upper-case

Return Value:

alphabetical character in the ranges of:
AtoZ (Ox41 to Ox5A)

This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

Filename: isupper.c
See also: None.
isxdigit
Device: PIC17C4X, PIC17C756
Function: Hexadecimal character classification.
Syntax: #i ncl ude <ctype. h>
char isal num (char ch);
Remarks: This function determines ifch is a hexadecimal

Return Value:

Filename:

See also:

character in the ranges of:

AtoF (Ox41 to 0x46
atof (Ox61 to 0x66)
Oto9 (Ox30 to 0x39)

This function returns 1 when the argument is within the
specified range of values, otherwise 0 is returned.

isxdig.c

None.

DS51112B-page 164

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

4.2 Number and Text Conversion Functions

atob

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Converts a string to an 8-bit signed byte.

#i ncl ude <stdlib. h>
char atob (char *string);

This function converts the ASCII string into an 8-bit
signed byte. It first finds the length of the string by
searching for the null character. If the string length is
greater than 5 characters, this function returns 0. It then
starts processing the string into the 8-bit signed byte (-
128 to 127).

8-bit signed byte for all strings with 5 characters or less
(-128 to 127). O for all strings greater than 5 characters.

atob.c

None.

atoi

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Converts a string to an 16-bit signed integer.

#i ncl ude <stdlib. h>
int atoi (char *string);

This function converts the ASCII string into an 16-bit
signed integer. It first finds the length of the string by
searching for the null character. If the string length is
greater than 7 characters, this function returns 0. It then
starts processing the string into the 16-bit signed
integer (-32768 to 32767).

16-bit signed integer for all strings with 7 characters or
less (-32768 to 32767). O for all strings greater than 7
characters.

atoi.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 165

MPLAB-C17 USER’S GUIDE

atoub

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Converts a string to an 8-bit unsigned byte.

#i ncl ude <stdlib. h>
unsi gned char atoub (char *string);

This function converts the ASCII string into an 8-bit
unsigned byte. It first finds the length of the string by
searching for the null character. If the string length is
greater than 4 characters, this function returns 0. It then
starts processing the string into the 8-bit unsigned byte
(0 to 255).

8-bit unsigned byte for all strings with 4 characters or
less (0 to 255). O for all strings greater than 4
characters.

atoub.c

None.

atoui

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Converts a string to an 16-bit unsigned integer.

#i ncl ude <stdlib. h>
unsi gned int atoui (char *string);

This function converts the ASCII string into an 16-bit
unsigned integer. It first finds the length of the string by
searching for the null character. If the string length is
greater than 6 characters, this function returns 0. It then
starts processing the string into the 16-bit unsigned
integer. (0 to 65535)

16-bit unsigned integer for all strings with 6 characters
or less (0 to 65535). O for all strings greater than 6
characters

atoui.c

None.

DS51112B-page 166

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

btoa

Device:
Function:

Syntax:

Remarks:

Return Value:
Filename:

See also:

PIC17C4X, PIC17C756
Converts an 8-bit signed byte to string.

#i ncl ude <stdlib. h>
void btoa (char value, char *string);

This function converts the 8-bit signed byte in the
argument value to a ASCII string representation. The
string must be long enough to hold the ASCII
representation which is:

number(3) + sign(1) + null(1) =5

The conversion process uses the minimum amount of
characters in the string. Some examples are:

-120 5 characters
-57 4 characters
-6 3 characters
0 2 characters
29 3 characters
107 4 characters

None.

btoa.c

None.

itoa

Device:
Function:

Syntax:

Remarks:

PIC17C4X, PIC17C756
Converts an 16-bit signed integer to string.

#i ncl ude <stdlib. h>
void itoa (int value, char *string);

This function converts the 16-bit signed integer in the
argument value to a ASCII string representation. The
string must be long enough to hold the ASCII
representation which is:

number(5) + sign(1) + null(1) =7

The conversion process uses the minimum amount of
characters in the string. Some examples are:

-24290 7 characters
-6183 6 characters
-120 5 characters
-57 4 characters
-6 3 characters
0 2 characters

00 1998 Microchip Technology Inc.

DS51112B-page 167

MPLAB-C17 USER’S GUIDE

Return Value:

29 3 characters
107 4 characters
1187 5 characters
32000 6 characters
Return Value: None.
Filename: itoa.c
See also: None.
toascii
Device: PIC17C4X, PIC17C756
Function: Converts a character to an ASCII character
Syntax: #i ncl ude <ctype. h>
char toascii (char ch);
Remarks: This function converts chto a valid ASCII character by

setting the MSB bit7 to a zero.

This function returns the converted ASCI| character.

Return Value:

Filename:

See also:

Filename: toascii.c
See also: None.
tolower

Device: PIC17C4X, PIC17C756

Function: Converts a character to a lower-case alphabetical
ASCII character.

Syntax #i ncl ude <ctype. h>
char tol ower (char ch);

Remarks: This function converts chto a lower-case alphabetical

ASCII character provided that the argument is a valid
upper-case alphabetical character.

This function returns a lower-case character if the
argument was upper-case to begin with, otherwise the
original character is returned.

tolower.c

None.

DS51112B-page 168

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

toupper
Device: PIC17C4X, PIC17C756
Function: Converts a character to a upper-case alphabetical
ASCII character.
Syntax: #i ncl ude <ctype. h>
char toupper (char ch);
Remarks: This function converts ch to a upper-case alphabetical

Return Value:

ASCII character provided that the argument is a valid
lower-case alphabetical character.

This function returns a lower-case character if the
argument was upper-case to begin with, otherwise the
original character is returned.

Filename: toupper.c
See also: None.
ubtoa

Device: PIC17C4X, PIC17C756

Function: Converts an 8-bit unsigned byte to string.

Syntax: #i ncl ude <stdlib. h>
voi d ubtoa (unsigned char value, char
*string);

Remarks: This function converts the 8-bit unsigned byte in the

Return Value:
Filename:

See also:

argument value to a ASCII string representation. The
string must be long enough to hold the ASCII
representation which is:

number(3) + null(1) = 4

The conversion process uses the minimum amount of
characters in the string. Some examples are:

0 2 characters
29 3 characters
107 4 characters
255 4 characters

None.

ubtoa.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 169

MPLAB-C17 USER’S GUIDE

uitoa
Device: PIC17C4X, PIC17C756
Function: Converts an 16-bit unsigned integer to string.
Syntax: #i ncl ude <stdlib. h>
void uitoa (unsigned int value, char
*string);
Remarks: This function converts the 16-bit unsigned integer in

the argument value to a ASCII string representation.
The string must be long enough to hold the ASCII
representation which is:

number(2) + null(1) = 6

The conversion process uses the minimum amount of
characters in the string. Some examples are:

0 2 characters
29 3 characters
107 4 characters
3481 5 characters
57912 6 characters

Return Value: None.

Filename: uitoa.c

See also: None.

DS51112B-page 170 00 1998 Microchip Technology Inc.

Chapter 8. Libraries

4.3

Delay Functions

Return Value:

DelaylTCY
Device: PIC17C4X, PIC17C756
Function: Delay of 1 instruction cycle (Tcy).
Syntax: #i ncl ude <del ays. h>
voi d Del aylTCY (void);
Remarks: This function is actually a #def i ne for the Nop()

instruction. When encountered in the source code, the

compiler simply inserts a Nop() .

None.

Return Value:

Filename:

See also:

None.
dylotcy.c

None.

Filename: #define in delays.h
See also: None.
Delayl0TCY
Device: PIC17C4X, PIC17C756
Function: Delay of 10 instruction cycles (Tcy).
Syntax: #i ncl ude <del ays. h>
voi d Del ayl0TCY (void);
Remarks: This function creates a delay of 10 instruction cycles.

Delayl10TCYx

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756

Delay of multiples of 10 instruction cycles (Tcy).

#i ncl ude <del ays. h>

voi d Del ayl0TCYx (unsigned char unit);

This function creates delays of multiples of 10

instruction cycles.

The value of unit can be any 8-bit value from 2 to 255 or
0. A value of 0 represents sending 256 to the function.

None.
dylotcyx.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 171

MPLAB-C17 USER’S GUIDE

Delay100TCYx

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Delay of multiples of 100 instruction cycles (Tcy).

#i ncl ude <del ays. h>
voi d Del ayl00TCYx (unsigned char unit);

This function creates delays of multiples of 100
instruction cycles.

The value of unit can be any 8-bit value from 0 to 255. A
value of O represents sending 256 to the function.

None.
dy100tcx.c

None.

DelaylKTCYx

Device:
Function:

Syntax:

Remarks:

Return Value:

Filename:

See also:

PIC17C4X, PIC17C756
Delay of multiples of 1000 instruction cycles (Tcy).

#i ncl ude <del ays. h>
voi d Del aylKTCYx (unsigned char unit);

This function creates delays of multiples of 1000
instruction cycles.

The value of unit can be any 8-bit value from 0 to 255.
A value of 0 represents sending 256 to the function.

None.
dylktcyx.c

None.

DS51112B-page 172

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Delayl0KTCYx

Device: PIC17C4X, PIC17C756
Function: Delay of multiples of 10000 instruction cycles (Tcy).
Syntax: #i ncl ude <del ays. h>

voi d Del ayl0KTCYx (unsigned char unit);
Remarks: This function creates delays of multiples of 10000

instruction cycles.

The value of unit can be any 8-bit value from 0 to 255. A
value of O represents sending 256 to the function.

Return Value: None.
Filename: dy10ktcx.c

See also: None.

00 1998 Microchip Technology Inc. DS51112B-page 173

MPLAB-C17 USER’S GUIDE

Memory and String Manipulation Functions

Return Value:

memcmp
Device: PIC17C4X, PIC17C756
Function: Compares the contents of two arrays of bytes.
Syntax: #i ncl ude <nem h>
signed char nencnp (char *bufl, char
*puf 2, unsigned char nensize);
Remarks: This function compares the first memsize number of

elements in bufl to the first memsize number of
elements in buf2 and returns if the buffers are less than,
equal to, or greater than each other.

-1 if bufl < buf2
0 if bufl == buf2
1 if bufl > buf2

Filename: memcmp.c
See also: None.
memcpy

Device: PIC17C4X, PIC17C756

Function: Copies the contents of the source buffer into the
destination buffer.

Syntax: #i ncl ude <nem h>
void mencnp (char *dest, char *srec,
unsi gned char nensi ze);

Remarks: This function copies the first memsize number of

elements in src to the array dest.

Return Value: None.

Filename: memcpy.c

See also: None.

memset

Device: PIC17C4X, PIC17C756

Function: Copies the specified character into the destination
array.

Syntax: #i ncl ude <nem h>

void mencnp (char *dest, char val ue,
unsi gned char nensi ze);

DS51112B-page 174

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

Remarks:

This function copies the character value into the first
memsize elements of the array dest.

Return Value: None.

Filename: memset.c

See also: None.

strcat

Device: PIC17C4X, PIC17C756

Function: Concatenates the source string to the end of the
destination string.

Syntax: #i ncl ude <string. h>
void strcat (char *dest, char *src);

Remarks: This function copies the string in src to the end of the

string in dest. The src string starts at the null in dest. A
null character is added to the end of the resulting string
in dest.

Return Value:

Filename:

See also:

Return Value: None.

Filename: strcat.c

See also: None.

strcmp

Device: PIC17C4X, PIC17C756

Function: Compares two strings.

Syntax: incl ude <string. h>
signed char strcnp (char *str1, char
*str2);

Remarks: This function compares the string in str1 to the string in

str2 and returns if str1 is less than, equal to, or greater
than str2.

-1 if strl < str2
0 if strl == str2
1 if strl > str2

strcmp.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 175

MPLAB-C17 USER’S GUIDE

strcpy
Device: PIC17C4X, PIC17C756
Function: Copies the source string into the destination string.
Syntax: #i ncl ude <string. h>
void strcpy (char *dest, char *src);
Remarks: This function copies the string in srcto dest. Characters

in src are copied until the null character is reached. The
string dest is null terminated.

Return Value: None.
Filename: strcpy.c
See also: None.
strlen
Device: PIC17C4X, PIC17C756
Function: Returns the length of the string.
Syntax: #i ncl ude <string. h>
unsi gned char strlen (char *str);
Remarks: This function determines the length of the string minus

Return Value:

the null character.

This function returns the length of the string in an
unsigned 8-bit byte.

Filename: strlen.c
See also: None.
striwr

Device: PIC17C4X, PIC17C756

Function: Converts all upper-case characters in a string to lower-
case.

Syntax: #i ncl ude <string. h>
void strlw (char *str);

Remarks: This function converts all upper-case characters in str

Return Value:

Filename:

See also:

to lower-case characters. All characters that are not
upper-case (A to Z) are not affected.

None.
strlwr.c

None.

DS51112B-page 176

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

strset
Device: PIC17C4X, PIC17C756
Function: Copies the specified character into all characters in a
string.
Syntax: #i ncl ude <string. h>
void mencnp (char *str, char ch);
Remarks: This function copies the character in chto all characters
in the string up to the null character.
Return Value: None.
Filename: strset.c
See also: None.
strupr
Device: PIC17C4X, PIC17C756
Function: Converts all lower-case characters in a string to upper-
case.
Syntax: #i ncl ude <string. h>
void strupr (char *str);
Remarks: This function converts all lower-case characters in str to

Return Value:

Filename:

See also:

upper-case characters. All characters that are not
lower-case (a to z) are not affected.

None.
strupr.c

None.

00 1998 Microchip Technology Inc.

DS51112B-page 177

MPLAB-C17 USER’S GUIDE

5.0 Math Library

5.1

32-bit Integer and 32-bit Floating Point Math

Libraries

The math libraries are included in the \MCC\SRC\MATH folder. These are
assembly language routines and can be included and linked with your
application. Use the BUILD.BAT file to build a library of all routines.

5.1.1 Functions

FXM3232U
FXM3232S
FXD3232U
FXD3232S
FPM32
FPD32
FLO3232U
FLO3232S
FLO1632U
FLO1632S
FLO0832U
FLO0832S
INT3232

32-bit unsigned integer multiplication

32-bit signed integer multiplication

32-bit unsigned integer division

32-bit signed integer division

32-bit floating point multiplication

32-bit floating point division

32-bit unsigned integer to 32-bit floating point conversion
32-bit signed integer to 32-bit floating point conversion
16-bit unsigned integer to 32-bit floating point conversion
16-bit signed integer to 32-bit floating point conversion
8-bit unsigned integer to 32-bit floating point conversion
8-bit signed integer to 32-bit floating point conversion

32-bit floating point to 32-bit integer conversion

5.1.2 Calling Convention

The math libraries expect arguments to be provided in the locations AARG and
BARG and provide their results in AARG. For example, an integer argument in
AARG uses AARGO, AARG1, AARG2, and AARG3. A floating point argument
in AARG uses AEXP, AARGO, AARG1, and AARG2. Integer division functions
provide the remainder in REMO, REM1, REM2, and REM3.

DS51112B-page 178

00 1998 Microchip Technology Inc.

Chapter 8. Libraries

5.1.3 Example

Given two 32-bit signed integers, i nt 1 and i nt 2, the following code will
multiply the two numbers and place the result ini nt 1. Banking and paging

considerations have been omitted for clarity.

MOVFP
MOVVF
MOVFP
MOVVF
MOVFP
MOVVF
MOVPF
MOVVF
MOVFP
MOVVF
MOVFP
MOVVF
MOVFP
MOVVF
MOVPF
MOVVF

CALL FXMB232S

MOVFP
MOVVF
MOVFP
MOVVF
MOVFP
MOVVF
MOVFP
MOVVF

intl,
AARRD
intl1+1,
AARGL
intl1+2,
AARG2
int1+3,
AARG3
int2,
BARGO
int2+1,
BARGL
int2+2,
BARG2
int2+3,
BARG3

AARGBO,
intl
AARGB1,
intl+1
AARGB2,
intl1+2
AARGB3,
int1+3

V\REG

V\REG

VREG

VREG

VREG

V\REG

V\REG

V\REG

V\REG

V\REG

V\REG

V\REG

;. Load AARG

;. Load BARG

; Performthe multiply
; Save the result

00 1998 Microchip Technology Inc.

DS51112B-page 179

MPLAB-C17 USER’S GUIDE

NOTES:

DS51112B-page 180 00 1998 Microchip Technology Inc.

MICROCHIP MPLAB-C17 USER’S GUIDE

Appendix A. Porting Codefrom MPLAB-C to MPLAB-C17

Introduction

This appendix provides guidelines for migrating code from MPLAB-C to the
MPLAB-C17 compiler.

External Differences

These are the main differences that will require changes to the source code
when porting an application from MPLAB-C to MPLAB-C17:

e Software stack - Allows reuse of memory

» Pointers - Far RAM pointers are 16-bits, near RAM pointers are 8-bits,
word-aligned ROM pointers are 16-bits, and pointers to 8-bit wide data
in ROM are 24-bits.

* File Locations - File locations are searched in a more conventional
order.

e MPLIB - The librarian now can create true library modules.
e #pragnas are different.

« Bitfields are implemented as described in the ANSI standard, and
currently limited to one bit. Bits operator is no longer supported.

Internal Differences

Internally, MPLAB-C17 is radically different from MPLAB-C. Among the
differences:

» Software Stack - This allows more than two parameters to be passed
to a function, and allows re-use of memory.

* Pointers - Pointers are now 16 bits for RAM and 16 bits for ROM, with
24 bits used for byte data in ROM.

* Interrupts - Interrupts are handled in a more general way. Start up
code sets up interrupts and initialized data.

e The compiler uses and reserves the shared memory area in RAM

e The compiler runs as a 32-bit console application under Win 95 or NT
or as a 32-bit DOS Extended Program under Windows 3.x.

00 1998 Microchip Technology Inc. DS51112B - page 181

MPLAB-C17 USER’S GUIDE

Porting Code

From the differences listed above, refer to the detailed sections below for more
information. For reference, there is an example at the end of this section which
shows an application written in MPLAB-C converted to MPLAB-C17.

Data Types

The table below outlines the differences between MPLAB-C and MPLAB-C17

data types.
Type MPLAB-C MPLAB-C17

char 8-bit (default: unsigned) 8-bit (default: signed)

int 8-bit (switchable to 16-bit) | 16-bit

short 8-bit (switchable to 16-bit) | 16-bit

long 16-bit 32-bit (future support)

float N/A 32-bit Microchip modified
IEEE754 (future support)

double N/A same as float

ANSI bit-fields | no yes

registerw W register N/A

registerx FSR register N/A

bits 8-bit N/A

Code written for MPLAB-C may require the following changes to variables:

Change 'char' to 'unsigned char' since characters are signed by default.

Change 'int' to ‘char'. If the +i option was used in MPLAB-C (i.e. 16-bit
ints), then no change is needed.

Change 'long' to 'int'.

The types 'registerw' and 'registerx’ are no longer supported. Use
WREG and FSR directly but note that they are extremely volatile.

DS51112B - page 182

00 1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

bi t s data type

If the 'bits’ data type is used, add the following structure definition at the top of
the file (or in a header file):

typedef struct bits_tag

{
unsi gned int b0: 1,
unsi gned int bl: 1;
unsi gned int b2: 1,
unsi gned int b3: 1,
unsi gned int b4: 1,
unsi gned int b5: 1,
unsi gned int b6: 1,
unsi gned int b7: 1,

} bits;

Then all references to variables of type bi t s must be as follows:
Use: x. b2 = 1;
This sets bit ' 2" of ’ x’.
In place of: x. 2 = 1;

This syntax is no longer supported.

Variable Allocation

General

MPLAB-C17 encourages the use of local variables instead of global variables
for RAM conservation. Local variables are allocated on the software stack.
Therefore, RAM locations used by local variables are reusable, conversely, the
use of global variables conserves ROM.

Using @ to allocate variables at absolute locations

The @ operator is not supported. To access memory at a specific location use
a pointer as follows:

char *p = 0x35; /1 'p' points to l|ocation 0x35
*p = OxFO; /1 send value OxFO to | ocation 0x35
p = 0x41; /1 'p’ now points to |ocation 0x41

The above code uses the same pointer to access more than one absolute
RAM location. To access a fixed location the following syntax can be used
since it generates a shorter machine code sequence.

#define FI XED35 (* ((char *) 0x35))
FI XED35 = OxFO; // Location 35 now has OxFO

More than one location can be referenced at a time. For example, to write the
value 0x1234 in locations 0x40 and 0x41, use the following construct:

00 1998 Microchip Technology Inc.

DS51112B - page 183

MPLAB-C17 USER’S GUIDE

#define LOC4041 (* ((int *) 0x40))

LOCA041 = 0x1234; /1 Now 0x40 contai ns 0x34 and | ocation
0x41 contai ns 0x12

Please note the following:

1. Locations defined using the above method bypass all variable
allocation error checking. Make sure that these locations are not used
by other variables.

2. Since these locations are defined as macros, they are not included in
the symbol table. Therefore these locations cannot be added to a watch
window in MPLAB.

Using @ to allocate local variables in global scratch
locations no longer needed

In MPLAB-C17 local variables follow proper scoping rules but are allocated as
'static’. To reuse the space allocated for local variables in MPLAB-C, the use of
the @ sign to reuse global RAM was suggested as follows:

unsi gned char Tenp; // dobal variable
void main()

{
unsi gned char Counter @ Tenp;

}

void functionl()

{
unsi gned char | ndex @ Tenp;

}

The above method is no longer needed or supported.

DS51112B - page 184 00 1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

Function arguments using shared global variables

In MPLAB-C function arguments were allocated in RAM and were not reused.
A non-standard method for reusing those locations is to declare global
variables with the same names as the arguments as follows:

char a, b;
funcl(a,b) { /* code for funcl() */ }
func2(a,b) { /* code for func2() */ }

The above syntax is no longer supported nor needed since MPLAB-C17
allocates function arguments on the stack. The space used by these
arguments is reused once the function goes out of scope.

00 1998 Microchip Technology Inc. DS51112B - page 185

MPLAB-C17 USER’S GUIDE

Use #PRAGMA IDATA, UDATA, ROMDATA to
allocate specific addresses for data

Variables can be located at fixed addresses in memory with the following
declarations:

#pragna i data GPR2

0x40;
unsi gned char tenmp2 = 0x80;

unsi gned char tenpl

This will cause the two variables temp1 and temp2 to be allocated in the area
defined by GPR2, the second bank of general purpose registers and will
initialize their values on start up to 0x40 and 0x80.

To allocate variables with uninitialized data use:
#pragnma udata GPRO

unsi gned char tenp4,tenp5;

To allocate storage for data in ROM, use:
#pragma rondat a

char tenp[] = "This is a nessage";

This puts the string into the current code page.

(Refer to chapter 3 for the #pr agma preprocessor directives.)

DS51112B - page 186

00 1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

Code Allocation

Allocating code at a specific address using ORG or
#pragma memory ROM
MPLAB-C allowed the allocation of pieces of code at absolute locations. This

was done either by using the assembler directive ORG, or the compiler
directive #pr agna nenory ROM

The method is no longer supported. To allocate code at a specific location,
compile it in a separate module. Then, in the linker script, specify that this
module is allocated in an absolute section. Specify the absolute address
where a section is to be allocated in the linker script file. Refer to MPASM with
MPLINK and MPLIB User’s Guide for further instructions on creating absolute
sections.

You can also change the code section by using
#pragma code mycode=0x300

This will change the allocation of subsequent code into the new section called
mycode which begins at address 0x300.

Access to pre-loaded code in ROM

MPLAB-C17 does not support using the @ sign with a function prototype to
enable access to code that is pre-loaded in program memory. To access code
that is hard-coded at specific locations (such as A/D calibration constants on
P1C14000 that are at address OxFCO and up), use function pointers:

unsi gned char (*AtodCalibration)() ;
AtodCal i bration = OxFQ); // assign the address
kl = AtodCalibration(); /1 Call and read first constant

00 1998 Microchip Technology Inc. DS51112B - page 187

MPLAB-C17 USER’S GUIDE

Header Files and Libraries

Header file inclusion

In MPLAB-C17, the behavior of #i ncl ude directive has changed to a more
conventional usage:

#i ncl ude <fil enane. ext > searches the path defined by the environment
variable MCC_INCLUDE only. The compiler will not search for the file in the
DOS path like MPLAB-C.

#i ncl ude "fil enane. ext" searches the current directory for the filename
and if it doesn't find it, uses the path defined by the environment variable
MCC_INCLUDE.

Libraries

In MPLAB-C libraries were created by enclosing C code between a #pr agnma
i brary,and a#pragma endl i brary directives. Then include files were

created with prototypes to the library functions. To use the functions, use the
#i ncl ude directive to include the header file at the top of the file, and include
the library at the end.

In MPLAB-C17 libraries are created using MPLIB, the librarian. Object
modules can be added or removed to libraries with MPLIB. MPLAB-C17
allows more conventional library access, so including the source library is no
longer required. To use a library function in an application, use the #i ncl ude
directive to include the header file that contains the prototypes for that function
in the appropriate source file. Then the library will need to be linked with
MPLINK. Please refer to MPASM with MPLINK and MPLIB User's Guide for
more information.

DS51112B - page 188

00 1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

The use of const

The use of the keyword const has changed since version 1.2.1 MPLAB-C. It
no longer means that the data object is stored in ROM but rather it follows the
ANSI specification and specifics that its contents cannot be modified. To place
a data object in ROM, explicitly use the r omkeyword. For example:

const char Msg[] ="Hello world!'\n"; // Alocated in
Il RAM
const romchar Msg[] = "Hello world!'\n"; // Alocated in
/1l ROM and
/1 cannot be
/1 nodified.
romchar Msg[]= "Hello world'\n"; /1 Allocated in
/1l ROM and
/1 can be
/1 modified.

Since program memory can be written on PIC17CXXX devices, placing an
object in ROM doesn’t necessarily mean it's read-only. On such devices,
both the r omand const keywords must be used if the object is to be declared
read-only.

Inline assembler support
In MPLAB-C17 the inline assembler has a different syntax from MPLAB-C.

To assemble a single instruction, place that instruction after the _asmdirective.
For example:

_asm MWLWOx01 // Put a comment follow ng doubl e
/1 forward sl ashes

If code has multiple assembly instructions enclosed between #asmand
#endasm change it to use _asmand _endasminstead.

For example:

#asm
MOVLW 9 ; Move 9 into W
ADDW Ox1A ;Add 26 to W
MOWWF PORTB ; Move Wto PORTB

#endasm

must be changed to:

_asm
MOVLW 9 /1 Move 9 into W
ADDW Ox1A // Add 26 to W

00 1998 Microchip Technology Inc.

DS51112B - page 189

MPLAB-C17 USER’S GUIDE

MOANF PORTB // Move Wto PCORTB
_endasm

The MPASM assembler directives or labels cannot be used. GOTOs that jump
to a C label are valid.

For example:
_asm
/1 some assenbl er code
got o MyLabel /1 jump to a C | abel
_endasm
MyLabel : /1 C | abel
X++;
_asm
/!l nore assenbly code
_endasm

For the features of a full-macro assembler, separate the assembly routines in
a separate file, assemble them using MPASM, and then link the resulting
object file with the C program. For more information, refer to Chapter 6 and the
MPASM with MPLINK and MPLIB User’s Guide.

Swi tch. . case support

ANSI C swi t ch. . case statements are supported but MPLAB-C extensions
are not. Ranges, values separated by commas, and variables in ‘case’
statements are not supported. Code that uses these extensions will need

to be modified.

For example:
swi t ch(x)
{
case 0..4: /* Range of nunbers - not supported */
ProcessNunber s() ;
br eak;
case 'a,’'b’: /* Val ues separated by commas - not supported */
ProcessAB();
br eak;
case y: /* Variable - not supported */
ProcessY();
br eak;

}

must be changed to:

DS51112B - page 190 00 1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

sw t ch(x)
{
case O
case 1:
case 2:
case 3:
case 4: /* Range of nunbers */
ProcessNumber s() ;
br eak;
case 'a’:
case 'b’: /* Val ues separated by commas */
ProcessAB();
br eak;

/* Variables in a 'case’ |abel expression
are not allowed */

00 1998 Microchip Technology Inc. DS51112B - page 191

MPLAB-C17 USER’S GUIDE

#pragnma directives

#pr agma directives are, by definition, implementation specific. None of the
#pr agma directives defined in MPLAB-C are valid directives in MPLAB-C17.
These are the #pr agmas for MPLAB-C17. Refer to Chapter 3 for more
details:

e nocont ext - Disable stack frame code for following function.

* nosaver egs - Disable save/restore of working registers for the next
function.

e |list -Turnon list file generation.
e nolist -Turn off list file generation
« code - For the following data, change to the specified code section

« idata - For the following data, change to the specified initialized data
section.

e udat a - For the following data, change to the specified uninitialized
data section.

e rondat a - For the following data, change to the specified ROM section.

e varl ocat e - For the following data, tell the compiler that it resides in
the specified bank.

DS51112B - page 192 00 1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

Porting Code from MPLAB-C to MPLAB-C17

Checksheet

o O

O O00a0Qd

a

OoOooOoag

Search for or g statements and replace with section directives #pragma
code

Change header file names to MPLAB-C17 standard

Search for @operator and replace with pointer or allow MPLINK to allocate
space

Search for | ong and replace with i nt
Remove library i ncl ude references and add library to MPLINK
Scan for bi t s directive and replace with ANSI bit structures

Change bit access to SFR’s (PORTA.1) to ANSI format
(PORTAbI t s. RAL).

Scan fori nt and short usage

O Does it require 16-bits? No, then change to char

O Does it require sign? No then change to unsi gned

Scan for char usage

O Does it require si gn bit? No, then change to unsi gned

Scan for #asmand #endasmand change to _asm and _endasm
Change "; " comments in #asmsegments to "/ / " comments

Check that swi t ch. . case statements do not have ranges or commas
Search for const statements and add r omkeyword to keep data in ROM

00 1998 Microchip Technology Inc.

DS51112B - page 193

MPLAB-C17 USER’S GUIDE

Example Code Ported from MPLAB-C to MPLAB-C17

The following two listings are included as a reference for converting code from
MPLAB-C to MPLAB-C17. The first file compiles under MPLAB-C and the
second is a translated version that will compile under MPLAB-C17.

MPLAB-C Portion of Header File Example

/***

* fromPICricro C Libraries *
* Witten and Tested using MPLAB-C *

LR EE R R R R R R R R R R EE R EE R R R R

* Fi | enane: x|l cd. h *

LR R

/| DATA PORT defines the port on which the LCD
/! data lines are connected to

#def i ne DATA PCRT PORTF

#defi ne TRIS DATA PORT TRI SF

/'l Control Signals

#define RS 1 /1 Register Select bit
#define RWO /! Read/ Wite bit
#define E 6 /1 dock bit

/ CTRL_PORT defines the port where the control
/!l lines are connected

#define RWPIN PORTG RW /1 Port for RW
#define TRIS RW TRI SG RW /l TRIS for RW
#define RS PIN PORTG RS /1l Port for RS
#define TRIS RS TRI SG RS /l TRIS for RS
#define E PIN PORTF. E /1 PORT for E
#define TRS E TRISF. E /!l TRIS for E

/1 Display OV CFF Control defines

#defi ne DON 0b00001111 /1 Display on
#def i ne DOFF 0b00001011 /1 Display off
#defi ne CURSOR_ON 0b00001111 /1 Cursor on

#defi ne CURSOR _OFF 0b00001101 /1 Cursor off
#defi ne BLINK ON 0b00001111 /1 Cursor Blink
#defi ne BLI NK_CFF 0b00001110 /1 Cursor No Blink

DS51112B - page 194 00 1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

MPLAB-C17 Portion of Header File Example

LR SRR R R R R EEE R R R SRR R R R EEEE R EEEE R R R R R

* fromPICricro C Libraries *
* Witten and Tested using MPLAB-Cl17 *

LR R

* Fi | enane: x|l cd. h *

LR EE R R R R EEEE R EEEEE R EEEEEEEEE R R R R R

/| DATA PORT defines the port on which the LCD
/! data lines are connected to

#def i ne DATA PCRT PORTF

#defi ne TRIS DATA PORT DDRF

/'l Control Signals

#define RS 1 /1 Register Select bit
#define RWO /! Read/ Wite bit
#define E 6 /1 dock bit

/1 CTRL_PORT defines the port where the control
/!l lines are connected

#define RWPIN PORTGhits. RQ /1 Port for RW
#define TRIS RW DDRGhits. RQ /l TRIS for RW
#define RS PIN PORTGhits. RGL /1 Port for RS
#define TRIS RS DDRGhits. RGL /l TRIS for RS
#define E PIN PCORTFbits. RF6 /1 PORT for E
#define TRRS E DDRFbits. RF6 /!l TRIS for E

/| Display OV CFF Control defines

#defi ne DON 0b00001111 /1 Display on
#def i ne DOFF 0b00001011 /1 Display off
#defi ne CURSOR_ON 0b00001111 /1 Cursor on

#defi ne CURSOR_OFF 0b00001101 /1 Cursor off
#defi ne BLINK ON 0b00001111 /1 Cursor Blink
#defi ne BLI NK_CFF 0b00001110 /1 Cursor No Blink

00 1998 Microchip Technology Inc. DS51112B - page 195

MPLAB-C17 USER’S GUIDE

#pragma |library

#pragnma option +l

MPLAB-C Source File Example

/***

* Selected code fromPIOrnicro C Libraries V1.00 (BETA)
* Thi s denonstrates how the code woul d
be witten for MPLAB-C

*

* Sone of the conditional

*

library file were renmoved for this exanple

***/

voi d Set CGRamAddr (char CGaddr)

{

TRl S_DATA PORT =
DATA PORT = DATA PORT & Oxf 0;
DATA PORT = DATA PORT |

RWPIN = 0;
RS PIN = 0;

Del ayFor 18TCY() ;
EPIN= 1;

Del ayFor 18TCY() ;
E PIN = 0

DATA_PORT
DATA_PORT

Del ayFor 18TCY() ;

EPIN=1;
Del ayFor 18TCY() ;
E PIN = 0

TRl S_DATA PORT =

return;

assenbly and comments fromthe original

/!l Lower nibble interface
TRI'S_DATA PORT & 0xfO0; /1 Make nibbl e i nput

/1 and write upper nibble
(((CGaddr | 0b01000000) >>4) & 0xOf);

/1 Set control signals

/! dock cnd and address in

/!l Lower nibble interface

DATA PORT & 0xfO0; /1 Wite | ower nibble
DATA PORT | (CGaddr &xO0f);

/! dock cnd and address in

/1 Lower nibble interface
TRI S_DATA PORT | OxOf; /1 Make inputs

DS51112B - page 196

00 1998 Microchip Technology Inc.

Appendix A. Porting Code from MPLAB-C to MPLAB-C17

MPLAB-C17 Source File Example
#i ncl ude <pl7c756. h>

#i ncl ude "xl cd. h"

/***

* Selected code fromPIQOricro C Libraries V2. 00 (BETA) *
* Witten and Tested using MPLABC V2. 00 *

LR R R R R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEESEEEEEE SRR EEEDEEEEEEEEEEEEEEEEEEE S

voi d Set CGRamAddr (char CGaddr)

{
/1 Lower nibble interface
TR S _DATA PORT &= 0xfO0; /1 WMake nibbl e i nput
DATA PORT &= 0xf 0O; /1 and write upper nibble
DATA PORT | = (((CGaddr | 0b01000000) >>4) & 0x0f);
RWPIN = 0; /1 Set control signals
RS PIN = 0;
Del ayFor 18TCY() ;
E PIN=1; // dock cmd and address in
Del ayFor 18TCY() ;
E PIN = 0;
/1 Lower nibble interface
DATA PORT &= OxfO; /1l Wite | ower nibble
DATA PORT | = (CGaddr &x0f) ;
Del ayFor 18TCY() ;
E PIN=1; // dock cmd and address in
Del ayFor 18TCY() ;
E PIN = 0;
/1 Lower nibble interface
TR S_DATA PORT | = 0xOf; /1 Make inputs
return;
}

00 1998 Microchip Technology Inc. DS51112B - page 197

MPLAB-C17 USER’S GUIDE

NOTES:

DS51112B - page 198 00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Appendix B. ASCII Character Set

Introduction

This appendix contains the ASCII character set.

ASCII Character Set

Least Significant Character

Most Significant Character

Hex 0 1 2 3 4 5 6 7
0 NUL | DLE | Space 0 @ P p
1 SOH | DC1 ! 1 A Q a q
2 STX | DC2 2 B R b r
3 ETX | DC3 # 3 C S c s
4 | EOT | DC4 $ 4 D T d t
5 ENQ | NAK % 5 E U e u
6 ACK | SYN & 6 F \% f v
7 Bell | ETB 7 G w g w
8 BS | CAN (8 H X h X
9 HT | EM) 9 | Y i y
A LF SUB * J 4 j z
B VT | ESC + K k {
C FF FS < L \ I |
D CR GS = M] m }
E SO RS > N n n ~
F Sl us / ? o} B 0 DEL

00 1998 Microchip Technology Inc.

DS51112B - page 199

MPLAB-C17 USER’S GUIDE

NOTES:

DS51112B - page 200 00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Appendix C. Detailed MPLAB-C17 Example

Introduction

This appendix gives an example of actual working source code with comments
included. This example is included on the distribution disk along with other

examples not included in this User’s Guide.

Highlights

This appendix presents the following example:

* Flashing LEDs

Flashing LEDs

/1 File: 17c42a.h

#ifndef _ 17C42A H
#define _ 17C42A H

extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned
extern unsi gned

extern struct

{

char
char
char
char
char
char
char
char
char
char
char
int

char
char
int

char
char
char

unsi gned C 1;

unsi gned DC: 1;
unsi gned Z:1;

unsi gned OV: 1;
unsi gned FSO: 1;
unsi gned FS1:1;
unsi gned FS2:1;
unsi gned FS3:1;

} ALUSTADbI ts;

/* Bank 0 SFR' s

*/

extern far unsi gned
extern near unsi gned
extern far unsi gned
extern far unsi gned
extern far unsi gned

TBLPT!
TBLPT!
TBLPT!
BSR;

char
char
char
char
char

/* same |location as TMROL/H */

h; /* same |ocation as TBLPTRL/H */

RL;
RH;

PORTA;
DDRB

PORTB;
RCSTA;
RCREG

00 1998 Microchip Technology Inc.

DS51112B - page 201

MPLAB-C17 USER’S GUIDE

extern
extern
extern
extern far union
{
struct
{ .
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned :
unsi gned
s
struct
{ .
unsi gned
unsi gned
unsi gned
};
} PORTAbi ts;
extern far union
{
struct
{ .
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
s
struct
{ .
unsi gned :
unsi gned
};
} RCSTAbits;
extern far union
{
struct
{ .
unsi gned
unsi gned
unsi gned :
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
s
struct
{ .
unsi gned :
unsi gned
};
} TXSTAbits;

far unsigned char TXSTA
far unsigned char TXREG
far unsigned char SPBRG

/* Bit O */

PRk R

NOT_RBPU: 1;

I NT: 1; /* Alternate nane for bit 0 */
TOCKI : 1; /* Alternate nane for bit 1 */
1 6; /* pad it */

RCO: 1; /* Alternate nane for bit 6 */

TXD8: 1;
TRM: 1;

01

SYNC. 1;
TXEN: 1;
TX8: 1;
CSRC. 1;

fX@:l; /* Alternate nane for bit 6 */

DS51112B - page 202

00 1998 Microchip Technology Inc.

Appendix C. Detailed MPLAB-C17 Example

/* Bank 1 SFR' s */

extern
extern
extern
extern
extern
extern
extern
extern

near

far

near

far

near

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

/* Bank 2 SFR' s */

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

far
far
far
far
far
far
far
far
far
far

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

/* Bank 3 SFR' s */

extern
extern
extern
extern
extern
extern
extern
extern
extern

#endi f

;. File:

SFRO

| NDFO
FSRO
PCL
PCLATH

ALUSTAbi t s

ALUSTA
TOSTAbI

TBLPTR
TBLPTRL

far
far
far
far
far
far
far
far
far

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

17C4A2a. asm
LI ST P=17C42A

UDATA

GLCBAL
GLCBAL
GLCBAL
GLCBAL

ts

RES
RES
RES

| NTSTA,

char
char
char
char
char

char
char
int

char
char
char
char
int

char
char

char
char
char
char
int

char
char
char
char

R RRPPR

P

PR RRPPR

P

DDRC,
PORTC,
DDRD;
PORTD,
DDRE;
far unsigned char PORTE
far unsigned char
far unsigned char

PIR
Pl E

TVRL,
TVR2;
TVR3;

PR2;
PR3;
PR3L;
PR3H,

/* same location as TMR3L/H */

/* same location as PR3L/H */

PWLDCL;
PW2DCL;
PWLDCH;
PW2DCH,
/* sane | ocation as CA2L/H */

CAZ;
CA2L;
CA2H;

TCONL,
TCON2;

TOSTAbi t s,

0x000
0x001
0x002
0x003

0x004
0x005
0x006
0x007
0x008
0x009
0x00A

0x00B
0x00C

0x00D

CPUSTAbI t s

I NDFO, FSRO, PCL, PCLATH, ALUSTA, TOSTA, CPUSTA
I NDF1, FSR1, WREG, TMRO, TMROL, TMROH

TBLPTR, TBLPTRL, TBLPTRH
ALUSTAbI t s,

00 1998 Microchip Technology Inc.

DS51112B - page 203

MPLAB-C17 USER’S GUIDE

TBLPTRH RES 1 ; OxO00E
BSR RES 1 ; OxOOF
e Bank O Special Function Registers -------------munoo--
PORTA
PORTADbI t s RES 1 ; 0x010
DDRB RES 1 ; 0x011
PCRTB RES 1 ; 0x012
RCSTAbi t s
RCSTA RES 1 ; 0x013
RCREG RES 1 ; 0x014
TXSTAbi ts
TXSTA RES 1 ; 0x015
TXREG RES 1 ; 0x016
SPBRG RES 1 ; 0x017
GLCBAL PORTA, DDRB, PCRTB, RCSTAbits, RCSTA, RCREG
GLCBAL TXSTAbits, TXSTA TXREG SPBRG
GLCBAL PCRTAbits
e Bank 1 Special Function Registers --------------------
SFR1L UDATA
GLOBAL DDRC, PCRTC, PORTChits, DDRD, PORTD, PORTDbits
GLOBAL DDRE, PCRTE, PORTEbits, PIR, PIE
DDRC RES 1 ; 0X110
PORTC
PORTOhi t s RES 1 ; 0x111
DDRD RES 1 ; 0X112
PORTD
PORTDhi t s RES 1 ; 0x113
DDRE RES 1 ; 0X114
PORTE
PORTEDI t's RES 1 ; 0x115
PIR RES 1 ; 0x116
PIE RES 1 ; 0x117
END
Il File: LED42.C

#i nclude "17C42A. H'

#defi ne ROLF(Bank,

#define SetBank _asm

/* Prototypes */
void main(void);
void delay(void);
voi d WiteToPORTA(
void WiteToPORTB(
void WiteToPORT((
void WiteToPORTD(
void Fl ashAl | (unsi

char
char
char
char

unsi gned
unsi gned
unsi gned
unsi gned

Address) _asm novlb Bank _endasm \

_asm rlcf Addr ess _endasm
movlb 0x01 _endasm
void);
void);
void);
void);

gned char *);

i

count 1;
count 2;

fl ashcount ;

DS51112B - page 204

00 1998 Microchip Technology Inc.

Appendix C. Detailed MPLAB-C17 Example

#pragma nocont ext
#pragma nosaver egs

void main(void)

PORTB = Oxff; /1 CLEAR PORT B register
DDRB = 0x00; [/l Set Port B as Qut put
PORTC = Oxff; I/l Aear Port C Register
DDRC = 0x00; [/l Set Port C as out put
PORTD = Oxff; [/l dear Port D Register
DDRD = 0x00; [/l Set Port D as out put

FlashAl | (& | ashcount);
goto nmai n;
} /* end main */

#pragma nocont ext
#pragma nosaver egs

void WiteToPCRTA()

{
for(i =2, i <4; i++)
PORTA = Oxff;
PORTA = ~(1 <<i);
del ay();
} /* end for */
PORTA = Oxff;
} /* WiteToPORTA */
#pragma nocont ext
#pragma nosaver egs
void WiteToPCRTB()
{
for(i =1; i !'=0; i +=1)
PORTB = Oxff;
PCRTB = ~i ;
del ay();
} /* end for */
PORTB = Oxff;

} /* end WiteToPORTB */
#pragna nocont ext
#pragna nosaver egs

void WiteToPORTQ()
{

PORTC = Oxfe;

do
del ay();
ALUSTA | = 0x01;

ROLF(1, PCRIC);
}whi | e(ALUSTAbi ts. C);

} /* end WiteToPORTC */

00 1998 Microchip Technology Inc.

DS51112B - page 205

MPLAB-C17 USER’S GUIDE

#pragma nocont ext
#pragma nosaver egs

void WiteToPCORTD()

{
for(i =0; i <8; i++)
PORTD = Oxff;
PORTD = ~(1 <<i);
del ay();
} /* end for */
PORTD = Oxff;

} /* end WiteToPORTD */

voi d Fl ashAl | (unsigned char *flashcount)

{

for(*flashcount = 0; *flashcount < 5;

{
PORTB = 0X00;
PORTC = 0X00;
PORTD = 0X00;
delay();
PORTB = OXFF;
PORTC = OXFF;
PORTD = OXFF;
del ay();

} /* end for */
} /* end FlashAll */

*fl ashcount ++)

DS51112B - page 206

00 1998 Microchip Technology Inc.

Appendix C. Detailed MPLAB-C17 Example

Linker File to Link Flashing LEDs Example

Il
Il
Il
11
Il
11
Il

Il

11
Il
11

Il
Il
Il
Il
Il
Il
Il
11
11
Il
Il

Il
11
Il
Il
Il
11
Il

11
11
Il
Il

Il
Il
Il
Il
Il
Il
Il

Il

File: |ed42.|kr
Exanpl e Li nker Command File For a Pl CL7CA2A

The Linker supports the fol | owi ng command |ine options:

-0 <fil enane> : specify output file 'fil enane’

-m <fil enane> : create map file 'fil enane’

-L <libpat h> : additional library directory for
search path

-s : strip synbol table and line info

from out put

The linker command file is used:
1) To specify an additional directory for the library
search path
2) To specify the object files for |inking
3) To include additional |inker command fil es
4) To define the target’s nenory architecture
5) To locate sections within the target’s nenory

The following statenent specifies an additional directory
for the library search path:

LI BPATH " li bpath’ ['libpath’...]
wher e,

"l'ibpath’ is an absolute path to the directory containing
a library. Note, nmore than one path can specified in a
single
LI BPATH st at enent .

The following statenent specifies object files for |inking:
FILES 'objfile ['"objfile ...]

wher e,
"objfile is an object file. Note, nore than one object
file can be

specified in a single FILES statenent.

The following statenent includes an additional |inker
command file:
| NCLUDE ' cndfil e’
wher e,
"cndfile’ is the nane of the linker cmd file to include.
Not e,
command line options in an included linker cnd file are
i gnor ed.

The following statenents define portions of the target’s
menory
by specifiying a name for a block of menmory, its starting
addr ess,
and its ending address:
DATABANK NAME=' nemNane’ START=" addr’ END=' addr’
CODEPAGE NAME=' nermNane’ START=' addr’ END=" addr’
SHAREBANK NAME=" nermiNane’ START=' addr’ END=" addr’
wher e,
"menNane’ is any ASCI| string used to identify a
DATABANK,
CCDEPAGE, or SHAREBANK
"addr’ i s a decinal or hexadeci mal nunber

00 1998 Microchip Technology Inc.

DS51112B - page 207

MPLAB-C17 USER’S GUIDE

speci fying an address
/1 The SHAREBANK statenent identifies a region in RAM which
i s mapped acr oss
/1 mulitple banks. Note, a SHAREBANK st atenent shoul d be
given for each bank that
I/ shares a region and each of these statenents shoul d have
the same NAME.

11

Il

/1 The follow ng statenent defines a section by specifying
its nane,

/1 the block of menory in which to | oad the section, and
optionally,

/1 the block of menory in which to run the section:
11 SECTI ON NAME=' secNane’ LQAD=" nemNarme’ RUNE' nenmNane’

/1 wher e,

I "secNane’ is an ASCI| string used to identify a
SECTION, this is the

/1 sane nane for the section in the COFF file

I "menNane’ is a previously defined DATABANK or CODEPAGE

/1 The optional run block allows sections which contain
initialized data

// to be stored in a CODEPAGE (ROM and copied to a DATABANK
(RAM at runtirme.

CODEPAGE NAME=r eset vect or START=0x0000 END=0x0007
/| Reset Vect or

CCDEPAGE NAME=page0 START=0x0022 END=Ox1FFF
[/ On chip menory

DATABANK NAME=sf r 0 START=0x00 END=0x1F
PROTECTED

DATABANK NAME=sf r 1 START=0x0110 END=0x117
PROTECTED

DATABANK NAME=gpr O START=0x20 END=0x7F
/'l GPRs Bank 0

DATABANK NAME=st ack START=0x80 END=0xFF
/] Stack RAM

SECTI ON NAME=SFRO RAMEsfr O

/| Data segnents defined

SECTI ON NAME=SFRL RAMEsfr 1

Il in 17C42A asm

SECTI ON NAME=. bss_t. 0 RAM=gpr 0

/1 .bss section resides in RAM
STACK S| ZE=0x7F RAMsst ack

DS51112B - page 208 00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Appendix D. PIC17CXXX Instruction Set

Introduction

This appendix gives the instruction set for the PIC17CXXX device family.

Highlights

This appendix presents the following reference information:
¢ PIC17CXXX Instruction Set

PIC17CXXX Instruction Set

The PIC17CXXX, Microchip’s high-performance 8-bit microcontroller family,
uses a 16-bit wide instruction set. The PIC17CXXX instruction set consists of
58 instructions, each a single 16-bit wide word. Most instructions operate on a
file register, f, and the working register, W (accumulator). The result can be
directed either to the file register or the W register or to both in the case of
some instructions. Some devices in this family also include hardware multiply
instructions. A few instructions operate solely on a file register (BSF for

example).

Table D.1: PIC17CXXX Literal and Control Operations

Mnemonic Description Function

MOVFP fp Move fto p fop

MOVLB k Move literal to BSR k - BSR

MOVLP k Move literal to RAM k - BSR <7:4>
page select

MOVPF p,f Move p to f p - W

MOVWF f Move W to F w o f

TABLRD t,if Read data from table TBLATH - fift=1, TBLATL
latch into file f, then - fift=0;
update table latch with ProgMem(TBLPTR)
16-bit contents of - TBLAT
memory location TBLPTR+1 - TBLPTR if i=1
addressed by table
pointer

00 1998 Microchip Technology Inc.

DS51112B - page 209

MPLAB-C17 USER’S GUIDE

Table D.1: PIC17CXXX Literal and Control Operations (Continued)

Mnemonic Description Function
TABLWT t,if Write data from file f to f - TBLATHIift=1,
table latch and then f - TBLATLIift=0;
write 16-bit table latch TBLAT
to program memory - ProgMem(TBLPTR);
location addressed TBLPTR+1 - TBLPTRIfi=1
TLRD t,f Read data from table TBLATH - fift=1
latch into file f (table TBLATL - fift=
latch unchanged)
TLWT t,f Write data from file f f - TBLATHIift=1
f - TBLATLift=0
ADDLW k Add literal to W (W+k) - W
ADDWF fd AddWto F W+f) - d
ADDWFC f,d Add W and Carry to f W+f+C) - d
ANDLW Kk AND Literal and W (W.AND. k) - W
ANDWF fd AND W with f (W.AND.f) - d
CLRF f,d Clear f and Clear d 0x00 - f,0x00 - d
COMF f,d Complement f .NOT.f - d
DAW f,d Dec. adjust W, store W adjusted - fandd
in f,d
DECF f,d Decrement f (f-1) - fandd
INCF f,d Increment f (f+1) - fandd
IORLW k Inclusive OR literal (W.OR. k) - W
with W
IORWF fd Inclusive or W with f (W.OR.f) -~ d
MOVLW k Move literal to W k - W
MULLW k Multiply literal and W (kxW) - PH, PL
MULWF f Multiply W and f (Wxf) - PH,PL
NEGW f,d Negate W, store in f W+1) - f(W+1) - d
andd
RLCF f,d Rotate left through carry
RLNCF fd Rotate left (no carry)

DS51112B - page 210

00 1998 Microchip Technology Inc.

Appendix D. PIC17CXXX Instruction Set

Table D.1: PIC17CXXX Literal and Control Operations (Continued)

Mnemonic Description Function
RRCF f,d Rotate right through
carry
RRNCF fd Rotate right (no carry)
SETF f,d Set fand Set d Ooxff - f,Oxff — d
SUBLW Kk Subtract W from literal k-wW) - W
SUBWF fd Subtract W from f f-w) - d
SUBWFB f,d Subtract from f with f-W-¢) - d
SWAPF fd Swap ff (0:3) - d(4:7),
f(4:7) - d(0:3)
XORLW k Exclusive OR literal (W .XOR. k) - W
XORWF f,d Exclusive OR W (W .XOR.f) - d
with f

Table D.2: PIC17CXXX Bit Handling Instructions

Mnemonic Description Function
BCF f,b Bit clear f 0 - f(b)
BSF f.b Bit set f 1 - f(b)
BTFSC fb Bit test, skip if clear skip if f(b) =0
BTFSS fb Bit test, skip if set skip if f(b) =1
BTG f.b Bit toggle f .NOT. f(b) - f(b)

Table D.3: PIC17CXXX Program Control Instructions

Mnemonic Description Function
CALL k Subroutine call PC+1 - TOSk -
(within 8k page) PC(12:0),

k(12:8) — PCLATH(4:0),
PC(15:13) — PCLATH(7:5)

CPFSEQ f Compare f/w, skip if f-W, skip if f =W
f=w

CPFSGT f Compare f/w, skip if f-W, skip if f > W
f>w

00 1998 Microchip Technology Inc. DS51112B - page 211

MPLAB-C17 USER’S GUIDE

Table D.3: PIC17CXXX Program Control Instructions (Continued)

Mnemonic Description Function
CPFSLT f Compare f/w, skip if f< f-W, skip if f <W
w
DECFSz fd Decrement f, skip if O (f-1) - d, skipif0
DCFSNz fd Decrement f, skip if not | (f-1) - d, skipif not0
0
GOTO k Unconditional branch k - PC(12:0)
(within 8Kk) k(12:8) - f3(4:0),
INFSNz fd Increment f, skip if not (f+1) » d, skip if not 0
zero
LCALL k Long Call (within 64k) (PC+1) - TOS; k - PCL,
RETFIE Return from interrupt, (f3) -~ PCH:k - PCL
enable interrupt
RETLW k Return with literal in W k - W, TOS - PC,
(f3 unchanged)
RETURN Return from subroutine | TOS - PC
TSTFSz f Test f, skip if zero skipiff=0

PIC17CXXX Special Control Instructions

Mnemonic Description Function
CLRWDT Clear watchdog timer 0 - WDT,0 - WDT
prescaler,
1-PD,1 - TO
NOP No operation None
SLEEP Enter Sleep Mode Stop oscillator,

power down, 0 - WDT,
0 - WDT Prescaler
1 -PD1-TO

DS51112B - page 212

00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Appendix E. References

Introduction

Highlights

References

This appendix gives references that may be helpful in programming with
MPLAB-C17.

This appendix lists the following reference types:
* General C Information

e C Standards Information

American National Standard for Information Systems — Programming
Language — C. American National Standards Institute (ANSI), 11 West
42nd. Street, New York, New York, 10036.

This standard specifies the form and establishes the interpretation of
programs expressed in the programming language C. Its purpose is to
promote portability, reliability, maintainability, and efficient execution of C
language programs on a variety of computing systems.

Harbison, Samuel P., and Steele, Guy L., C A Reference Manual,
Fourth Edition, Prentice-Hall, Englewood Cliffs, New Jersey 07632

A best selling authoritative reference for the C programming language.

Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language,
Second Edition. Prentice Hall, Englewood Cliffs, New Jersey 07632

Presents a concise exposition of C as defined by the ANSI standard.
This book is an excellent reference for C programmers.

00 1998 Microchip Technology Inc.

DS51112B - page 213

MPLAB-C17 USER’S GUIDE

NOTES:

DS51112B - page 214 00 1998 Microchip Technology Inc.

MIicCrROCHIP

MPLAB-C17 USER’S GUIDE

Appendix F. On-Line Support

Introduction

Connecting to

Microchip provides on-line support via the Microchip World Wide Web
(WWW) site.

The web site is used by Microchip as a means to make files and information
easily available to customers. To view the site, the user must have access to
the Internet and a web browser, such as Netscape Navigator or Microsoft
Internet Explorer. Files are also available for FTP download from our FTP site.

the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to
attach to:

www.microchip.com
The file transfer site is available by using an FTP service to connect to:
ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may
download files for the latest Development Tools, Datasheets, Application
Notes, User’s Guides, Articles and Sample Programs.

In addition to technical documentation, a variety of Corporate information is
also available:

* Microchip Sales Offices, Distributors and Factory Representatives
» Latest Microchip Press Releases

e Technical Support Section with Frequently Asked Questions

» Design Tips

» Device Errata

e Job Postings

* Microchip Consultant Program Member Listing

» Links to other useful Web Sites related to Microchip Products

Software Releases

Software products released by Microchip are referred to by version numbers.
Version numbers use the form:

XX. VY. ZZ

Where xx is the major release number, yy is the minor number, and zz is the
intermediate number.

00 1998 Microchip Technology Inc.

DS51112B - page 215

MPLAB-C17 USER’S GUIDE

Intermediate Release

Intermediate released software represents changes to a released software
system and is designated as such by adding an intermediate nhumber to the
version number. Intermediate changes are represented by:

e Bug Fixes
» Special Releases
* Feature Experiments

Intermediate released software does not represent our most tested and stable
software. Typically, it will not have been subject to a thorough and rigorous test
suite, unlike production released versions. Therefore, customers should use
these versions with care, and only in cases where the features provided by an
intermediate release are required.

Intermediate releases are primarily available through the Microchip Web Site.

Production Release

Production released software is software shipped with tool products. Example
products are PRO MATE Il, PICSTART Plus, and PICMASTER. The Major
number is advanced when significant feature enhancements are made to the
product. The minor version number is advanced for maintenance fixes and
minor enhancements. Production released software represents Microchip’s
most stable and thoroughly tested software.

There will always be a period of time when the Production Released software
is not reflected by products being shipped until stocks are rotated. You should
always check the Microchip Web Site for the current production release.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of
the latest versions of all of Microchip’s development systems software
products. Plus, this line provides information on how customers can receive
any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada
1-602-786-7302 for the rest of the world

These phone numbers are also listed on the "Important Information” sheet that
is shipped with all development systems. The hot line message is updated
whenever a new software version is added to the Microchip Web Site, or when
a new upgrade kit becomes available.

DS51112B - page 216 00 1998 Microchip Technology Inc.

Appendix F. On-Line Support

NOTES:

00 1998 Microchip Technology Inc. DS51112B - page 217

MPLAB-C17 USER’S GUIDE

NOTES:

DS51112B - page 218 00 1998 Microchip Technology Inc.

)
MICROCHIP MPLAB-C17 USER'S GUIDE
| ndex
Symbols Alphanumeric character 161 defaultooveeeeiiiiee e 48
__ 41,42 ALUSTA .68 Definition Files63
S 42 AND ...l 41 Delay Functions 171
L 41 Angle Brackets ... 3 dVISION eooeervveericerire e 40
R 41 ANSI . 79 DOS =
#define ...ooooieeeiieeeeeee e, 23 Arithmetic Operators 40 double ... 30, 31, 182
#elif oo 24 ARRAYS ... 98 do-whilecoociiiiii 47
HEISE oviiiiiiiie e 24 AIMAYS o 50, 81
HENGif 111 oooeeeeeeene 24 ASCIl cocoooriiiiinnnen, 162,166,199 E
HOITOT oo 24 assemblercceene. 71, 189 €lSE i 46
Bf 25 assembly laNgUAge 78 Embedded Control Handbook3
o1 R 25 Assignment Operators 42 endlibrary ... 188
HINAE L.viviveeieeeeeee e 26 asynchronous mode 135 ~ Enumerations 35,82
HNCIUAE oo 26 AULD .eviriiieiiie et 30 environment variable 27
HNE ovvei i 27 AUTOEXEC.BAT ..o, S epilogue code ..o 28
#pragma error fileoceveeiiiiiiiii e, 8
(3Tl [RRRR 27 B escape SeqUences 21
directivescccceuennn.n. 192 Basic Data Types 30 Example Code 194, 201
idata e 27,186 Binary ... 21 Executable directory 7
st 28 Bitfields ... 61,682,182 extem ... 30, 64
NOCOMEXT e 28 bits data typecccevvviiiiiinnnne 182 external declaration 63
o) [U 29 Bitwise Operators 42
NOSAVEIEQS ..ueveevrrerrenneenens 28 o] =T | 49 F
romdata ..ooeeeeoo 27,186 Brown-outReset 117 far 30, 64
udata ..o, 27, 186 BSR ., 68 float ... 301 311 182
#pragma varlocate {gpr | sfr}n ..29 Floating Pointccccoeveveneennn. 80
BUNDET oo 29 C fOr e 47
U oo 41 CKeywordscccoeceieiiiiiiinnnnnn, 21 FSR o 71
g 47 COLL7T.ASM ..o 66 FSRO ooooriicorsoomsorroos 71
ga 42 COSI7.ASM ..ooveveieereiiereinan, 66 FTP e 215
L 20 calling convention 77 Function Declarations 37
g 20 CAPIIE woroccescerrroorr oo 92 Function Prototyping 38
UL ettt 20 CASE . 48, 190
) oo 3 Char e 30,31,18 G
L 41 Characters ..., 0 global .. 31
F ot 41 CI'WDT o 65 Globalvariables 32
j 41 CODIE woooveoeeeeeeereeeereee 8 GOTO ooeeeveeereeeseeeseren, 190
TSR 42 Code
PP 41 initialize data move 85 H
> s 41 interrupt handler 84 Hardware libraries 84
DT s 41 STANMUP ..o, 85 HeaderFiles 63, 188
5> 42 CODEPAGEcccccccvviiiiiiinns 207 HEXfile ..o, 8
@ e 183 Command Line Interface 5 Hexadecimal ... 21
R et 42 Comments ... 20,71
STARTUP oo 66 Conditional Operator 44 |
ASMN et 71 CONSE .. 30, 189 12C, Software 95, 147
Tendasm ..o 71 Constants Identifierscccccvviieieeiiiennnnnn. 79
T oottt e, 42 Charactercee.... 21, 22 1 U PR 46
| e, 42 NUMErC ..o 21,22 Include directory ..., 4
e 42 SHNG .o 22,29 InCrement ... 43
CONLINUE evvvveiieesciiieie e e s siieeieeas 50 Initialized Datac....... 67
A Control character 162 Initialized data move code 85
absolute section 27 Customer SUpport 4 Initializing Arrays 51
Add NOdE ...ovoveeeeeeeen 14 Input Capture Functions 91
AAAIEON ovooooiooi 20 D Install MPLAB-17 Language Tool 11
Address spaces data ..o, 67 InSta”_INT ------------------------------- 65
ROM and RAM oo 53 Data Typescccoveeenenen. 31, 182 INStall_PIV ..oouvviiiiinareneeeeeen, 65
Alphabetical character 161 DATABANKccoociviriiieiiinne 207 INStall_TOCKIuvvuemeniiinineennn. 65
DECrEMENt ...ccvveeeeieiieeeeeeeeaens 43 Install_TMROcooeviviriiiennnnnn. 65

00 1998 Microchip Technology Inc.

DS51112B - page 219

MPLAB-C17 USER’S GUIDE

Installing MPLAB-C17cc...... 5
Nt oo 30, 31, 182
1] Yo T 80
1] T =) P 215
Interrupt handler code 84
Interrupts ... 65, 68, 71, 105, 181
L
LCD it 139
Librariancccccviiineiieiiiiinnnn, 3
Librariesccccccveviiiiniieiiininnn, 188
hardwarecccooevevvveennnnnn. 84
pre-compiled math 84
softwarecccvveiiinenies 84
standardcooeeiiiiiiiiennns 84
Library directorycccoocevuennneen 7
[T = P 3
Linker Command File 207
Linker Scriptccvvviieieeiiieinnnnn. 16
1] S 28
oo | 31
Local variablesccccevvunnn. 32
Logical Operatorsccc.uu... 41
oo o IR 30, 31, 182
[OWEI-CASE .vuvvevvveriiriieeeeeaeinnnn 176
M
MAIN oo e 67
Make Projectcccceveviieeennnnns 17
Math Librariescccoeevveennnn. 178
MCC_INCLUDE 5,7,27,188
MCLR .o 117
MEMOIY ovvvvniieeieeiiie e eeeeaeiannn 123
memory deviCesccceuvnnn. 101
Memory Functions 174
Microwire Functions 109
MOAUIUS ...evvniievieviiiii e 40
MPLAB ..., 1,73
MPLAB-SIM ...cociiiiiiiiiiiiiieeenns 74
MPLIB .o 181
MPLINK ., 8,13
Multiple Files in a Project 9
multiplicationccoeveevviiinnnnn. 40
N
(01T TSP 30
nested interruptsocovveevnnnnn. 68
Nesting Structuresc....... 60
New Projectcccceeeeveeveeennnnnn. 12
[N o] o R 65
NOT e 41
Number Conversion 165
Numeric character 163
(@]
(@ - | U 21
OPEeratorsccveeeveeieeiininennans 40
OR ittt 41
ORG i, 187
P
paged/banked data 30

Passing Arguments to Functions 39

Passing Pointers to Functions ...
Passing Variables

PIC17CXX Instruction Set
PICSTART Plus
Pipe Character (|)
Pointer Arithmetic

Port Functions
Porting Code

post-decrement
Precedence of Operators
Pre-Compiled Math Libraries
pre-decrement
pre-increment
Preprocessor Directives
PRO MATE Il
processor assembly file
processor definition file
Processor Header

Program Control Statements
program memory
Project manager
Project Window

Pulse Width Modulation Functions .

README.MCC
recyrsive functions

Register file definitions

Relational Operators
Reset Functions

Returning Values from Functions 39

ROM and RAM address spaces .53
ROM and RAM pointers 54

s PrOJectOptlons
SHAREBANK
shared global variables

Software libraries
Software Releases

Software Stackcooecevneee. 181
Software stackccoeevvvnnen. 181
Special Function Registers 63
SPI FUNCLONS ..cevvivviiiineeinne, 121
SPI, Softwarecooevevnvinninnns 153
SSP i 95
SEACK viivviiieiiiiieee e 66
stack frameccoceoviiiiiiiiiinnns 28
Stack initialization 66
STACKSIZEcccoviviiiiiinn. 208
Standard librariescooccun.. 84
Start up codecoveeviiiiiiienieenn. 85
Startup Codeooovevviiiiiieniennn, 66
SEALIC ovvvviieeii i 30
Static StriNgs ..v.vvvveevieeiieiiereeenn. 52
Storage Class

Ly =11 1 33

SLALIC .vvvieiiiiiiiieei e 33

volatileoooovviiniiiiiiiin, 33
StNGS evveveevieiinennn. 51, 166, 174
LS (U o1 I 57
SHrUCtUrES ..vvvvvvviineeennen, 57,81
SUbtractioncceceevviiiiiiiniiinnns 40
51070 oJo] S 215
SWaPF i 65
SWItCh ovvieviiiieiieee. 48, 82, 190
synchronous mode 135
System Requirements 1
T
TBLPTR i 71
TBLPTRL .ovvvieiiiiiiiiiiiices 71
Text Conversionc...ueeeee.. 165
Timer FUNCtionsc.c.uuveee.. 127
typedef ..o, 37
U
UART, Softwarecceeuen... 157
UNIONS covviiiiiiiieeeeeeeiie 59, 81
UNSIigNed ...ooovvvvveieeiee e 30
upper-case characters 176
USART Functions 132
USE_INITDATA ..o 67
USE_STARTUP ...ccocvvviiiiinnnns 67
Vv
Variable Allocation 183
Variable Declaration 31
variablescceeveiiiiiiiiininn 30
VOId i, 30, 31
volatilecoceeuviinnneen 34, 63, 64
w
Warrantyocceevveeeeeeeninneeennnnenes 4
WDT i 118
WeD Site ..ooovvviiiiiiiiiiceiieean, 215
While .o, 47, 48
WREG ..., 68, 71

DS51112B - page 220

00 1998 Microchip Technology Inc.

00 1998 Microchip Technology Inc. DS51112B 221

MPLAB-C17 USER’S GUIDE

DS51112B 222 00 1998 Microchip Technology Inc.

00 1998 Microchip Technology Inc. DS51112B 223

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc.

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 602-786-7200 Fax: 602-786-7277
Technical Support: 602-786-7627
Web: http://www.microchip.com

Atlanta

Microchip Technology Inc.

500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350

Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc.

5 Mount Royal Avenue

Marlborough, MA 01752

Tel: 508-480-9990 Fax: 508-480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180

Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc.

14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809

Tel: 972-991-7177 Fax: 972-991-8588

Dayton

Microchip Technology Inc.

Two Prestige Place, Suite 150
Miamisburg, OH 45342

Tel: 937-291-1654 Fax: 937-291-9175

Los Angeles

Microchip Technology Inc.

18201 Von Karman, Suite 1090

Irvine, CA 92612

Tel: 714-263-1888 Fax: 714-263-1338

New York

Microchip Technology Inc.

150 Motor Parkway, Suite 202
Hauppauge, NY 11788

Tel: 516-273-5305 Fax: 516-273-5335

San Jose

Microchip Technology Inc.

2107 North First Street, Suite 590

San Jose, CA 95131

Tel: 408-436-7950 Fax: 408-436-7955

Toronto

Microchip Technology Inc.

5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong

Microchip Asia Pacific

RM 3801B, Tower Two

Metroplaza

223 Hing Fong Road

Kwai Fong, N.T., Hong Kong

Tel: 852-2-401-1200 Fax: 852-2-401-3431

India

Microchip Technology Inc.

India Liaison Office

No. 6, Legacy, Convent Road

Bangalore 560 025, India

Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan

Microchip Technology Intl. Inc.

Benex S-1 6F

3-18-20, Shinyokohama

Kohoku-Ku, Yokohama-shi

Kanagawa 222 Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku

Seoul, Korea

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology

RM 406 Shanghai Golden Bridge Bldg.
2077 Yan'an Road West, Hong Qiao District
Shanghai, PRC 200335

Tel: 86-21-6275-5700

Fax: 86 21-6275-5060

Singapore

Microchip Technology Taiwan
Singapore Branch

200 Middle Road

#07-02 Prime Centre

Singapore 188980

Tel: 65-334-8870 Fax: 65-334-8850

ASIA/PACIFIC (CONTINUED)
Taiwan, R.O.C

Microchip Technology Taiwan

10F-1C 207

Tung Hua North Road

Taipei, Taiwan, ROC

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd.

505 Eskdale Road

Winnersh Triangle

Wokingham

Berkshire, England RG41 5TU

Tel: 44-1189-21-5858 Fax: 44-1189-21-5835

France

Arizona Microchip Technology SARL

Zone Industrielle de la Bonde

2 Rue du Buisson aux Fraises

91300 Massy, France

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany

Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125

D-81739 Muchen, Germany

Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL
Centro Direzionale Colleoni

Palazzo Taurus 1 V. Le Colleoni 1

20041 Agrate Brianza

Milan, Italy

Tel: 39-39-6899939 Fax: 39-39-6899883

1/13/98

DHY Corificafion, Inc

1311 Tre Remisrisnda
Accrpdied By (ke Avd
E I
[" o =
L "=
* ® (’
ﬁﬂ' ANE|- AR il lﬂ.lmﬂ]w
L3 L =
L *
L

IS0 8001 REGISTERED FIRM

OHY NESC

Microchip received ISO 9001 Quality
System cetrtification for its worldwide
headquarters, design, and wafer
fabrication facilities in January 1997.
Our field-programmable PICmicro™ 8-
bit MCUs, Serial EEPROMSs, related
specialty memory products and devel-
opment systems conform to the strin-
gent quality standards of the
International Standard Organization

(1S0).

All rights reserved. © 3/98, Microchip Technology Incorporated, USA. 3/98 Q Printed on recycled paper.

property of their respective companies.

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infingement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property
rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the

DS51112B-page 224

00 1998 Microchip Technology Inc.

	MPLAB‰C17 User's Guide
	Chapter 1. About MPLAB-C17
	Introduction
	Highlights
	ANSI Compatibility
	System Requirements
	About this Guide
	Conventions Used in this Guide

	Recommended Reading
	Warranty Registration
	Customer Support

	Chapter 2. Getting Started with MPLAB-C17
	Introduction
	Highlights
	Installing MPLAB-C17
	Windows Environment
	DOS Environment

	Command Line Interface
	Creating Your First MPLAB-C17 Project
	Using Multiple Files in a Project
	Making Projects in the MPLAB Integrated Developmen...
	Introduction
	Highlights
	Making a Project with MPLAB-C17
	Adding Pre-Compiled Object Files

	Chapter 3. MPLAB-C17 Fundamentals
	Introduction
	Highlights
	C Fundamentals
	Components of an MPLAB-C17 Program
	Comments
	C Keywords
	Constants

	Preprocessor Directives
	#define
	#endif
	#error
	#if
	#ifdef
	#ifndef
	#include
	#line
	#pragma {code|udata|idata|romdata} [[name] [{{gpr ...
	#pragma nocontext
	#pragma nosaveregs
	#pragma list
	#pragma nolist
	#undef

	Variables
	Basic Data Types
	Variable Declaration
	Storage Class (extern, static, volatile)
	Enumeration
	typedef

	Functions
	Function Declarations
	Function Prototyping
	Passing Arguments to Functions
	Returning Values from Functions

	Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Increment and Decrement Operators
	Conditional Operator
	Precedence of Operators

	Program Control Statements
	if Statement
	if-else Statements
	for Statement
	while Statement
	do-while Statement
	switch Statement
	break Statement
	continue Statement

	Arrays and Strings
	Arrays
	Strings
	Initializing Arrays

	Pointers
	Introduction to Pointers
	Pointer Arithmetic
	Passing Pointers to Functions

	Structures and Unions
	Introduction to Structures
	Introduction to Unions
	Nesting Structures
	Bit-fields

	Chapter 4. MPLAB-C17 and PICmicro™ MCU Programming...
	Introduction
	Highlights
	Processor Header and Assembly Definition Files
	Software Stack
	C Startup Code
	Interrupts
	Internal Assembler

	Chapter 5. Using MPLAB-C17 with Other Microchip To...
	Introduction
	Highlights
	MPLAB IDE
	MPLAB-SIM Simulator
	PROCMD

	PICSTART Plus and PRO MATE II

	Chapter 6. Mixing Assembly Language and C Modules
	Introduction
	Highlights
	C calling convention
	Mixing assembly language and C variables and funct...

	Chapter 7. ANSI Implementation Issues
	Introduction
	Highlights
	Identifiers
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures and Unions
	Bit-Fields
	Enumerations
	Switch statement
	Preprocessing directives

	Chapter 8. Libraries
	1.0 Introduction
	1.1 Highlights
	1.2 MPLAB-C17 Library Functions and Pre-Compiled O...
	1.3 Pre-Compiled Math Libraries

	2.0 Hardware Peripheral Library
	2.1 A/D Convertor Functions
	2.2 Input Capture Functions
	2.3 I2C Functions
	2.4 Interrupt Functions
	2.5 I/O Port Functions
	2.6 Microwire‚ Functions
	2.7 Pulse Width Modulation Functions
	2.8 Reset Functions
	2.9 i SPI™ Functions
	2.10 Timer Functions
	2.11 USART Functions

	3.0 Software Peripheral Library
	3.1 External LCD Functions
	3.2 Software I2C Functions
	3.3 Software SPI Functions
	3.4 Software UART Functions

	4.0 General Software Library
	4.1 Character Classification Functions
	4.2 Number and Text Conversion Functions
	4.3 Delay Functions
	4.4 Memory and String Manipulation Functions

	5.0 Math Library
	5.1 32-bit Integer and 32-bit Floating Point Math ...

	Appendix A. Porting Code from MPLAB-C to MPLAB-C17...
	Introduction
	External Differences
	Internal Differences

	Porting Code
	Data Types
	bits data type

	Variable Allocation
	General
	Using @ to allocate variables at absolute location...
	Using @ to allocate local variables in global scra...
	Function arguments using shared global variables
	Use #PRAGMA IDATA, UDATA, ROMDATA to allocate spec...

	Code Allocation
	Allocating code at a specific address using ORG or...
	Access to pre-loaded code in ROM

	Header Files and Libraries
	Header file inclusion
	Libraries
	The use of const
	Inline assembler support
	Switch..case support

	#pragma directives
	Porting Code from MPLAB-C to MPLAB-C17 Checksheet
	Example Code Ported from MPLAB-C to MPLAB-C17
	MPLAB-C Portion of Header File Example
	MPLAB-C17 Portion of Header File Example
	MPLAB-C Source File Example
	MPLAB-C17 Source File Example

	Appendix B. ASCII Character Set
	Introduction
	ASCII Character Set

	Appendix C. Detailed MPLAB-C17 Example
	Introduction
	Highlights
	Flashing LEDs
	Linker File to Link Flashing LEDs Example

	Appendix D. PIC17CXXX Instruction Set
	Introduction
	Highlights
	PIC17CXXX Instruction Set
	PIC17CXXX Special Control Instructions

	Appendix E. References
	Introduction
	Highlights
	References

	Appendix F. On-Line Support
	Introduction
	Connecting to the Microchip Internet Web Site
	Software Releases
	Intermediate Release
	Production Release

	Systems Information and Upgrade Hot Line

